Noyaux définis positifs

Cours Master 2005/06

Jean-Philippe Vert

Jean-Philippe.Vert@mines.org

Ecole des Mines de Paris

Plan

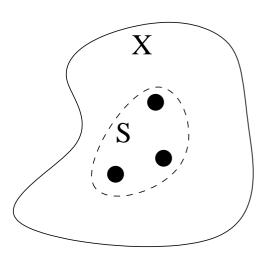
- Représentation des données par similarité
- Noyau défini positif
- Théorème de Mercer
- Espace de Hilbert à noyau reproduisant (rkhs)
- Noyau de Mercer et rkhs
- Rkhs et fonctions de Green
- Noyaux et régularisation par transformée de Fourier

Représentation des données par similarité

Les données

Soit \mathcal{X} un ensemble. Un *objet* est un point $\mathbf{x} \in \mathcal{X}$. Un ensemble de données à analyser sera souvent un ensemble fini de N objets: $\mathcal{S} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\}$. Par exemple:

- \mathcal{X} est l'ensemble de toutes les séquences finies dans l'alphabet $\{A, C, G, T\}$
- Un objet $\mathbf{x} \in \mathcal{X}$ est une séquence d'ADN qui code pour un gène
- S est l'ensemble est 30.000 gènes humains



Représentation classique des données

Soit un *algorithme* A capable de traîter des données d'un espace \mathcal{F} , par exemple $A: \mathcal{F}^N \mapsto \mathbb{R}$. Pour traîter \mathcal{S} , il faut soit $\mathcal{X} = \mathcal{F}$, soit définir une application $\Phi: \mathcal{X} \mapsto \mathcal{F}$ et travailler sur l'ensemble:

$$\Phi\left(\mathcal{S}\right) = \left\{\Phi\left(\mathbf{x}_{1}\right), \ldots, \Phi\left(\mathbf{x}_{N}\right)\right\} \in \mathcal{F}^{N}.$$

Par exemple:

- ${\cal F}=$ l'ensemble des séquences finies, pour un algorithme de compression
- $m{\mathcal{F}}=\mathbb{R}^d$, pour un algorithme qui calcule le barycentre

Représentation par comparaison

Plutôt que de représenter chaque objet $\mathbf{x} \in \mathcal{X}$ individuellement par $\Phi\left(\mathbf{x}\right) \in \mathcal{F}$, et donc $\mathcal{S} \in \mathcal{X}^N$ par $\Phi\left(\mathcal{S}\right) \in \mathcal{F}^N$, soit une *fonction de similarité*:

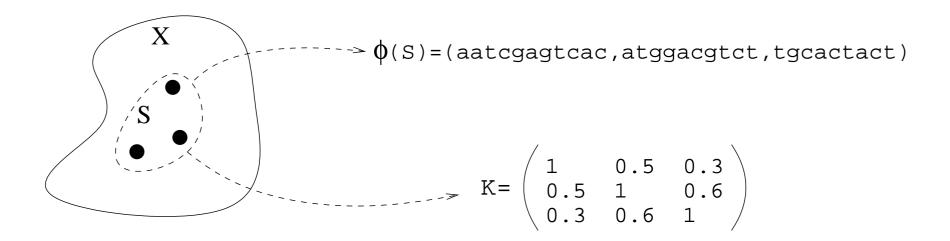
$$K: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$$
.

On peut alors représenter S par la *matrice de similarité* $N \times N$:

$$[K]_{ij} := K\left(\mathbf{x}_i, \mathbf{x}_j\right)$$

On utilisera alors des algorithmes capables de traîter des matrices carrées.

Les deux représentations



Remarques

- ▶ La représentation par similarité est toujours une matrice carrée réelle, quels que soient les objets (séquences, vecteurs, images, ...). Le même algorithme pourra traîter toutes ces données.
- Il y aura une complète modularité entre le choix de la fonction de similarité, d'une part, et le choix de l'algorithme qui sera appliqué à la matrice de similarité, d'autre part.
- La *taille* de la matrice de similarité est toujours $N \times N$, quelles que soient la nature et la complexité des objets
- Il est parfois plus simple de comparer des objets complexes que de les transformer en une forme imposée par un algorithme.

Noyaux définis positifs

Noyaux définis positifs (n.d.p.)

Nous nous restreindrons dans ce cours à une classe particulière de fonctions de similarité:

Définition 1 *Un* noyau défini positif (n.d.p.) *sur l'ensemble* \mathcal{X} *est une fonction* $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ *symétrique:*

$$\forall (\mathbf{x}, \mathbf{x}') \in \mathcal{X}^2, \quad K(\mathbf{x}, \mathbf{x}') = K(\mathbf{x}', \mathbf{x}),$$

et qui satisfait, pour tout $N \in \mathbb{N}$, $(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) \in \mathcal{X}^N$ et $(a_1, a_2, \dots, a_N) \in \mathbb{R}^N$:

$$\sum_{i=1}^{N} \sum_{j=1}^{N} a_i a_j K(\mathbf{x}_i, \mathbf{x}_j) \ge 0.$$

N.d.p. (suite)

- Définition équivalente: pour tout ensemble d'objets $S \in \mathcal{X}^N$, la matrice de similarité est symétrique semi-définie positive.
- En nous restreignant aux n.d.p., nous allons pouvoir utiliser une large famille d'algorithmes, les méthodes à noyau, qui travaillent sur des matrices symétriques semi-définies positives.

Le plus simple n.d.p.

Soit $\mathcal{X} = \mathbb{R}^d$ et la fonction $K : \mathcal{X}^2 \mapsto \mathbb{R}$ définie par:

$$\forall (\mathbf{x}, \mathbf{x}') \in \mathcal{X}^2, \quad K(\mathbf{x}, \mathbf{x}') = \langle \mathbf{x}, \mathbf{x}' \rangle$$

On vérifie que K est un n.d.p., appelé le *noyau linéaire*:

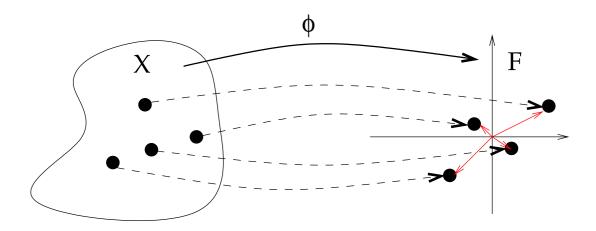
- ullet $\langle \mathbf{x}, \mathbf{x}'
 angle = \langle \mathbf{x}', \mathbf{x}
 angle$,

Un n.p.d. plus ambitieux

Soit \mathcal{X} quelconque, et $\Phi: \mathcal{X} \mapsto \mathbb{R}^d$. Alors la fonction $K: \mathcal{X}^2 \mapsto \mathbb{R}$ définie par:

$$\forall (\mathbf{x}, \mathbf{x}') \in \mathcal{X}^2, \quad K(\mathbf{x}, \mathbf{x}') = \langle \Phi(\mathbf{x}), \Phi(\mathbf{x}') \rangle$$

est un n.d.p, car:



Réciproquement...

Nous allons démontrer la réciproque suivante:

Théorème 2 Si K est un n.p.d. sur un espace \mathcal{X} quelconque, alors il existe un espace de Hilbert \mathcal{H} muni du produit scalaire $\langle .,. \rangle_{\mathcal{H}}$ et une application

$$\Phi: \mathcal{X} \mapsto \mathcal{H},$$

tels que:

$$\forall (\mathbf{x}, \mathbf{x}') \in \mathcal{X}^2, \quad K(\mathbf{x}, \mathbf{x}') = \langle \Phi(\mathbf{x}), \Phi(\mathbf{x}') \rangle_{\mathcal{H}}.$$

Au cas où...

- **Définition 3** Un produit scalaire sur un \mathbb{R} -espace vectoriel \mathcal{H} est une application $(f,g) \mapsto \langle f,g \rangle_{\mathcal{H}}$ de \mathcal{H}^2 dans \mathbb{R} qui est bilinéaire, symétrique et telle que $\langle f,f \rangle > 0$ pour tout $f \in \mathcal{H} \setminus \{0\}$.
- Un espace vectoriel muni d'un produit scalaire est appelé pré-hilbertien. Il est muni d'une norme associée au produit scalaire par $||f||_{\mathcal{H}} = \langle f, f \rangle_{\mathcal{H}}^{\frac{1}{2}}$.
- Un espace de Hilbert est un espace vectoriel muni d'un produit scalaire et complet pour la norme associée.

Preuves du Théorème 2

- ullet Depuis l'origine de l'algèbre si ${\mathcal X}$ est fini
- Mercer (1909) pour $\mathcal{X} = [a, b] \subset \mathbb{R}$ et K continue
- Kolmogorov (1941) pour \mathcal{X} dénombrable
- Aronszajn (1944, 1950) pour le cas général

Preuve: cas \mathcal{X} fini

- ullet On suppose $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\}$ fini
- Si K est un n.d.p. alors la matrice $N \times N$ de similarité est symétrique définie positive donc diagonalisable dans une base orthonormée (u_1, u_2, \ldots, u_N) avec des valeurs propres $0 \le \lambda_1 \le \ldots \le \lambda_N$, ce qui s'écrit:

$$K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) = \sum_{k=1}^{N} \lambda_{k} u_{i,k} u_{j,k} = \left\langle \Phi\left(\mathbf{x}_{i}\right), \Phi\left(\mathbf{x}_{j}\right) \right\rangle_{\mathbb{R}^{N}},$$

avec

$$\Phi\left(\mathbf{x}_{i}\right) = \begin{pmatrix} \sqrt{\lambda_{1}} u_{i,1} \\ \vdots \\ \sqrt{\lambda_{N}} u_{i,N} \end{pmatrix}$$

Théorème de Mercer

Noyau de Mercer

Nous allons prouver le Théorème dans le cas suivant:

- \mathcal{X} est un espace métrique compact (typiquement, un fermé borné dans \mathbb{R}^d)
- K un n.d.p. continu sur $X \times X$ (par rapport à la tribu Borélienne)

Un tel noyau est appelé *noyau de Mercer*. La preuve repose sur la construction d'un opérateur linéaire compact et sa diagonalisation.

Rappel

Définition 4 Soit H un espace de Hilbert

- Un opérateur linéaire est une application linéaire continue de H dans lui-même.
- On dit qu'un opérateur linéaire L est compact si pour toute suite bornée $\{f_n\}_{n=1}^{\infty}$, la séquence $\{Lf_n\}_{n=1}^{\infty}$ possède une sous-séquence convergente
- L est dit auto-adjoint si pour tout $f, g \in \mathcal{H}$:

$$\langle f, Lg \rangle = \langle Lf, g \rangle$$
.

• L est dit positif ssi il est auto-adjoint et pour tout $f \in \mathcal{H}$:

$$\langle f, Lf \rangle \ge 0$$

Un lemme important

- Soit ν un mesure de Borel *quelconque* sur \mathcal{X} , $L_2^{\nu}(\mathcal{X})$ l'espace de Hilbert des fonctions de carré intégrable
- **●** Pour toute fonction $K: \mathcal{X}^2 \mapsto \mathbb{R}$, soit la tranformation:

$$L_K: L_2^{\nu}\left(\mathcal{X}\right) \to \mathcal{C}\left(\mathcal{X}\right)$$

définie par:

$$\forall f \in L_2^{\nu}(\mathcal{X}), (L_K f)(\mathbf{x}) = \int K(\mathbf{x}, \mathbf{t}) f(\mathbf{t}) d\nu(\mathbf{t}).$$

Proposition 5 Si K est un noyau de Mercer, alors L_K est un opérateur linéaire borné compact de $L_2^{\nu}(\mathcal{X})$, auto-adjoint et positif.

 L_{K} est une application de $L_{2}^{\nu}\left(\mathcal{X}\right)$ ans $L_{2}^{\nu}\left(\mathcal{X}\right)$:

Pour tout $f \in L_2^{\nu}(\mathcal{X})$ et $(\mathbf{x}_1, \mathbf{x}_1) \in \mathcal{X}^2$:

$$|L_{K}f(\mathbf{x}_{1}) - L_{K}f(\mathbf{x}_{2})| = \left| \int \left(K\left(\mathbf{x}_{1}, \mathbf{t}\right) - K\left(\mathbf{x}_{2}, \mathbf{t}\right) \right) f\left(\mathbf{t}\right) d\nu\left(\mathbf{t}\right) \right|$$

$$\leq \|K\left(\mathbf{x}_{1}, \cdot\right) - K\left(\mathbf{x}_{2}, \cdot\right) \|\|f\|$$
(Cauchy-Schwarz)
$$\leq \sqrt{\nu\left(\mathcal{X}\right)} \max_{\mathbf{t} \in \mathcal{X}} |K\left(\mathbf{x}_{1}, \mathbf{t}\right) - K\left(\mathbf{x}_{2}, \mathbf{t}\right)| \|f\|.$$

K étant continu et \mathcal{X} compact, K est uniformément continue, donc $L_K f$ est continue. En particulier, $L_K f \in L_2^{\nu}(\mathcal{X})$. \square

L_K est linéaire et continue

La linéarité est triviale.

D'autre part, on a $\forall f \in L_2^{\nu}(\mathcal{X})$ et $\forall \mathbf{x} \in \mathcal{X}$:

$$|(L_{K}f)(\mathbf{x})| = \left| \int K(\mathbf{x}, \mathbf{t}) f(\mathbf{t}) d\nu(\mathbf{t}) \right|$$

$$\leq \sqrt{\nu(\mathcal{X})} \max_{\mathbf{t} \in \mathcal{X}} |K(\mathbf{x}, \mathbf{t})| \|f\|$$

$$\leq \sqrt{\nu(\mathcal{X})} C_{K} \|f\|.$$

avec $C_K = \max_{\mathbf{x}, \mathbf{t} \in \mathcal{X}} |K(\mathbf{x}, \mathbf{t})|$. Donc:

$$||L_K f|| = \left(\int L_K f(\mathbf{t})^2 d\nu(\mathbf{t})\right)^{\frac{1}{2}} \le \nu(\mathcal{X}) C_K ||f||. \quad \Box$$

Rappel: Théorème d'Ascoli

Soit $C(\mathcal{X})$ l'ensemble des fonctions continues sur \mathcal{X} , muni de la norme infinie $||f||_{\infty} = \max_{\mathbf{x} \in \mathcal{X}} |f(\mathbf{x})|$. Un ensemble de fonctions $G \subset C(\mathcal{X})$ est dit *equicontinu* ssi:

$$\forall \epsilon > 0, \exists \delta > 0, \forall (\mathbf{x}, \mathbf{y}) \in \mathcal{X}^2,$$

$$\|\mathbf{x} - \mathbf{y}\| < \delta \implies \forall g \in G, |g(\mathbf{x}) - g(\mathbf{y})| < \epsilon.$$

Théorème 6 (Ascoli) Une partie $H \subset C(\mathcal{X})$ est relativement compacte (i.e., son adhérence est compacte) ssi elle est uniformément bornée et équicontinue.

L_K est compact:

Soit $(f_n)_{n\geq 0}$ une séquence bornée de $L_2^{\nu}(\mathcal{X})$ ($||f_n|| < M$ pour tout n).

La suite $(L_K f_n)_{n\geq 0}$ est une suite de fonctions continues, uniformément bornée car:

$$||L_K f||_{\infty} \le \sqrt{\nu(\mathcal{X})} C_K ||f|| \le \sqrt{\nu(\mathcal{X})} C_K M.$$

Elle est d'autre part equicontinue, car

$$|L_K f_n(\mathbf{x}_1) - L_K f_n(\mathbf{x}_2)| \le \sqrt{\nu(\mathcal{X})} \max_{\mathbf{t} \in \mathcal{X}} |K(\mathbf{x}_1, \mathbf{t}) - K(\mathbf{x}_2, \mathbf{t})| M.$$

Par le Théorème d'Ascoli, on peut extraire une soussuite uniformément convergente dans $C(\mathcal{X})$, et donc dans

$$L_2^{\nu}(\mathcal{X})$$
. \square

 L_K est auto-adjoint: K étant symétrique, alors on a pour tout $f, g \in \mathcal{H}$:

$$\langle f, Lg \rangle = \int f(\mathbf{x}) (Lg) (\mathbf{x}) \nu (d\mathbf{x})$$

$$= \int \int f(\mathbf{x}) g(\mathbf{t}) K(\mathbf{x}, \mathbf{t}) \nu (d\mathbf{x}) \nu (d\mathbf{t}) \text{ (Fubini)}$$

$$= \langle Lf, g \rangle.$$

 L_K est positif: On approxime l'intégrale par des sommes finies:

$$\langle f, Lf \rangle = \int \int f(\mathbf{x}) f(\mathbf{t}) K(\mathbf{x}, \mathbf{t}) \nu(d\mathbf{x}) \nu(d\mathbf{t})$$

$$= \lim_{k \to \infty} \frac{\nu(\mathcal{X})}{k^2} \sum_{i,j=1}^{k} K(\mathbf{x}_i, \mathbf{x}_j) f(\mathbf{x}_i) f(\mathbf{x}_j)$$

$$\geq 0,$$

car K est d.p. \square

On peut maintenant appliquer le *Théorème spectral* suivant à L_K :

Théorème 7 Soit L un opérateur linéaire compact sur un espace de Hilbert \mathcal{H} . Alors il existe dans \mathcal{H} un systeme orthonormal complet (ψ_1, ψ_2, \ldots) de vecteurs propres de L. Les valeurs propres $(\lambda_1, \lambda_2, \ldots)$ sont réelles si L est auto-adjoint, et positives si L est positif.

Remarque 8 Dans le cas de L_K , les vecteurs propres ϕ_k associés aux valeurs propres $\lambda_k \neq 0$ sont des fonctions continues car:

$$\psi_k = \frac{1}{\lambda_k} L \psi_K$$

On peut maintenant énoncer le *Théorème de Mercer*.

Théorème 9 Soit \mathcal{X} un espace normé compact, ν une mesure Borélienne sur \mathcal{X} est K un noyau de Mercer. Soit $(\lambda_1, \lambda_2, \ldots)$ les valeurs propres décroissantes de L_K , et (ψ_1, ψ_2, \ldots) les vecteurs propres correspondants. Alors, on a pour tous $\mathbf{x}, \mathbf{t} \in \mathcal{X}$:

$$K(\mathbf{x}, \mathbf{t}) = \sum_{k=1}^{\infty} \lambda_k \psi_k(\mathbf{x}) \psi_k(\mathbf{t}),$$

ou la convergence est absolue pour chaque $x, t \in \mathcal{X}$, et uniforme sur $\mathcal{X} \times \mathcal{X}$.

Du Théorème de Mercer on déduit le résultat suivant: **Théorème 10** *L'application*

$$\Phi: \mathcal{X} \mapsto l^2$$

$$\mathbf{x} \mapsto \left(\sqrt{\lambda_k} \psi_k\left(\mathbf{x}\right)\right)_{k \in \mathbb{N}}$$

est bien définie, continue, et satisfait:

$$K(\mathbf{x}, \mathbf{t}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{t}) \rangle_{l^2}.$$

Preuve du Théoreme 10:

Par le Théorème de Mercer on voit que pour tout $\mathbf{x} \in \mathcal{X}$, $\sum \lambda_k \psi_k^2(\mathbf{x})$ converge vers $K(\mathbf{x}, \mathbf{x}) < \infty$, et donc $\Phi(\mathbf{x}) \in l^2$. La continuité de Φ découle de:

$$\|\Phi(\mathbf{x}) - \Phi(\mathbf{t})\|_{l^{2}}^{2} = \sum_{k=1}^{\infty} \lambda_{k} (\psi_{k}(\mathbf{x}) - \psi_{k}(\mathbf{t}))^{2}$$
$$= K(\mathbf{x}, \mathbf{x}) + K(\mathbf{t}, \mathbf{t}) - 2K(\mathbf{x}, \mathbf{t})$$

Bilan

Nous avons donc démontré qu'un noyau défini positif peut s'écrire comme un produit scalaire dans un espace de Hilbert si:

- $m{\mathscr{L}}$ est fini, ou
- $m{\mathscr{L}}$ est un espace métrique compact et K est continu.

Pour démontrer le résultat dans le cas général, nous introduisons une nouvelle construction explicite d'un espace de Hilbert, non basée sur la diagonalisation d'un opérateur: le r.k.h.s.

Espace de Hilbert à noyau reproduisant (rkhs)

Définitions

Soit \mathcal{X} un espace quelconque, et $(\mathcal{H}, \langle ., . \rangle_{\mathcal{H}})$ un espace de Hilbert de fonctions $(\mathcal{H} \subset \mathbb{R}^{\mathcal{X}})$.

Définition 11 Une fonction $K : \mathcal{X}^2 \mapsto \mathbb{R}$ est appelée un noyau reproduisant (noté n.r.) ssi:

H contient toutes les fonctions de la forme

$$\forall \mathbf{x} \in \mathcal{X}, \quad K_{\mathbf{x}} : \mathbf{t} \mapsto K(\mathbf{x}, \mathbf{t})$$

• Pour tout $\mathbf{x} \in \mathcal{X}$ et $f \in \mathcal{H}$, on a:

$$f(\mathbf{x}) = \langle f, K_{\mathbf{x}} \rangle_{\mathcal{H}}$$

Si un n.r. existe, \mathcal{H} est appelé un espace de Hilbert à noyau reproduisant (rkhs).

Propriétés des n.r. et rkhs

Théorème 12 (Aronszajn, 1950)

- Si un n.r. existe, il est unique.
- Un n.r. existe si et seulement si $\forall \mathbf{x} \in \mathcal{X}$, la fonctionnelle $f \mapsto f(\mathbf{x})$ (de \mathcal{H} dans \mathbb{R}) est continue.
- Un n.r. est un noyau d.p.
- Réciproquement, si K est d.p., alors il existe un rkhs ayant K pour n.r.
- Si K est un n.r., il vérifie la propriété reproduisante:

$$\forall (\mathbf{x}, \mathbf{y}) \in \mathcal{X}^2, \quad \langle K_{\mathbf{x}}, K_{\mathbf{y}} \rangle_{\mathcal{H}} = K(\mathbf{x}, \mathbf{y}).$$

Remarques

Soit K un noyau d.p. sur un espace \mathcal{X} quelconque. Par le point 4, on peut lui associer un rkhs \mathcal{H} . Soit $\Phi: \mathcal{X} \mapsto \mathcal{H}$ défini par $\Phi(\mathbf{x}) = K_{\mathbf{x}}$. Par le point 5, on a:

$$\forall (\mathbf{x}, \mathbf{y}) \in \mathcal{X}^2, \quad K(\mathbf{x}, \mathbf{y}) = \langle \Phi(\mathbf{x}), \Phi(\mathbf{y}) \rangle_{\mathcal{H}}$$

ce qui prouve le Théorème 2 dans le cas général.

Le rkhs a de nombreuses autres propriétés que nous utiliserons par la suite pour développer des algorithmes puissants.

Preuve: unicité

Si K et K' sont deux n.r. sur \mathcal{H} , alors on a pour tout $\mathbf{x} \in \mathcal{X}$:

$$||K_{\mathbf{x}} - K'_{\mathbf{x}}||_{\mathcal{H}}^{2} = \langle K_{\mathbf{x}} - K'_{\mathbf{x}}, K_{\mathbf{x}} - K'_{\mathbf{x}} \rangle_{\mathcal{H}}$$

$$= \langle K_{\mathbf{x}} - K'_{\mathbf{x}}, K_{\mathbf{x}} \rangle_{\mathcal{H}} - \langle K_{\mathbf{x}} - K'_{\mathbf{x}}, K'_{\mathbf{x}} \rangle_{\mathcal{H}}$$

$$= K_{\mathbf{x}}(\mathbf{x}) - K'_{\mathbf{x}}(\mathbf{x}) - K_{\mathbf{x}}(\mathbf{x}) + K'_{\mathbf{x}}(\mathbf{x})$$

$$= 0$$

donc K = K' (dans \mathcal{H} et donc partout). \square

Preuve: continuité

Si un n.r. K existe, alors on a pour tout $(\mathbf{x}, f) \in \mathcal{X} \times \mathcal{H}$:

$$|f(\mathbf{x})| = |\langle f, K_{\mathbf{x}} \rangle_{\mathcal{H}}|$$

 $\leq ||f||_{\mathcal{H}}.||K_{\mathbf{x}}||_{\mathcal{H}}$ (Cauchy-Schwarz)
 $\leq ||f||_{\mathcal{H}}.K(\mathbf{x}, \mathbf{x})^{\frac{1}{2}},$

car $||K_{\mathbf{x}}||_{\mathcal{H}}^2 = \langle K_{\mathbf{x}}, K_{\mathbf{x}} \rangle_{\mathcal{H}} = K(\mathbf{x}, \mathbf{x})$. Donc $f \in \mathcal{H} \mapsto f(\mathbf{x}) \in \mathbb{R}$ est une application linéaire *continue*. \square

Preuve: continuité (réciproque)

Réciproquement, supposons que pour tout $\mathbf{x} \in \mathcal{X}$, la forme linéaire $f \in \mathcal{H} \mapsto f(\mathbf{x})$ soit continue.

Par le Théorème de représentation de Riesz, il existe un unique $g_x \in \mathcal{H}$ tel que:

$$f(\mathbf{x}) = \langle f, g_{\mathbf{x}} \rangle_{\mathcal{H}}$$

La fonction $K(\mathbf{x}, \mathbf{y}) = g_{\mathbf{x}}(\mathbf{y})$ est alors un n.r. pour \mathcal{H} . \square

Preuve: un n.r. est d.p.

Un n.r. est symétrique car, pour tout $(\mathbf{x}, \mathbf{y}) \in \mathcal{X}^2$:

$$K(\mathbf{x}, \mathbf{y}) = \langle K_{\mathbf{x}}, K_{\mathbf{y}} \rangle_{\mathcal{H}} = \langle K_{\mathbf{y}}, K_{\mathbf{x}} \rangle_{\mathcal{H}} = K(\mathbf{y}, \mathbf{x}).$$

Il est *d.p.* car pour tout $N \in \mathbb{N}$, $(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) \in \mathcal{X}^N$, et $(a_1, a_2, \dots, a_N) \in \mathbb{R}^N$:

$$\sum_{i,j=1}^{N} a_i a_j K\left(\mathbf{x}_i, \mathbf{x}_j\right) = \sum_{i,j=1}^{N} a_i a_j \left\langle K_{\mathbf{x}_i}, K_{\mathbf{x}_j} \right\rangle_{\mathcal{H}}$$

$$= \left\| \sum_{i=1}^{N} a_i K_{\mathbf{x}_i} \right\|_{\mathcal{H}}^2$$

$$> 0. \quad \Box$$

Preuve: un n.d.p. est un n.r.

Soit K un noyau d.p. Nous allons construire *explicitement* un espace de Hilbert de fonctions définies sur \mathcal{X} qui admette K pour n.r.

Soit \mathcal{H}_0 le sous-espace vectoriel de $\mathbb{R}^{\mathcal{X}}$ engendré par les fonctions $\{K_{\mathbf{x}}\}_{\mathbf{x}\in\mathcal{X}}$. Pour $f,g\in\mathcal{H}_0$ s'écrivant:

$$f = \sum_{i=1}^{m} a_i K_{\mathbf{x}_i}, \quad g = \sum_{j=1}^{n} b_j K_{\mathbf{y}_i},$$

définissons:

$$\langle f, g \rangle_{\mathcal{H}_0} := \sum_{i,j} a_i b_j K(\mathbf{x}_i, \mathbf{y}_j).$$

Preuve: un n.d.p. est un n.r.(cont.)

Cette fonction *ne dépend pas* de la décomposition de f ou g, car:

$$\langle f, g \rangle_{\mathcal{H}_0} = \sum_{i=1}^m a_i g(\mathbf{x}_i) = \sum_{j=1}^n b_j f(\mathbf{y}_j).$$

Cela montre aussi que c'est une forme bilinéaire symétrique.

K étant d.p., on a d'autre part:

$$||f||_{\mathcal{H}_0}^2 = \sum_{i,j=1}^m a_i a_j K(\mathbf{x}_i, \mathbf{x}_j) \ge 0.$$

Preuve: un n.d.p. est un n.r.(cont.)

Cela montre aussi que pour tout $x \in \mathcal{X}$ et $f \in \mathcal{H}_0$:

$$\langle f, K_{\mathbf{x}} \rangle_{\mathcal{H}_0} = f(\mathbf{x}).$$

On en déduit la propriété de reproductibilité:

$$\forall (\mathbf{x}, \mathbf{y}) \in \mathcal{X}^2, \quad \langle K_{\mathbf{x}}, K_{\mathbf{y}} \rangle_{\mathcal{H}_0} = K(\mathbf{x}, \mathbf{y})$$

D'autre part, par Cauchy-Schwarz, on a $\forall x \in \mathcal{X}$:

$$|f(\mathbf{x})| = |\langle f, K_{\mathbf{x}} \rangle_{\mathcal{H}_0}| \le ||f||_{\mathcal{H}_0} . K(\mathbf{x}, \mathbf{x})^{\frac{1}{2}},$$

donc $||f||_{\mathcal{H}_0} = 0 \Leftrightarrow f = 0$.

Preuve: un n.d.p. et un n.r.(cont.)

 $\langle .,. \rangle_{\mathcal{H}_0}$ est donc un *produit scalaire*, et $(\mathcal{H}_0, \langle .,. \rangle_{\mathcal{H}_0})$ un *espace pré-Hilbertien*.

Soit \mathcal{H} l'espace de Hilbert obtenu en *complétant* \mathcal{H}_0 par les limites des suites de Cauchy (dans \mathcal{H}_0). Si $(f_n)_{n\geq 0}$ est une telle suite de Cauchy, alors:

$$\forall (\mathbf{x}, m, n) \in \mathcal{X} \times \mathbb{N}^2, \quad |f_m(\mathbf{x}) - f_n(\mathbf{x})| \leq ||f_m - g_n||_{\mathcal{H}_0} K(\mathbf{x}, \mathbf{x})^{\frac{1}{2}},$$

donc en tout point \mathbf{x} la suite $(f_n(\mathbf{x}))_{n\geq 0}$ est une suite de Cauchy dont on appelle la limite $f(\mathbf{x})$ dans \mathbb{R} . En rajoutant ces fonctions f dans \mathcal{H}_0 et en étendant le produit scalaire par passage à la limite, on obtient un *espace de Hilbert* \mathcal{H} de fonctions de \mathcal{X} dans \mathbb{R} , qui admet K pour n.r. \square

Exemple: rkhs du noyau linéaire

Soit $\mathcal{X} = \mathbb{R}^d$ et $K(\mathbf{x}, \mathbf{y}) = \langle \mathbf{x}, \mathbf{y} \rangle_{\mathbb{R}^d}$ le noyau linéaire. Le rkhs associé est constitué des fonctions de la forme:

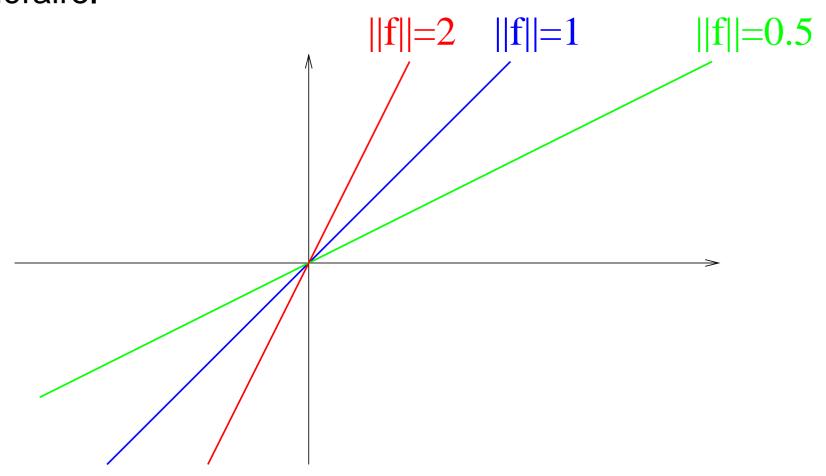
$$\mathbf{x} \in \mathbb{R}^d \mapsto f(\mathbf{x}) = \sum_i a_i \langle \mathbf{x}_i, \mathbf{x} \rangle_{\mathbb{R}^d} = \langle \mathbf{w}, \mathbf{x} \rangle_{\mathbb{R}^d}$$

avec $\mathbf{w} = \sum_{i} a_i \mathbf{x}_i$. Le rkhs est donc l'ensemble des *formes linéaires*, muni du produit scalaire:

$$\langle f, g \rangle_{\mathcal{H}_K} = \langle \mathbf{w}, \mathbf{v} \rangle_{\mathbb{R}^d}$$

avec
$$f(\mathbf{x}) = \mathbf{w}.\mathbf{x}$$
 et $g(\mathbf{x}) = \mathbf{v}.\mathbf{x}$.

En particulier, $||f||_{\mathcal{H}_K} = ||\mathbf{w}||_{\mathbb{R}^d}$, la pente de la forme linéraire.



Noyaux de Mercer et rkhs

Motivations

- Soit \mathcal{X} un expace métrique compact, et K un noyau de Mercer (symétrique, d.p. et continu) sur \mathcal{X} .
- Dans cette partie nous faisons le lien entre le rkhs associé et la décomposition du noyau fourni par le Théorème de Mercer.

Rappel: Théorème de Mercer

Soit L_K l'opérateur linéaire sur $L_2^{\nu}(\mathcal{X})$ défini par:

$$\forall f \in L_2^{\nu}(\mathcal{X}), (L_K f)(\mathbf{x}) = \int K(\mathbf{x}, \mathbf{t}) f(\mathbf{t}) d\nu(\mathbf{t}).$$

Soient $(\lambda_1, \lambda_2, ...)$ les valeurs propres décroissantes de L_K , et $(\psi_1, \psi_2, ...)$ les vecteurs propres correspondants. Alors on a pour tous $\mathbf{x}, \mathbf{y} \in \mathcal{X}$:

$$K\left(\mathbf{x},\mathbf{y}\right) = \sum_{k=1}^{\infty} \lambda_{k} \psi_{k}\left(\mathbf{x}\right) \psi_{k}\left(\mathbf{y}\right) = \langle \Phi\left(\mathbf{x}\right), \Phi\left(\mathbf{y}\right) \rangle_{l^{2}},$$

avec $\Phi: \mathcal{X} \mapsto l^2$ défini par $\Phi(\mathbf{x}) = \left(\sqrt{\lambda_k} \psi_k(\mathbf{x})\right)_{k \in \mathbb{N}}$.

Construction du rkhs

Nous supposons que $\lambda_k > 0$ pour tout $k \ge 1$ (sinon, le résultat et la preuve restent valide dans le sous-espace engendré par les vecteurs propres de valeur propres non nulles).

Soit l'espace de Hilbert:

$$H_K = \left\{ f \in L_2^{\nu}\left(\mathcal{X}\right) : f = \sum_{i=1}^{\infty} a_i \psi_i, \quad \text{ avec } \sum_{k=1}^{\infty} \frac{a_k^2}{\lambda_k} < \infty \right\}$$

muni du produit scalaire:

$$\langle f,g \rangle_K = \sum_{k=1}^\infty \frac{a_k b_k}{\lambda_k}, \quad \text{ pour } f = \sum_k a_k \psi_k, g = \sum_k b_k \psi_k.$$

Pour montrer que H_K est le rkhs associé au noyau K, nous devons montrer que:

- ullet c'est un *espace de Hilbert de fonctions* de ${\mathcal X}$ dans ${\mathbb R}$,
- ullet pour chaque $\mathbf{x} \in \mathcal{X},\, K_x \in H_K$,
- pour chaque $\mathbf{x} \in \mathcal{X}$ et $f \in H_K$, $f(\mathbf{x}) = \langle f, K_x \rangle_{H_K}$.

 H_K est un espace de Hilbert:

En effet, la fonction:

$$L_K^{\frac{1}{2}}: L_2^{\nu}(\mathcal{X}) \to H_K$$

$$\sum_{i=1}^{\infty} a_i \psi_i \mapsto \sum_{i=1}^{\infty} a_i \sqrt{\lambda_i} \psi_i$$

est un isomorphisme, donc H_K est un espace de Hilbert au même titre que $L_2^{\nu}\left(\mathcal{X}\right)$.

 H_K est un espace de fonctions continues: Pour tout $f = \sum_{i=1}^{\infty} a_i \psi_i \in H_K$, et $\mathbf{x} \in \mathcal{X}$, on a (si f(x) a un sens):

$$|f(\mathbf{x})| = \left| \sum_{i=1}^{\infty} a_i \psi_i(\mathbf{x}) \right| = \left| \sum_{i=1}^{\infty} \frac{a_i}{\sqrt{\lambda_i}} \sqrt{\lambda_i} \psi_i(\mathbf{x}) \right|$$

$$\leq \left(\sum_{i=1}^{\infty} \frac{a_i^2}{\lambda_i} \right)^{\frac{1}{2}} \cdot \left(\sum_{i=1}^{\infty} \lambda_i \psi_i(\mathbf{x})^2 \right)^{\frac{1}{2}}$$

$$= ||f||_{H_K} K(\mathbf{x}, \mathbf{x})^{\frac{1}{2}}$$

$$= ||f||_{H_K} \sqrt{C_K}.$$

donc *la convergence dans* $\| . \|_{H_K}$ *implique la convergence uniforme* pour les fonctions.

Soit maintenant $f_n = \sum_{i=1}^n a_i \psi_i \in H_K$. Les ψ_i sont des fonctions continues, donc il en est de même de f_n , pour tout n. Les f_n sont convergente dans H_K , donc également dans l'espace (complet) des fonctions continues munies de la norme uniforme.

Soit f_c la fonction continue limite. Alors $f_c \in L_2^{\nu}(\mathcal{X})$ et

$$|| f_n - f_c ||_{L_2^{\nu}(\mathcal{X})} \underset{n \to \infty}{\longrightarrow} 0.$$

D'autre part,

$$|| f - f_n ||_{L_2^{\nu}(\mathcal{X})} \le \lambda_1 || f - f_n ||_{H_K} \underset{n \to \infty}{\longrightarrow} 0,$$

donc $f = f_c$.

 $K_x \in H_K$: Pour $\mathbf{x} \in \mathcal{X}$ soit, pour tout i, $a_i = \lambda_i \psi_i(\mathbf{x})$. On a bien:

$$\sum_{i=1}^{\infty} \frac{a_i^2}{\lambda_i} = \sum_{i=1}^{\infty} \lambda_i \psi_i(\mathbf{x})^2 = K(\mathbf{x}, \mathbf{x}) < \infty,$$

donc $\phi_x := \sum_{i=1}^{\infty} a_i \psi_i \in H_K$. Par le précédent résultat, cette convergence dans H_K a aussi lieu ponctuellement, donc pour tout $\mathbf{t} \in \mathcal{X}$:

$$\phi_x(\mathbf{t}) = \sum_{i=1}^{\infty} a_i \psi_i(\mathbf{t}) = \sum_{i=1}^{\infty} \lambda_i \psi_i(\mathbf{x}) \psi_i(\mathbf{t}) = K(\mathbf{x}, \mathbf{t}),$$

donc $\phi_x = K_x \in H_K$.

$$f(\mathbf{x}) = \langle f, K_x \rangle_{H_K}$$
:

Soit $f = \sum_{i=1}^{\infty} a_i \psi_i \in H_K$, et $\mathbf{x} \in \mathcal{X}$. On a vu que:

$$K_x = \sum_{i=1}^{\infty} \lambda_i \psi_i(\mathbf{x}) \, \psi_i,$$

donc:

$$\langle f, K_x \rangle_{H_K} = \sum_{i=1}^{\infty} \frac{\lambda_i \psi_i(\mathbf{x}) a_i}{\lambda_i} = \sum_{i=1}^{\infty} a_i \psi_i(\mathbf{x}) f(\mathbf{x}),$$

ce qui termine la preuve.

Remarques

- Bien que H_K ait été construit à partir des fonctions propres de L_K , lui-meme défini à partir de la mesure $\nu\left(\mathbf{x}\right)$, ce résultat montre que H_K est indépendant de ν et L_K .
- Le Théorème de Mercer fournit une *manière concrète* de construire un rkhs, en prenant des combinaisons linéaires des fonctions propres de L_K (et la condition sur les coefficients).
- Les $(\psi_i)_{i\in\mathbb{N}}$ forment une *base orthogonale* du rkhs:

$$\langle \psi_i, \psi_j \rangle_{H_K} = 0$$
 si $i \neq j$, $\| \psi_i \|_{H_K} = \frac{1}{\sqrt{\lambda_i}}$.

Rkhs et régularisation par fonctions de Green

Motivation

- A tout noyau d.p. est associé un espace de Hilbert fonctionnel: le rkhs
- Dans le cas \mathcal{X} compact, le Théorème de Mercer fournit une premiere intuition sur cet espace.
- Quid de cas plus généraux, par exemple $\mathcal{X} = \mathbb{R}^d$?
- Nous allons montrer que dans certains cas, on peut interpréter $|| f ||_{\mathcal{H}}$ comme une mesure de la régularité de f.

Exemple

Soit

$$\mathcal{H} = \{f : [0,1] \mapsto \mathbb{R}, \text{ cont., dérivable p.p.}, f' \in L^2([0,1]), f(0) = 0\}$$

C'est un *espace de Hilbert* quand on le muni du produit scalaire:

$$\forall (f,g) \in \mathcal{F}^2 \langle f, g \rangle_{\mathcal{H}} = \int_0^1 f'(u) g'(u) du.$$

La norme $|| f ||_{\mathcal{H}}$ mesure la régularité de f:

$$|| f ||_{\mathcal{H}} = \left(\int_0^1 f'(u)^2 du \right)^{\frac{1}{2}} = || f' ||_{L^2([0,1])}.$$

Théorème 13 \mathcal{H} est un rkhs ayant pour n.r. la fonction:

$$\forall (x, y) \in \mathcal{X}^2, \quad K(x, y) = \min(x, y).$$

Comme $|| f ||_{\mathcal{H}} = || f' ||_{L^2}$, cela montre que la norme dans le rkhs est justement cette fonctionnelle de régularité.

Pour prouver ce Théorème, nous allons montrer que:

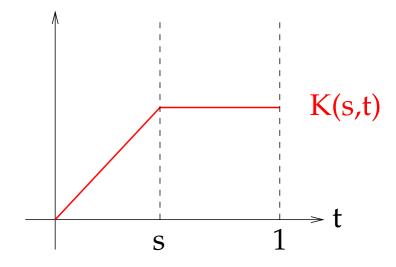
- Les fonctionnelles d'évaluation sont continues,
- $\forall x \in [0,1], K_x \in \mathcal{H}$,

La premiere propriété découle de:

$$f(x) = f(x) - f(0) = \int_0^x f'(u) du \le \sqrt{x} ||f||_{\mathcal{H}},$$

valable pour tout $x \in [0,1]$ et $f \in \mathcal{H}$.

Pour la seconde propriété, soit $K_x(y) = K(x,y) = \min(x,y)$ sur $[0,1]^2$.



 K_x est dérivable sauf en s, a une dérivée de carré intégrable, et $K_x(0) = 0$, donc $K_x \in \mathcal{H}$ pour tout $x \in [0, 1]$.

Enfin, pour la troisieme propriété, observons que l'égalité suivante est valable pour tout $x \in [0, 1]$ et $f \in \mathcal{H}$:

$$\langle f, K_x \rangle_{\mathcal{H}} = \int_0^1 f'(u) K_x'(u) du = \int_0^x f'(u) du = f(x),$$

ce qui montre que K est le n.r. associé à \mathcal{H} .

Généralisation

Soit $\mathcal{X} = \mathbb{R}^d$ et D un opérateur différentiel sur une classe de fonctions \mathcal{H} telle que munie du produit scalaire:

$$\forall (f,g) \in \mathcal{H}^2, \quad \langle f,g \rangle_{\mathcal{H}} = \langle Df, Dg \rangle_{L^2(\mathcal{X})},$$

ce soit un espace de Hilbert.

Théorème 14 \mathcal{H} est un rkhs dont le n.r. est la fonction de Green de l'opérateur D^*D , ou D^* est l'adjoint de D.

Rappel: fonction de Green

Soit l'équation différentielle sur \mathcal{H} :

$$f = Dg$$

ou g est l'inconnu. Pour la résoudre, on peut chercher g de la forme:

$$g(x) = \int_{\mathcal{X}} k(x, y) f(y) dy$$

pour une certaine fonction $k: \mathcal{X}^2 \mapsto \mathbb{R}$. k doit vérifier, pour tout $x \in \mathcal{X}$,

$$f(x) = Dg(x) = \langle Dk_x, f \rangle_{L^2(\mathcal{X})}$$

k est appelée fonction de Green de l'opérateur D.

Preuve du Théorème 13

Soit donc \mathcal{H} un espace de Hilbert muni du produit scalaire:

$$\langle f, g \rangle_{\mathcal{X}} = \langle Df, Dg \rangle_{L^2(\mathcal{X})},$$

et K la fonction de Green de l'opérateur D^*D . Pour tout $x \in \mathcal{X}$, $K_x \in \mathcal{H}$ car:

$$\langle DK_x, DK_x \rangle_{L^2(\mathcal{X})} = \langle D^*DK_x, K_x \rangle_{L^2(\mathcal{X})} = K_x(x) < \infty.$$

D'autre part, pour tout $f \in \mathcal{H}$ et $x \in \mathcal{X}$, on a:

$$f(x) = \langle D^*DK_x, f \rangle_{L^2(\mathcal{X})} = \langle DK_x, Df \rangle_{L^2(\mathcal{X})} = \langle K_x, f \rangle_{\mathcal{H}}$$

ce qui montre \mathcal{H} est un rkhs dont le n.r. est K. \square

Noyaux et régularisation par transformée de Fourier

Mercer sur domaines non borné

Supposons \mathcal{X} non compact, par exemple $\mathcal{X} = \mathbb{R}^d$. Dans ce cas, les valeurs propres de l'équation:

$$\int_{\mathcal{X}} K(\mathbf{x}, \mathbf{t}) \, \psi(\mathbf{t}) = \lambda \psi(\mathbf{t})$$

ne sont pas nécessairement dénombrables, le Théorème de Mercer n'est pas valable.

Rappel: transformée de Fourier

Définition 15 Soit $f \in L^1(\mathbb{R}^d)$.

• On appelle transformée de Fourier de f, et note \hat{f} ou $\mathcal{F}f$, la fonction définie pour tout $\omega \in \mathbb{R}^d$ par:

$$\hat{f}(\omega) = \int_{\mathbb{R}^d} e^{-ix.\omega} f(x) dx.$$

- \hat{f} est à valeur complexe, continue, tend vers 0 à l'infini et $\|\hat{f}\|_{L^{\infty}} \leq \|f\|_{L^{1}}$.
- Si en plus $\hat{f} \in L^1(\mathbb{R}^d)$, alors on a la formule d'inversion de Fourier:

$$\forall x \in \mathbb{R}^d, \quad f(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ix \cdot \omega} \hat{f}(\omega) d\omega.$$

Rappel: formule de Parseval

Théorème 16 Si $f \in L^1(\mathbb{R}^d)$ est en plus de carré sommable, alors la formule de Parseval est valide:

$$\int_{\mathbb{R}^d} |f(x)|^2 dx = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} |\hat{f}(\omega)|^2 d\omega$$

Noyaux invariants par translation (i.t.)

Définition 17 Un noyau $K : \mathbb{R}^d \times \mathbb{R}^d \mapsto \mathbb{R}$ est dit invariant par translation s'il ne dépend que de la différence entre ses arguments, i.e.:

$$\forall (x,y) \in \mathbb{R}^{2d}, \quad K(x,y) = \kappa (x-y).$$

La plupart des noyaux sur \mathbb{R}^d que nous rencontrerons sont i.t.

Mercer pour noyaux i.t.?

Soit K un noyau i.t. tel que κ soit sommable ainsi que $\hat{\kappa}$. On a alors, pour tout $(x,y) \in \mathbb{R}^{2d}$:

$$\kappa(x - y) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{i(x - y) \cdot \omega} \hat{\kappa}(\omega) d\omega$$
$$= \int_{\mathbb{R}^d} \frac{\hat{\kappa}(\omega)}{(2\pi)^d} e^{i\omega(x)} e^{i\omega(-y)} d\omega.$$

Cela ressemble à la décomposition d'un noyau de Mercer sur un domaine compact:

$$K\left(\mathbf{x},\mathbf{y}\right) = \sum_{i} \lambda_{i} \psi_{i}\left(\mathbf{x}\right) \psi_{i}\left(\mathbf{y}\right)$$

Rkhs pour noyaux i.t.

Théorème 18 Soit K un noyau d.p., i.t., tel que κ soit sommable et de transformée de Fourier $\hat{\kappa}$ sommable sur \mathbb{R}^d . Le sous-espace \mathcal{H}_K de $L_2\left(\mathbb{R}^d\right)$ des fonctions f continues sommables telles que:

$$||f||_K^2 := \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \frac{\left|\hat{f}(\omega)\right|^2}{\hat{\kappa}(\omega)} d\omega < +\infty,$$

muni du produit scalaire:

$$\langle f, g \rangle := \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \frac{\hat{f}(\omega)\hat{g}(\omega)^*}{\hat{\kappa}(\omega)} d\omega$$

est un rkhs avec K pour n.r.

Preuve du Théorème 17

Pour $x \in \mathbb{R}^d$, $K_x(y) = K(x,y) = \kappa(x-y)$ donc:

$$\hat{K}_x(\omega) = \int e^{-i\omega \cdot u} \kappa(u - x) du = e^{-i\omega \cdot x} \hat{\kappa}(\omega).$$

On en déduit que $K_x \in \mathcal{H}$, car:

$$\int_{\mathbb{R}^d} \frac{\left| \hat{K}_x(\omega) \right|^2}{\hat{\kappa}(\omega)} \le \int_{\mathbb{R}^d} \left| \hat{\kappa}(\omega) \right| < \infty,$$

De plus, si $f \in \mathcal{H}$ et $x \in \mathbb{R}^d$, on a:

$$\langle f, K_x \rangle_{\mathcal{H}} = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \frac{\hat{K}_x(\omega) \hat{f}(\omega)^*}{\hat{\kappa}(\omega)} d\omega = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \hat{f}(\omega)^* e^{-i\omega \cdot x} = f(x)$$

Application: Théorème de Bochner

Théorème 19 Une fonction $\kappa(x-y)$ sur \mathbb{R}^d est définie positive si et seulement si elle est la transformée de Fourier d'une fonction $\hat{\kappa}(\omega)$ symétrique, positive, et tendant vers 0 à l'infini.

Exemple: noyau Gaussien

$$K\left(x,y\right) = e^{-\frac{\left(x-y\right)^{2}}{2\sigma^{2}}}$$

correspond a:

$$\hat{\kappa}\left(\omega\right) = e^{-\frac{\sigma^2 \omega^2}{2}}$$

et

$$\mathcal{H} = \left\{ f : \int \left| \hat{f}(\omega) \right|^2 e^{\frac{\sigma^2 \omega^2}{2}} d\omega < \infty \right\}.$$

En particulier, toutes les fonctions de \mathcal{H} sont infiniment différentiables les dérivées sont dans L^2 .

Exemple: noyau de Laplace

$$K(x,y) = \frac{1}{2}e^{-\gamma|x-y|}$$

correspond a:

$$\hat{\kappa}\left(\omega\right) = \frac{\gamma}{\gamma^2 + \omega^2}$$

et

$$\mathcal{H} = \left\{ f : \int \left| \hat{f}(\omega) \right|^2 \frac{\left(\gamma^2 + \omega^2\right)}{\gamma} d\omega < \infty \right\},\,$$

l'ensemble des fonctions L^2 differentiables dont la dérivée est L^2 (Sobolev).

Exemple: noyau passe-bande

$$K(x,y) = \frac{\sin(\Omega(x-y))}{\pi(x-y)}$$

correspond a:

$$\hat{\kappa}(\omega) = U(\omega + \Omega) - U(\omega - \Omega)$$

et

$$\mathcal{H} = \left\{ f : \int_{|\omega| > \Omega} \left| \hat{f}(\omega) \right|^2 d\omega = 0 \right\},\,$$

l'ensemble des fonctions dont le spectre est inclus dans $[-\Omega,\Omega]$.