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ABSTRACT
The purpose of this manuscript is to give the detailed deriva-

tion of the Link Propagation method proposed in the paper titled
“Simultaneous Inference of Biological Networks of Multiple Species from
Genome-wide Data and Evolutionary Information”. This manuscript also
includes some experimental results that could not been included in
the paper. Section 1 gives the review of the the problem description,
and Section 2 gives the detailed formulation of the problem. Section
3 gives the derivation of the proposed algorithm. Section 4 gives the
additional experimental results.

1 PROBLEM SETTING
We are considering the problem of inferring the biological networks
of n species (n = 3 in our case). Let m(k) be the number of nodes
(i.e. proteins) in the network of the k-th species, and m be the num-
ber of nodes in the largest network. Let A(k) be the adjacency matrix
for the k-th network (k = 1, 2, . . . , n), where the (i, j)-th element
[A(k)]i,j ≡ 1 if a link exists between the i-th node and the j-th
node in the k-th network, and [A(k)]i,j ≡ −1 if no link exists. If
the link status is unknown, we set [A(k)]i,j ≡ 0. Let us denote by
A ≡ (A(1), A(2), . . . , A(n)) the ordered set of the adjacency matri-
ces. Note that we assume A(k) is symmetric in our experiments,
but the discussion in this paper holds for directed networks if we
consider [A(k)]i,j as a directed link from the i-th node to the j-th
node.

Our goal is to infer whether or not a link exists for each of the
node pairs whose corresponding element of A is 0. For this pur-
pose, our algorithm provides an ordered set of n matrices F =
(F(1), F(2), . . . , F(n)), where F(k) is an m(k) × m(k) matrix. The
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(i, j)-th element of F(k), which we refer to as link strength between
the i-th and the j-th nodes in the k-th network, represents how likely
it is that a link exists between them. A large value of link strength
indicates a high confidence that a link exists, and a small value indi-
cates a high confidence that there is no link. One possible use of link
strength is to prioritize the protein pairs whose link statuses should
be confirmed in actual biological experiments.

Besides the known parts of the networks, we can also exploit
biological information about the nodes (proteins) such as protein
sequences and gene expressions. We assume that we are given n2

non-negative similarity matrices {W(k,`)}n
k,`=1, where W(k,`) is

the similarity matrix between the nodes in the k-th network and
the nodes in the `-th network. The (i, j)-th element [W(k,`)]i,j of
W(k,`) indicates the nonnegative similarity value between the i-th
node in the k-th network and the j-th node in the `-th network.
Note that W(k,`) = W(`,k)>. In our experiments, the intra-species
similarity matrices (W(k,`) for k = `) were defined by the gene
expression, and the cross-species similarity matrices (W(k,`) for
k 6= `) were constructed from the protein sequence similarities.

Here is the summary of our task:
INPUT:
· An ordered set of n adjacency matrices A = ({A(k)}n

k=1) repre-
senting the known parts of the n networks.
· The n2 similarity matrices {W(k,`)}n

k,`=1 representing the simila-
rities among the nodes.
OUTPUT: The n matrices F = ({F(k)}n

k=1) representing the link
strengths for all pairs of nodes.

2 FORMULATION
Our goal is to estimate the link strength by leveraging the known
parts of the networks and the node similarities.
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Our approach to inferring the unknown parts of the networks is
based on the link propagation principle, which is, “If two pairs of
nodes are similar to each other, then the two pairs have similar link
strengths” (Fig. 1). This can be regarded as a pairwise extension of
the hypothesis used in the label propagation method [Zhou et al.,
2004, Zhu et al., 2003], which is a well-known semi-supervised
learning method. For example, let us consider two node pairs,
(i(k), j(k)) in the k-th network and (i(`), j(`)) in the `-th network.
Note that this includes the case of k = `. The hypothesis says
that, if the two pairs are similar to each other, their link strength
[F (k)]i(k),j(k) and [F (`)]i(`),j(`) should be close to each other.

To formulate this as the objective function of a minimization pro-
blem, we need to define a similarity metric between two node pairs.
We define the similarity matrix between the node pairs in the k-th
network and the node pairs in the `-th network as an m(k)2 ×m(`)2

matrix W̃(k,`), where the (i(k) + m(k)j(k), i(`) + m(`)j(`))-th
element [W̃(k,`)]i(k)+m(k)j(k),i(`)+m(`)j(`) indicates the similarity
between the (i(k), j(k))-pair and the (i(`), j(`))-pair. It is natural to
regard two pairs of nodes as similar to each other if the two nodes
from different pairs are similar to each other (See also Fig. 1.) In
this paper, we define the similarity metric between two node pairs
as the product of the node-wise similarities.

[W̃(k,`)]i(k)+m(k)j(k),i(`)+m(`)j(`) ≡ [W(k,`)]i(k),i(`) [W
(k,`)]j(k),j(`)

This similarity is equivalently expressed by using matrices as

W̃(k,`) = W(k,`) ⊗ W(k,`), (1)

where ⊗ denotes the Kronecker product. This similarity metric
is the same as the one used in the kernel methods [Basilico and
Hofmann, 2004, Ben-Hur and Noble, 2005, Oyama and Manning,
2004].

To represent the link propagation principle, we define the regula-
rization function

J1(F ) ≡
n
X

k,`=1

m(k)
X

i(k),j(k)=1

m(`)
X

i(`),j(`)=1

[W̃(k,`)]i(k)+m(k)j(k),i(`)+m(`)j(`)

“

[F(k)]i(k),j(k) − [F(`)]i(`),j(`)

”2

,

which will appear in our objective function (2).
In addition to making the link strength consistent with the simila-

rity measure, they should also be consistent with the known parts
of the networks. In other words, the link strength [F(k)]i(k),j(k)

should be a large value if there is a link between (i(k), j(k))-pair,
and should be a small value if no link exists. Therefore, we consider
the following loss function J2 defined as

J2(F ) ≡
n
X

k=1

m(k)
X

i(k),j(k)=1

“

[F(k)]i(k),j(k) − [A(k)∗]i(k),j(k)

”2

,

where A(k)∗ is an m(k) × m(k) matrix which represents the target
values defined as

[A(k)∗ ]i(k),j(k) ≡

8

>

>

>

<

>

>

>

:

|A(k)+|+|A(k)−|
|A(k)+|

if [A(k)]i(k),j(k) = 1,

− |A(k)+|+|A(k)−|
|A(k)−|

if [A(k)]i(k),j(k) = −1,

0 otherwise.

where |A(k)+| is the number of entries in A(k) satisfying
[A(k)]i(k),j(k) = 1, and |A(k)−| is the number of entries in A(k)

satisfying [A(k)]i(k),j(k) = −1. The magnitude of target value dif-
fers depending on whether or not a link exist. This way of setting
target values is the one which the Fisher discriminant uses [Bishop,
2006], so the proposed method can be interpreted as applying a
semi-supervised version of the Fisher discriminant to pairs of nodes.
For pairs whose link existence/absence are unknown, the target
values are set to 0 for the predicted link strength not being far
from 0, and for making the coefficient matrix of the resultant linear
equation (7) regular for numerical stability.

Using the regularization function J1 and the the loss function J2,
we devise the following objective function J as

J(F ) ≡ σ

2
J1(F ) +

1

2
J2(F ), (2)

where σ is a positive constant which balances the two terms. Our
method obtains the link strength F by minimizing the objective
function J with respect to F .

Now, we rewrite the objective function (2) using matrices as

J(F ) =
σ

2
vec (F )> Lvec (F ) +

1

2
‖ vec (F )− vec (A∗) ‖2

2, (3)

where A∗ ≡ (A(1)∗, A(2)∗, . . . , A(n)∗). Here, the vec opera-
tion for a matrix refers to a vector constructed by stacking all
the columns of the matrix. When the vec operation is applied
to the ordered set of matrices F , it indicates that vec (F ) ≡
vec
“h

vec
“

F(1)
”

, vec
“

F(2)
”

, . . . , vec
“

F(n)
”i”

. Also, L in Eq.
(3) is the Laplacian matrix defined as

L ≡

2

6

4

L(1,1) · · · L(1,n)

...
. . .

...
L(n,1) · · · L(n,n)

3

7

5

≡

2

6

4

D̃(1) 0
. . .

0 D̃(n)

3

7

5

−

2

6

4

W̃(1,1) · · · W̃(1,n)

...
. . .

...
W̃(n,1) · · · W̃(n,n)

3

7

5

, (4)

where D̃(k) is an m(k)2 × m(k)2 diagonal matrix whose diagonal
elements are defined as

[D̃(k)]i,i ≡
n
X

`=1

m(`)2
X

j=1

[W̃(k,`)]i,j . (5)

The diagonals of D̃(1), D̃(2), . . . , D̃(n) correspond to the row (or
column) sum of W̃. Remembering that W̃(k,`) is the pairwise simila-
rity matrix between the k-th species and the `-th species defined by a
matrix Kronecker product as in Eq. (1), D̃(k) can also be represented
by using matrix Kronecker product as

D̃(k) =

n
X

p=1

D(k,p) ⊗ D(k,p), (6)

where D(k,p) is an m(k) × m(k) matrix whose diagonal elements
are [D(k,p)]i,i =

Pm(p)

j=1 [W(k,p)]i,j .
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Algorithm 1 Conjugate Gradient (A, f∗, ε).
1: f(0) := f∗

2: r(0) := f∗ − Af(0), and p(0) := r(0)
3: for t = 0, 1, 2, . . . do
4: q(t) := Ap(t)
5: α(t) :=

˙

r(t), p(t)
¸

/
˙

p(t), q(t)
¸

6: f(t + 1) := f(t) + α(t)p(t)
7: r(t + 1) := r(t) − α(t)q(t)
8: β(t) := ‖ r(t + 1) ‖2

2/‖ r(t) ‖2
2

9: if ‖ r(t + 1) ‖2
2/‖ r(0) ‖2

2 < ε2, return f(t + 1)
10: p(t + 1) := r(t + 1) + β(t)p(t)
11: end for

Algorithm 2 Link Propagation Algorithm ({W(k,`)}n
k,`=1, A

∗, σ, ε).

1: F (0) := A∗

2: R(0) :=−σ
h

G(1)(F (0)), . . . , G(n)(F (0))
i

and P (0)=R(0).
3: for t = 0, 1, 2, . . . do,
4: Q(t) := σ

h

G(1)(P (t)), . . . , G(n)(P (t))
i

+ P (t)

5: α(t) :=
Pn

k=1

˙

R(k)(t), P(k)(t)
¸

/
Pn

k=1

˙

P(k)(t), Q(k)(t)
¸

6: F (t + 1) := F (t) + α(t)P (t)
7: R(t + 1) := R(t) − α(t)Q(t)
8: β(t) :=

Pn
k=1 ‖ R(k)(t + 1) ‖2

2/
Pn

k=1 ‖ R(k)(t) ‖2
2

9: if
Pn

k=1‖R(k)(t+1)‖2
2

Pn
k=1‖R(k)(0)‖2

2
< ε2, return F (t + 1)

10: P (t + 1) := R(t + 1) + β(t)P (t)
11: end for

To obtain the F that minimizes Eq. (3), we differentiate Eq. (3)
with respect to vec (F), which results in

∂J(F )

∂vec (F )
= σLvec (F ) + vec (F ) − vec (A∗) .

Setting ∂J
∂vec(F )

= 0 to find the stationary point, we obtain the linear
equation

(σL + I) vec (F ) = vec (A∗) , (7)

which has a unique solution.

3 ALGORITHM
3.1 Conjugate gradient method
To find a solution for the linear equation (7), we use the conju-
gate gradient method [Golub and Loan, 1996], which is a standard
approach to solving linear equations. The basic conjugate gradient
algorithm for a linear equation Af = f∗ is given as Algorithm 1. In
our case, setting

A ≡ σL + I, f∗ ≡ vec (A∗) , and f ≡ vec (F ) , (8)

we thus obtain our version of the conjugate gradient algorithm detai-
led in Algorithm 2. Note that the algorithm is described using
matrix notation in contrast to the standard conjugate gradient algo-
rithm (Algorithm 1) being described in terms of vectors. Instead
of the vectors f(t), r(t), p(t), and q(t) in the original conjugate
gradient algorithm (Algorithm 1), we define the corresponding orde-
red sets of matrices, F (t) ≡

“

F(1)(t), . . . , F(n)(t)
”

, R(t) ≡

“

R(1)(t), . . . , R(n)(t)
”

, P (t) ≡
“

P(1)(t), . . . , P(n)(t)
”

, Q(t) ≡
“

Q(1)(t), . . . , Q(n)(t)
”

, where the k-th element of each set is an

m(k) × m(k) matrix. The 〈·, ·〉 indicates the inner product of two
matrices.

Although most of the steps in Algorithm 2 are obtained naturally
by replacing the vectors by the ordered sets of matrices, Line 2 and
Line 4 need some derivation since it involves multiplication of A
and a vectorized ordered set of matrices.

Let us derive Line 2 of the algorithm. First, we define an operation
Res (v) which reshapes a vector v to a

p

|v|×
p

|v| matrix. In other
words, for any square matrix S, it holds that S = Res (vec (S)).
Substituting Eqs. (8) into r(0) ≡ f∗ − Af(0), we obtain

vec (R(0)) = vec (F (0)) − (σL + I)vec (F (0))

= −σ

2

6

6

6

4

Pn
`=1 L(1,`)vec

“

F(`)(0)
”

...
Pn

`=1 L(n,`)vec
“

F(`)(0)
”

3

7

7

7

5

Removing the vec operation (i.e. applying Res operation), we obtain

R(0) = −σ

» n
X

`=1

Res
“

L(1,`)vec
“

F(`)(0)
””

, . . . ,

Res

 

n
X

`=1

L(n,`)vec
“

F(`)(0)
”

!

–

. (9)

Now, let us define G(k)(B) as

G(k)(B) ≡
n
X

`=1

Res
“

L(k,`)vec
“

B(`)
””

, (10)

where B ≡ (B(1), B(2), . . . , B(n)) is an ordered set of n matrices
where B(`) is an m(`) × m(`) matrix. Substituting Eq. (10) into Eq.
(9), we obtain Line 2. Line 4 is also obtained similarly.

3.2 Efficient computation
The computational bottleneck is the evaluation of G(k)(B) in Eq.
(10). Since L(k,`) is an m(`)2 × m(`)2 matrix, it is quite time-
and space-consuming to explicitly build large L(k,`) in the memory
(O(m4) space) and compute their multiplications (O(m4) time).

Since L(k,`) ≡ δ(k = `)D̃(k) − W̃(k,`) from Eq. (4), Eq. (10) is
rewritten as

G(k)(B) =

n
X

`=1

Res
“

δ(k = `)D̃(k)vec
“

B(`)
”

− W̃(k,`)vec
“

B(`)
””

.

Using Eq. (1) and (6), this is further rewritten as

G(k)(B) =

n
X

`=1

„

Res
““

D(k,`) ⊗ D(k,`)
”

vec
“

B(k)
””

− Res
“

−
“

W(k,`) ⊗ W(k,`)
”

vec
“

B(`)
””

«

. (11)

The key for efficient computation is based on the following equa-
tion called “vec-trick” [Laub, 2005, Vishwanathan et al., 2007] (See
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also Fig. 2),

“

W(k,`) ⊗ W(k,`)
”

vec
“

B(`)
”

=vec
“

W(k,`)B(`)W(k,`)>
”

. (12)

The right-hand side of Eq. (12) needs only O(m3) time and O(m2)
space. Using Eq. (12), we can rewrite Eq. (11) as

G(k)(B) =

n
X

`=1

“

D(k,`)B(k)D(k,`) − W(k,`)B(`)W(`,k)
”

. (13)

Note that D(k,`) is a diagonal matrix, so is symmetric. The right-
hand side of Eq. (13) reduces the time- and space-complexity of
Line 2 and Line 4 in Algorithm 2, compared with Eq. (10).

3.3 Computational Cost
To deal with numerous proteins of many species, scalability is the
key factor. However, the memory requirement of the P-SVM is
O(m4), which severely limits its scalability: even for several thou-
sands of proteins, the P-SVM requires tens of gigabytes of the
memory. Since the quadratic programming problem needs cubic
time complexity with respect to the number of training examples,
the time complexity of the P-SVM is theoretically O(m6). As many
fast optimization methods have been developed for the SVM, its
practical speed is not too slow in general. Nevertheless, as it is diffi-
cult to keep the whole pairwise kernel matrix in memory, we cannot
always use the fastest software packages in our problems.

A great advantage of our Link Propagation algorithm is in its
memory efficiency. It requires only O(m2) memory thanks to the
“vec-trick”. In terms of the computational complexity, it requires
O(m5) time theoretically, because each iteration of our algorithm
can be conducted in O(m3) time, and O(m2) iterations are requi-
red to solve the linear equations completely. However, the number
of iterations in practice is much smaller than O(m2), and in our
comparison, the Link Propagation algorithm was roughly 100 times
faster than the P-SVM.

4 ADDITIONAL RESULTS
In this section, we give the experimental results that we could not
include in the paper. Tables 1, 2, and 3 show the predictive perfor-
mances measured in AUC of individual inferences and simultaneous
inference using various methods including the kernel regression
(KR), the P-SVM, and the proposed method, respectively.

Tables 4, 5, and 6 show the predictive performances measu-
red in sensitivity-specificity equilibria where sensitivity is equal to
specificity.
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(b) The principle of link propagation when no link exists

Fig. 1. The principle of link propagation for protein pair (α, β) and protein pair (α′, β′). Figure (a) depicts that if two protein pairs are similar to each other,
the link for one protein pair is propagated to the other pair whose link status was unknown. Figure (b) shows the case of the no-link status being propagated.
The method applies this principle to all protein pairs.

��

Fig. 2. The “vec-trick” [Laub, 2005, Vishwanathan et al., 2007] accelerates a multiplication of a Kronecker product of two matrices and a vectorized matrix
(the l.h.s) by replacing it by matrix multiplications (the r.h.s), which reduces the computational complexity by one order, and the space requirement of the r.h.s
becomes the square root of the l.h.s. This equation plays a crucial role in the proposed algorithm (Algorithm 2).
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Table 1. Comparison of AUCs by individual inferences and simultaneous inference using the kernel regression (KR).

C. elegans H. pylori S. cerevisiae total

ratio of KR KR KR KR KR KR KR KR
training data (individual) (simultaneous) (individual) (simultaneous) (individual) (simultaneous) (individual) (simultaneous)

25 % 0.591±0.003 0.593±0.002 0.560±0.013 0.565±0.009 0.788±0.009 0.822±0.009 0.715±0.002 0.727±0.002
50 % 0.592±0.005 0.599±0.006 0.563±0.003 0.565±0.005 0.859±0.003 0.883±0.002 0.744±0.003 0.755±0.003
75 % 0.591±0.007 0.605±0.012 0.574±0.014 0.575±0.009 0.897±0.005 0.914±0.006 0.752±0.004 0.765±0.004

Table 2. Comparison of AUCs by individual inferences and simultaneous inference using the P-SVM.

C. elegans H. pylori S. cerevisiae total

ratio of P-SVM P-SVM P-SVM P-SVM P-SVM P-SVM P-SVM P-SVM
training data (individual) (simultaneous) (individual) (simultaneous) (individual) (simultaneous) (individual) (simultaneous)

25 % 0.695±0.005 0.722±0.007 0.594±0.004 0.604±0.002 0.810±0.010 0.832±0.007 0.731±0.005 0.746±0.005
50 % 0.717±0.004 0.752±0.008 0.612±0.009 0.628±0.012 0.866±0.009 0.884±0.005 0.771±0.006 0.789±0.006
75 % 0.776±0.009 0.774±0.013 0.621±0.018 0.648±0.018 0.891±0.010 0.914±0.004 0.821±0.005 0.813±0.004

Table 3. Comparison of AUCs by individual inferences and simultaneous inference using the proposed method.

C. elegans H. pylori S. cerevisiae total

ratio of proposed proposed proposed proposed proposed proposed proposed proposed
training data (individual) (simultaneous) (individual) (simultaneous) (individual) (simultaneous) (individual) (simultaneous)

25 % 0.702±0.004 0.747±0.005 0.600±0.007 0.616±0.007 0.851±0.005) 0.865±0.004 0.749±0.002 0.780±0.002
50 % 0.712±0.005 0.776±0.008 0.617±0.009 0.635±0.008 0.901±0.005 0.909±0.005 0.786±0.005 0.820±0.005
75 % 0.727±0.008 0.791±0.008 0.629±0.016 0.653±0.021 0.921±0.008 0.928±0.009 0.806±0.006 0.840±0.005
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Table 4. Comparison of sensitivity-specificity equilibria by individual inferences and simultaneous inference using the kernel regression (KR).

C. elegans H. pylori S. cerevisiae total

ratio of KR KR KR KR KR KR KR KR
training data (individual) (simultaneous) (individual) (simultaneous) (individual) (simultaneous) (individual) (simultaneous)

25 % 0.563±0.004 0.582±0.002 0.544±0.013 0.548±0.010 0.687±0.009 0.724±0.007 0.663±0.002 0.677±0.001
50 % 0.563±0.004 0.587±0.005 0.545±0.006 0.548±0.009 0.751±0.005 0.779±0.006 0.686±0.002 0.698±0.001
75 % 0.559±0.005 0.589±0.010 0.552±0.020 0.555±0.019 0.790±0.005 0.815±0.007 0.694±0.003 0.704±0.003

Table 5. Comparison of sensitivity-specificity equilibria by individual inferences and simultaneous inference using the P-SVM.

C. elegans H. pylori S. cerevisiae total

ratio of P-SVM P-SVM P-SVM P-SVM P-SVM P-SVM P-SVM P-SVM
training data (individual) (simultaneous) (individual) (simultaneous) (individual) (simultaneous) (individual) (simultaneous)

25 % 0.659±0.005 0.667±0.009 0.570±0.003 0.576±0.002 0.726±0.013 0.745±0.011 0.691±0.006 0.689±0.007
50 % 0.680±0.003 0.689±0.008 0.587±0.010 0.590±0.010 0.783±0.010 0.804±0.010 0.723±0.006 0.727±0.007
75 % 0.692±0.005 0.709±0.011 0.599±0.010 0.606±0.014 0.816±0.016 0.842±0.018 0.744±0.008 0.753±0.001

Table 6. Comparison of sensitivity-specificity equilibria by individual inferences and simultaneous inference using the proposed method.

C. elegans H. pylori S. cerevisiae total

ratio of proposed proposed proposed proposed proposed proposed proposed proposed
training data (individual) (simultaneous) (individual) (simultaneous) (individual) (simultaneous) (individual) (simultaneous)

25 % 0.668±0.004 0.693±0.006 0.581±0.009 0.592±0.008 0.759±0.007 0.773±0.005 0.706±0.002 0.722±0.003
50 % 0.679±0.004 0.716±0.007 0.591±0.006 0.603±0.005 0.811±0.011 0.821±0.008 0.735±0.005 0.756±0.004
75 % 0.693±0.009 0.729±0.009 0.607±0.015 0.627±0.023 0.840±0.012 0.851±0.014 0.754±0.007 0.776±0.006
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