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The relationship between structure, function and regulation in
complex cellular networks is a still largely open question1–3.
Systems biology aims to explain this relationship by combining
experimental and theoretical approaches4. Current theories have
various strengths and shortcomings in providing an integrated,
predictive description of cellular networks. Specifically, dynamic
mathematical modelling of large-scale networks meets difficul-
ties because the necessary mechanistic detail and kinetic param-
eters are rarely available. In contrast, structure-oriented analyses
only require network topology, which is well known in many
cases. Previous approaches of this type focus on network robust-
ness5 or metabolic phenotype2,6, but do not give predictions on
cellular regulation. Here, we devise a theoretical method for
simultaneously predicting key aspects of network functionality,
robustness and gene regulation from network structure alone.
This is achieved by determining and analysing the non-decom-
posable pathways able to operate coherently at steady state
(elementary flux modes). We use the example of Escherichia
coli central metabolism to illustrate the method.

Elementary-mode analysis establishes a link between structural
analysis and metabolic flux analysis (MFA). Elementary flux modes
can be defined as the smallest sub-networks enabling the metabolic
system to operate in steady state7. For example, in a hypothetical
network (Fig. 1), five elementary modes exist, which cannot further
be decomposed. By linear combination of e1 to e5 all thermodyna-
mically and stoichiometrically feasible stationary flux distributions
can be obtained. In each elementary mode, the enzymes are
weighted by the relative fluxes they carry. Up to the non-negative
scaling factors for each mode, the set of elementary modes is unique
for a given network structure8. Hence, it enables us to investigate the
space of all physiological states that are meaningful for the cell in the
long-term perspective. Flux balance analysis (FBA), in contrast, uses
linear programming to obtain a single (not necessarily unique, see
Fig. 1) solution to an optimization problem, which is in most cases
maximal growth per substrate uptake2. Accordingly, FBA focuses on
a specific behaviour. It can thus not cope with cellular regulation
without additional constraints.

Elementary-mode analysis has mainly been applied to biochemi-
cal networks of moderate complexity1,7–9. To explore the utility of
the approach for a system of realistic complexity, we chose the
central metabolism of the bacterium Escherichia coli as an example.
In analogy to other network analyses2,10, central carbon metabolism
was modelled in (partially extended) detail, whereas in the anabolic
part of the model, combining predominantly linear pathways into
single assembly reactions served to reduce model complexity. The
growth rate is approximated by the production rate of macromol-
ecular cellular constituents such as DNA and protein. We model
growth as one reaction converting a fixed ratio of precursors into
biomass. Altogether, the network contains 89 substances and 110
reactions, of which 68 reactions can be attributed to single gene
products or to multi-enzyme complexes cooperating in a single
reaction (see Supplementary Information).

We determined elementary flux modes for the utilization of

representative substrates feeding into different parts of metabolism
(Table 1). The total number of elementary modes for given
conditions is here used as a quantitative measure of the degrees of
freedom11, that is, of flexibility. Glucose, for example, can be used in
approximately 45 times more different ways than acetate, corre-
sponding to biological intuition. Flux mode number thus directly
relates network structure to function. An empty set implies that no
steady-state flux distribution fulfilling the specifications exists,
hence predicting an inviable phenotype. For instance, anaerobic
use of any of the four substrates except glucose is impossible without
additional terminal electron acceptors.

In particular, we analyse the ability to grow or not to grow of
mutants carrying deletions in single genes. For this purpose, the
number of flux modes for a mutant Di using substrate Sk is
determined by (additionally) selecting for those flux modes that
do not require gene i. We denote by N(m,Di) the number of flux
modes showing a positive growth rate m for this mutant. The relative
number of flux modes for mutant strains (Supplementary Infor-
mation) allows a correct prediction of the experimentally deter-
mined growth phenotype in the overwhelming majority of cases
(Fig. 2a). Most situations with an empty (non-empty) set of flux
modes correspond to inviable (viable) mutants. The only two false
negatives are phosphogluco-isomerase (pgi) mutants, because in the
model, growth depends on glucose-6-phosphate production,
whereas in vivo this precursor is substitutable12. Erroneous positive
predictions may be caused by insufficient pathway capacities (kin-
etic constraints) in vivo. A statistically significant classification of
growth behaviour (P , 1025) results from the analysis. Altogether
90% of the predictions (81 out of 90 cases) were correct, which
justifies usage of the relative number of elementary modes as a
reliable indicator of network function.

As fault-tolerance is an essential feature of living systems, we
investigated the structure–function relationship with respect to
network robustness. We define robustness as insensitivity of net-
work function, that is, the ability to sustain bacterial growth,
towards internal disturbances like mutations13. The number of
elementary modes qualitatively indicates whether a mutant is viable
or not, but it does not necessarily describe to what extent a mutation
affects growth quantitatively. We therefore additionally calculated
the maximal biomass yield Y max for each combination of mutant
and substrate as a quantitative measure of network performance.
Central metabolism of E. coli behaves in a highly robust manner,
because mutants with significantly reduced metabolic flexibility

Figure 1 Example network. Reactions (solid arrows, 1:1 stoichiometry for substrates

and products) convert substrate S into a biomass component BC and a secreted

by-product P via internal metabolites M1–M6. Cellular growth rate m is approximated by

the production of BC. The hypothetical network comprises five elementary flux modes ei

(dashed arrows, relative flux in parentheses). The modes e1, e3 and e4 give the same BC:S

yield of 1:1, while e5 gives a yield of 1:2.
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show a growth yield similar to wild type (Fig. 2b). Robustness relies,
at least in part, on pathway redundancy. Analysis of the set of
elementary modes in wild type reveals the existence of multiple,
alternative pathways with identical biomass yield (Fig. 2c). Only
when the number of elementary modes is severely cut down by a
mutation is functionality affected. Hence, elementary-mode analy-
sis points to a coexistence of robustness and fragility, as already
shown for cellular regulation14–16.

Graph-theoretical methods are widely used to analyse complex
networks5,17. In particular, the network diameter D, defined as the
average minimal path length between any two nodes (substances),
has been shown to be relatively invariant upon random removal of
nodes in metabolic networks. This has been suggested to reflect
network robustness, as an increasing diameter would indicate
network disintegration5. However, for the network studied here, a
constant diameter does not necessarily imply identical functionality
(Fig. 2b). Robustness and fragility, hence, are not predicted by a
pure graph-theoretical measure of network topology. In contrast to
the network diameter, elementary modes reflect specific character-
istics of metabolism such as molar yields. We therefore tackled the
question whether the number of elementary modes N directly
relates to network robustness. As a measure for robustness, we
used the maximal growth yield for each mutant as already shown in
Fig. 2b. Counting the number of cases for which YmaxðDiÞ. 0 gave
the number of viable single-gene mutants for each substrate regime,
that is, a measure of the probability to tolerate random deletion
mutations. For different substrate uptake regimes, the organism’s
resistance to arbitrary gene deletions correlates well (r2 ¼ 0.93)
with N for the corresponding wild type (Fig. 2d). The number of
elementary modes thus provides an estimate for fault-tolerance.

Finally, we address whether regulation in complex metabolic
networks could be predicted by elementary-mode analysis. A direct,
quantitative correlation between metabolic fluxes and transcrip-
tome or proteome patterns has not been observed10,18,19. However,
the existence of a more indirect link seems likely. We start from the
assumption that optimization during biological evolution can be
characterized by the two objectives of flexibility—associated with
robustness—and efficiency11,13. This is, for example, supported by
evidence from the evolution of energy transduction20.

Flexibility means the ability of cellular systems to adapt to a wide
range of environmental conditions, that is, to realise a maximal
bandwidth of thermodynamically feasible flux distributions, hence
of elementary flux modes. Efficiency, as the second objective, could
be defined as the fulfilment of cellular demands with an optimal
outcome such as maximal cell growth2,6, using a minimum of
constitutive elements (such as genes and proteins)11. Since these
two criteria impose contradictory challenges, optimal cellular
regulation needs to find a trade-off. Our analysis will therefore
rely on a parameter characterizing flexibility and efficiency derived
from metabolic network structure, for which we introduce the term
‘control-effective flux’.

Control-effective fluxes are determined directly from the set of

elementary modes, and do not require optimization. The analysis
begins by assigning an efficiency to each elementary mode. These
efficiencies relate the mode’s output (growth or ATP production) to
the investment required to establish the mode, that is, to produce
the enzymes. This investment is approximated by the sum of all
(absolute) fluxes, because for comparable metabolite concen-
trations, the flux through an enzymatic reaction scales linearly
with enzyme concentration. For the hypothetical network (Fig. 1),
elementary mode e 4 would be favoured over e1 and e3 involving
more enzymatic steps for the same growth yield (see Appendix A,
Supplementary Information). Subsequently, we determine control-
effective fluxes for a specific reaction as the (normalized) average
flux through this reaction in all elementary modes, whereby for each
mode the actual flux is weighted by the mode’s efficiency (see
Methods). In general, control-effective fluxes represent the import-
ance of each reaction for efficient and flexible operation of the entire
network. In contrast to FBA, this approach takes network flexibility
directly into account because all optimal and sub-optimal modes
are considered.

As cellular control on longer timescales is predominantly
achieved by genetic regulation, the control-effective fluxes should
correlate with messenger RNA levels. Theoretical transcript ratios
V(S1,S 2) for growth on two alternative substrates S1 and S2 were
therefore calculated as ratios of control-effective fluxes and com-
pared to previously published complementary DNA-microarray
data for E. coli growing exponentially on glucose, glycerol and
acetate10,19. The structure-derived prediction of the differential
expression of 50 genes for acetate versus glucose shows good
agreement with experiment (Fig. 3a). A test for systematic errors
was subsequently performed by comparing the distribution of
residuals to the normal distribution resulting from completely

   

Figure 2 Metabolic network topology and phenotype. a, Relative number of elementary

modes N enabling deletion mutants in gene i (Di ) of E. coli to grow (abbreviated by m) for

90 different combinations of mutation and carbon source. The solid line separates

experimentally determined mutant phenotypes, namely inviability (experiments 1–40)

from viability (experiments 41–90). Dashed lines delimit the situations with erroneous

predictions. b, Dependency of the mutants’ maximal growth yield Y max(Di ) (open circles)

and the network diameter D(Di ) (open squares) on the share of elementary modes

operational in the mutants. Data were binned to reduce noise. c, Distribution of growth-

supporting elementary modes in wild type (rather than in the mutants), that is, share of

modes having a specific biomass yield (the dotted line indicates equal distribution).

d, Effect of arbitrary single-gene deletions on viability for single substrate uptake (open

circles) assessed by the mutants’ maximal growth yields as in b, but considering the

numbers of cases in which Y maxðDiÞ. 0; and relating them to the total number of modes

for the four substrates in wild type (Table 1).

Table 1 Number and distribution of elementary flux modes.

Selection* Glucose Acetate Glycerol Succinate Sum
.............................................................................................................................................................................

- N 27,099 598 11,332 4,249 43,279
Growth only Nðm;– ATPÞ 73.1% 58.7% 78.6% 76.3% 74.6%
ATP only Nð– m;ATPÞ 3.2% 5.0% 2.4% 2.4% 3.0%
Growth and ATP N(m,ATP) 6.6% 2.0% 5.1% 4.2% 5.9%
No growth/ATP Nð– m;– ATPÞ 17.1% 34.3% 13.9% 17.1% 16.5%
Aerobic growth N(m,O2) 73.1% 60.7% 83.6% 80.5% 76.4%
Anaerobic growth Nðm;– O2Þ 6.6% 0.0% 0.0% 0.0% 4.1%
.............................................................................................................................................................................

*We denote the number of elementary flux modes simultaneously meeting a set of conditions,
C1; . . .;Cn; by NðC1; . . .;CnÞ: These conditions include, for example, the situation where cells can
grow, which is abbreviated by m. Excess energy production in the form of ATP (ATP), the substrate
metabolized (Sk for the k-th substrate) and oxygen uptake (O2) are specified accordingly. The
operator ‘ – ’ indicates that certain fluxes must not occur. The total number of modes includes
one futile cycle without substrate uptake.
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random deviations21. It leads to identification of three presumable
outliers (Fig. 3b). Two overestimated transcript ratios are linked to
genes involved in acetate metabolism (pta, ackA) and, hence were
expected to be upregulated on acetate. This can be explained by the
fact that the gene acs codes for an enzyme operating in parallel; for
this gene our theoretical prediction is in agreement with experi-
mental observation19. The transcript ratio of aspA encoding for
aspartase was underestimated. Elementary-mode analysis suggests
that aspartase is required for an effective conversion of excess
NADPH generated by the TCA cycle to NADH (Supplementary
Information). Residual analysis thus sustained or generated
hypotheses amenable to further experimental investigation.
Removal of the three outliers from a total of 50 data sets leads to
to a high correlation between prediction and experiment
(r2 ¼ 0.60) with a linear regression close to perfect match. For
instance, average expression ratios from independent experimental
studies10,19 correlate with r2 ¼ 0.84 (not shown).

Additional evidence supporting our approach is provided by
three observations. First, predictions based solely on efficiency,
namely on the two flux modes with optimal ATP and biomass
yield, Vopt (Ac, Glc), displayed a weak correlation (Fig. 3c). Only 28
data points appear because many fluxes are zero and, hence, yield
zero or undefined predictions. Such an efficiency analysis corre-
sponds to the approach followed by FBA. Neglecting flexibility may
explain why FBA—even when supplied with information on regu-
latory circuits—only provides qualitative predictions for a subset of
genes22. Secondly, in view of the fact that experimental errors are
large compared to the effects of changes in the medium, the
predictions for other combinations of substrates also agree reason-
ably well with experiment (Fig. 3d). Finally, prediction quality was
poor when for elementary-mode analysis a simultaneous uptake of
all substrates was enabled (N ¼ 507,633, not shown). The combi-
nation of these findings points to a multi-level, hierarchical organ-

isation of metabolic regulation23. Transcriptional regulation for
growth on a specific substrate seems to rely on selection of this
substrate regime by the cell, for instance by catabolite repression.
According to the substrate regime, gene expression levels are, at an
intermediate level of control, adjusted to provide a general set-up
for metabolic efficiency and flexibility. At a lower level, short-term
regulation of fluxes for a specific situation, such as for one defined
substrate concentration, can then be achieved, for example, by
allosteric control of metabolic enzymes6.

Elementary-mode analysis decomposes complex metabolic net-
works into simpler units performing a coherent function. The
integrative analysis of elementary modes presented here can be
used to reconstruct key aspects of cellular behaviour from metabolic
network topology, namely to reliably classify mutant phenotypes, to
analyse network robustness, and to quantitatively predict functional
features of genetic regulation. Including additional knowledge on,
for example, newly annotated genes is straightforward8. A refined
approximation of bacterial growth could serve to improve our
method. The concept of extreme pathways24 bears strong similarity
with elementary modes7,8,11. For our model of E. coli central
metabolism, both approaches yield equivalent sets of functional
entities and, thus, identical results (not shown). Whereas these
approaches characterize the spectrum of different, potential func-
tionalities of the metabolic system, FBA focuses on a single flux
distribution. FBA provides similarly good predictions of mutant
phenotypes2, but it fails whenever network flexibility—for instance,
in the analysis of pathway redundancy or in quantitative prediction
of gene expression—has to be taken into account. Elementary-mode
analysis, in contrast, helps us understand the huge amount of
mRNA expression data provided nowadays. Subsequent studies
will apply the analysis developed here to organisms other than
E. coli and further validate it with upcoming transcriptome and
mutant data. More generally, we conclude that robustness of
metabolic networks is linked to redundancy, and that hierarchical
genetic control supports this robustness by finding a trade-off
between network efficiency and flexibility. Like recent studies
demonstrating the power of combining data and methods from
different origins25–27, the systems biology analysis presented here can
thus contribute to elucidation of the fundamental design principles
of living cells. A

Methods
Network model
For the catabolic part of the model, substrate uptake reactions, glycolysis, pentose
phosphate pathway, the TCA cycle with its glyoxylate bypass and the excretion of
by-products (acetate, formate, lactate and ethanol) were included. Previous networks2

were extended by—among others—the anaplerotic reactions via malic enzyme and
pyruvate oxidase as well as by parallel pathways for initial acetate metabolism. The
anabolic part of the model covers the conversion of precursors into building blocks like
amino acids, to macromolecules and, by assuming a fixed macromolecular composition of
the cell, to biomass.

Computation of elementary modes
Elementary flux modes, ei , as specific vectors r of reaction rates were determined using: (1)
the steady-state condition Sr ¼ 0 (S is the stoichiometric matrix); and (2) the non-
decomposability property that there must not be any steady-state flux vector r that has
zero components wherever e i does and at least one additional zero component7,11.
Computation of elementary modes was performed using the FluxAnalyzer28, a program
with graphical user interface for the analysis of metabolic networks based on Matlab
(Mathworks, Inc.). The software is available upon request from S.K. In particular, a core
algorithm described previously8 was implemented and optimized by additional pre-
processing steps. Unless stated otherwise, flux modes were computed separately for each
substrate before being combined.

Robustness analysis
Maximal biomass yield Y max was defined as the optimum of Yi;X=Sk

¼ em
i =eSk

i : The
superscripts to e specify single reaction rates—here, growth and substrate uptake—in
elementary flux mode i selected for utilization of substrate Sk. Analysis of network
connectivity was performed as described in ref. 5. Results were checked for consistency
with topological characteristics of large-scale networks: the network studied here is scale-
free, that is, the probability P(k) for a substance to participate in k reactions decays
according to P(k) < k 2g, with g ¼ 1.4 (Supplementary Information). The diameter of the
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Figure 3 Prediction of gene expression patterns. a, Calculated ratios between gene

expression levels during exponential growth on acetate and exponential growth on

glucose (filled circles indicate outliers) based on all elementary modes versus

experimentally determined transcript ratios19. Lines indicate 95% confidence intervals for

experimental data (horizontal lines), linear regression (solid line), perfect match (dashed

line) and two-fold deviation (dotted line). b, Distribution of residuals, that is, differences

between measurement and prediction, compared to a normal distribution of prediction

errors. Outliers (filled circles) were identified by their deviation from the linear regression

(solid line). c, Predicted transcript ratios for acetate versus glucose for which, in contrast

to a, only the two elementary modes with highest biomass and ATP yield (optimal modes)

were considered. d, Gene expression ratios for growth on glycerol versus glucose10 in

analogy to a.
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entire network (D ¼ 2.9) corresponds well to network diameters previously reported5,29.
We assessed the effect of random mutations on viability by independently determining the
number of flux modes, the maximal growth yield, and the network diameter after deletion
of each single reaction for growth on glucose, acetate, glycerol or succinate, respectively.

Prediction of gene expression
To calculate control-effective fluxes for each reaction l, we determine the efficiency of any
e i by relating the system’s output Q to the substrate uptake and to the sum of all absolute
fluxes. With flux modes normalized by the total substrate uptake, efficiencies 1 i(Sk, Q) for
the targets for optimization Q—growth and ATP generation—are defined as:

1iðSk;mÞ ¼
em

i

l

P
jel

ij
and 1iðSk;ATPÞ ¼

eATP
i

l

P
jel

ij
ð1Þ

Control-effective fluxes v l(S k) are obtained by averaged weighting of the product of
reaction-specific fluxes and mode-specific efficiencies over the inventory of elementary
modes using the substrate under consideration:

vlðSkÞ ¼
1

Ymax
X=Sk

·
i

P
1iðSk;mÞje

l
ij

i

P
1iðSk;mÞ

þ
1

Ymax
A=Sk

·
i

P
1iðSk;ATPÞjel

ij

i

P
1iðSk;ATPÞ

ð2Þ

Here, Ymax
X=Sk

and Ymax
A=Sk

denote optimal yields for biomass production and for ATP
generation for cellular maintenance, respectively (experimentally determined yield
parameters can, however, easily be incorporated into the approach). Subscripts specify
elementary-mode number (i) and reaction number (l). Owing to the normalization of
modes, the effect of system input (substrate requirement) is implied in equation (2).
Theoretical transcript ratios for growth on two alternative substrates S1 and S2 are
calculated as

VlðS1;S2Þ ¼
vlðS1Þ

vlðS2Þ
ð3Þ
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Cyclic nucleotide-gated (CNG) channels are crucial for visual and
olfactory transductions1–4. These channels are tetramers and in
their native forms are composed of A and B subunits5, with a
stoichiometry thought to be 2A:2B (refs 6, 7). Here we report the
identification of a leucine-zipper8-homology domain named CLZ
(for carboxy-terminal leucine zipper). This domain is present in
the distal C terminus of CNG channel A subunits but is absent
from B subunits, and mediates an inter-subunit interaction. With
cross-linking, non-denaturing gel electrophoresis and analytical
centrifugation, this CLZ domain was found to mediate a trimeric
interaction. In addition, a mutant cone CNG channel A subunit
with its CLZ domain replaced by a generic trimeric leucine zipper
produced channels that behaved much like the wild type, but
less so if replaced by a dimeric or tetrameric leucine zipper. This
A-subunit-only, trimeric interaction suggests that heteromeric
CNG channels actually adopt a 3A:1B stoichiometry. Biochemical
analysis of the purified bovine rod CNG channel confirmed
this conclusion. This revised stoichiometry provides a new
foundation for understanding the structure and function of the
CNG channel family.

Distinct A subunits (or a-subunits) of vertebrate CNG channels,
named CNGA1–4 according to the latest nomenclature5, mediate
rod phototransduction (A1), cone phototransduction (A3) and
olfactory transduction (A2 and A4). Two B subunits (or b-subunits)
are known, named CNGB1 and CNGB3 (CNGB2 does not exist5),
with CNGB1 being part of native rod and olfactory channels and
CNGB3 part of cone channels. When expressed heterologously,
most A subunits (CNGA1–3) form functional homomeric chan-
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