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Abstract

In this paper we deal with graph classifica-
tion. We propose a new algorithm for per-
forming sparse logistic regression on graphs.
Sparsity is required for the reason of inter-
pretability, which is often necessary in do-
mains such as bioinformatics or chemoinfor-
matics. Our method is comparable in accu-
racy with other methods of graph classifica-
tion and produces probabilistic output in ad-
dition.

1. Introduction

One of the fields where graphs are very commonly
used as a means of representation is chemoinformatics,
where small molecules can be represented as graphs.
Here it is a central issue to predict chemical activities
of molecules based on their structure, which is called
Quantitative Structure-Activity Relationship (QSAR)
Analysis. In this task, it is important to be able to
identify a small number of molecular patterns which
are responsible for the considered chemical activity: if
the set of these patterns is not small, then chemists
will not be able to interpret the obtained result. It is
often desirable as well to be able to produce a poste-
riori probability that a molecule will reveal a certain
activity. Graph classification methods such as gBoost
(Saigo et al., 2008) have been successfully applied on
most chemical benchmark datasets, but they do not
provide probabilistic output which would be advanta-
geous for a number of applications. Such applications
include rejection threshold setting (Chow, 1970), mea-
suring prediction confidence, or covariate shift adap-
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tation (Bickel et al., 2007). We attempt to rectify
the situation by proposing an algorithm for perform-
ing sparse logistic regression for graph classification.

2. Logistic regression on graphs

In this section we expose the logistic regression prob-
lem and our solution in a graph classification setting.
We are looking for a graph classification method which
will (i) take into account all substructures occurring a
dataset of graphs, (ii) find a small set of discriminative
substructures, (iii) give the a posteriori probability of
each graph belonging to each class.

A well-studied method for estimating a posteriori
probabilities is logistic regression. In this section we
present a column generation algorithm for realising
sparse logistic regression on graphs.

In this work we restrict ourselves to connected non-
oriented labeled graphs, but the results can be easily
extended to more general cases. First we introduce
some definitions used in the paper.

2.1. Preliminaries

Definition 1 (Labeled connected graph) A la-
beled graph is represented as a 4-tuple G = (V,E,L, l),
where V is a set of vertices, E ⊆ V × V is a set of
edges, L is a set of labels, and l : V ∪ E → L is a
mapping that assigns labels to the vertices and edges.
A labeled connected graph is a labeled graph such that
there exists a path between any pair of vertices.

Definition 2 (Subgraph) Let G′ = (V ′, E′,L′, l′)
and G = (V,E,L, l) be labeled connected graphs. G′ is
a subgraph of G (G′ ⊆ G) if the following conditions
are satisfied: (1) V ′ ⊆ V , (2) E′ ⊆ E, (3) L′ ⊆ L, (4)
∀v′ ⊆ V ′, l(v′) = l′(v′) and (5) ∀e′ ⊆ E′, l(e′) = l′(e′).
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In graph classification the goal is to learn a decision
rule from training examples {(Gi, yi)}li=1, where Gi is
a graph and yi ∈ {−1,+1} is the corresponding class
label. Let S be the set of all subgraphs that occur in
at least one training example. Then any graph Gi can
be represented as a |S|-dimensional binary vector xi,

xis = I(s ⊆ Gi), ∀s ∈ S,

where I(π) is an indicator function giving 1 if π is true
and 0 otherwise.

Every subgraph s is associated with two functions, also
called hypotheses or features, which map all xi to some
value in {−1,+1}:

h(xi, s, 1) = 2xis − 1

and its complementary,

h(xi, s,−1) = −2xis + 1.

Given these simple features, the aim of the classifier
will be to select a small discriminative set of these
and find optimal coefficients for respective functions in
order to build a decision rule of good quality. For the
sake of simplicity, we will suppose that the T = 2|S|
hypotheses are numbered and we will refer to them as
hj , j ∈ {1, . . . , T}.

2.2. Dual formulation of logistic regression

Here we review logistic regression and then we give
its dual formulation which can be efficiently combined
with subgraph mining.

Logistic regression is a well-studied classification tech-
nique. It assumes that y’s are generated stochastically
as a function of x’s and the logarithm of the ratio of
the conditional distributions is linear in features of x:

log
Pr(y = +1|x)
Pr(y = −1|x)

=
T∑
j=1

αjhj(x),

αj being arbitrary real numbers.

This assumption is true for a large number of distri-
butions. Given the last equation, we can express the a
posteriori probability Pr(y|x) as a simple function of
the linear combination

∑T
j=1−αjhj(x), which we will

denote Hα(x):

Pr(y|x) =
1

1 + e−yHα(x)
.

Then the likelihood of the labels is given by
n∏
i=1

1
1 + e−yiHα(xi)

and maximizing this likelihood is equivalent to mini-
mizing its negative logarithm

n∑
i=1

log(1 + exp(−yiHα(xi))). (1)

As it was said in the introduction, we require spar-
sity for the reason of interpretability. A well-studied
technique for achieving sparsity of a solution is the
minimization of a L1 norm of the parameter vector α
(Tibshirani, 1996), which is equivalent to imposing a
Laplace prior over these parameters (Williams, 1995).
As we have mentioned earlier, the hypothesis set is
complementary-closed, meaning that if a hypothesis h
exists, then −h exists as well. Given this property, we
can restrict the parameters to non-negativity. Conse-
quently the L1 norm will correspond to a simple sum,
without absolute value.

Hence, the problem has the following form:

min
αj

T∑
j=1

αj + C

n∑
i=1

g(ξi)

subject toαj ≥ 0, ∀j ∈ {1, . . . , T}

ξi = −yi
T∑
j=1

αjhj(xi), ∀i ∈ {1, . . . , n},

(2)

where g(x) = log(1 + exp(x)) and C > 0 is a L1 reg-
ularization parameter (corresponding to the scale pa-
rameter of the Laplace distribution over parameters
αj).

The problem is convex, but in this form it is impossible
to solve because of the prohibitive number of variables.
For this reason we switch to the corresponding dual
problem

max
λi
−

n∑
i=1

G(
λi
C

)

subject to
n∑
i=1

λiyihj(xi) ≤ 1, ∀j ∈ {1, . . . , T},
(3)

where G represents the Legendre transformation of g,
corresponding to binary entropy: G(x) = x log x +
(1− x) log(1− x). After solving the dual problem, the
primal solution will be obtained from the Lagrange
multipliers.

The dual problem has few variables, but a huge num-
ber of constraints. We propose to solve this problem
using a column generation technique: beginning with
an empty set of constraints, at each iteration the most
violated constraint will be identified and added to the
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constraint set. The most violated constraint is found
by the subgraph mining procedure, which is explained
in detail in (Saigo et al., 2008). Each time when a new
hypothesis is added, the optimal solution is updated
by solving the dual problem subject to the updated set
of constraints. If there is no more violated constraint,
then the current solution is optimal. It is intuitive to
suppose that subgraphs found in last iterations will
have a negligible impact on the final solution. There-
fore we can early-stop the algorithm by introducing a
tolerance parameter ε > 0 and replacing the stopping
criterion by

n∑
i=1

λiyihj(xi) > 1 + ε. (4)

We have not yet obtained bounds on the primal objec-
tive function in case of early-stopping. However, our
experiments show that the difference between primal
objective values obtained with ε = 0 and ε = 0.01 is
systematically less than 10−6.

Algorithm 1 Column generation for logistic regres-
sion
Input: {(x1, y1), . . . , (xl, yl)}, C, ε
Initialize: j ← 1, CTS ← ∅, λi ← C

2 ∀i ∈ {1, . . . , l}
{CTS – set of constraints}

1: loop
2: hj ← h maximizing

∑l
i=1 λiyih(xi) found by

the graph mining procedure
3: if

∑l
i=1 λiyihj(xi) < 1 + ε then

4: break: T ← j − 1, return Hα =
∑T
j=1 αjhj

5: end if
6: CTS ← CTS ∪ {

∑l
i=1 λiyihj(xi) ≤ 1}

7: Solve (3) subject to CTS
8: for k ∈ {1, . . . , j} do
9: αk ← Lagrange multiplier associated with the

k’th constraint
10: end for
11: j ← j + 1
12: end loop

3. Experiments

We have done several experiments to compare the per-
formances of logistic regression with those of gBoost
(Saigo et al., 2008) on several chemical datasets. The
datasets BZR, DHFR, ER and CPDB contain 300 to
700 graphs each, the average number of nodes and
edges does not exceed 41 and 44 respectively, and
the labels are binary in all cases. We used 10-fold
cross-validation for choosing the C parameter of sparse
logistic regression and the ν parameter of gBoost.

The possible values were {0.25, 0.7, 2, 5, 15, 40, 100}
and {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35} for C and ν re-
spectively. We used three evaluation criteria: accuracy
(acc), which is the ratio between the number of cor-
rectly labeled examples and the number of examples;
area under the ROC curve (AUC); the number of sub-
graphs with non-zero coefficients in the final solution
(#sg). Table 1 summarizes obtained results.

Table 1. Comparison of logistic regression (LR) with
gBoost (gB)

BZR DHFR ER CPDB
LR gB LR gB LR gB LR gB

acc. 0.75 0.78 0.86 0.82 0.82 0.82 0.80 0.78
AUC 0.80 0.81 0.89 0.88 0.83 0.79 0.86 0.82
#sg 126 521 143 295 228 445 86 326

The results show that logistic regression and gBoost
have comparable performance in terms of accuracy.
Logistic regression seems to produce sparser solutions,
which is a good point.

The runtime is comparable for the two methods. For
our logistic regression method, as well as for gBoost,
graph mining is the most time-consuming part.

4. Conclusion

In this work we considered graph classification. Our
contribution is to combine logistic regression with a
subgraph mining algorithm by proposing a column
generation algorithm (inspired by gBoost) to realise
logistic regression on graphs. This algorithm has com-
parable accuracy with gBoost and in addition it gives
probabilistic output.

The proposed method is only applicable to small
graphs due to high computational cost. Consequently,
a path to follow would be to search for a way to scale
up the method. In our opinion, in this direction it
would be interesting to consider the projected gradi-
ent method instead of column generation: we believe
that this would allow to reduce the number of itera-
tions, i.e. the number of graph mining procedure calls.
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