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Solvers and modeling language
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How to solve an optimization problem?

Use your own optimization routines

Use a solver

Use a modeling language

Trade-off between the effort required to perform the imple-

mentation and the freedom to chose the optimization prob-

lem (e.g., little effort for LP but you must then formulate your

problem as a LP).
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Custom code

Use you own Newton / interior point routines

Requires to explicitly define functions, gradients,
Hessian

No publicly-available general-purpose interior method,
custom code is required

Determining a valid barrier function is not trivial, in
particular if the inequality constraint is non-differentiable

Useful for problem that do not fit the particular cases
handled by general solvers and modeling languages.
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Standard form and solvers

Most CP solvers are designed to handle certain
prototypical problems known as standard forms, e.g.,
LP, QP ...

They trade generality for ease of use and performance.

Limitation: the transformation from your problem to a
standard form is often not trivial (and prone to errors..)
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Solver example

MATLAB’s linprog is a program for solving LP:

x = linprog( c, A, b, A_eq, b_eq, l, u )

Problems must be expressed in the following standard
form:

minimize c>x

subject to Ax ≤ b ,

Aeqx = beq ,

l ≤ x ≤ u

Converting to standard often requires many tricks
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Smoothed convex CP

A problem is smooth if both the objective and the
constraints are twice continuously differentiable

Several software packages solve smooth CP:
LOQO (primal/dual interior point method)
MOSEK (homogeneous algorithm)

Requires custom code for gradient and Hessians

Other packages exist for solving nonconvex smooth
problems (but based on local convexity for the search
direction)
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Other standard forms

Other standard forms with dedicated solvers exist:
Conic programs (SDP, SOCP..): SeDuMi, CDSP,
SDPA, SDPT3, DSDP..
Geometric programs
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Modeling frameworks

Provide a convenient interface for specifying problems,
and then by automating many of the underlying
mathematical and computational steps for analyzing
and solving them.

Many excellent frameworks for LP, QP, smooth NLP:
Custom modeling language that allows models to be
specified in a text file using a natural mathematical
syntax: AMPL, GAMS, LINGO
Use spreadsheets as a natural, graphical user
interface: What’sBest!, Frontline.

These frameworks are built upon solvers that are called
without any user’s intervention
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Advantages of modeling languages

Convenient problem specification

Standard form detection (LP, QP, NLP) to decide the
best solver

Automatic differentiation (for smooth NLP)

Solver control: automatically calls the solver, pass the
data value and provide reasonable default values
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Summary

If you have a nice standard form problem (LP, QP..) then
using a modeling framework (e.g., with Excel) is
probably the simplest

Alternatively use directly a solver (e.g., input your own
functions with gradient and Hessian)

Alternatively, use custom code (e.g., non-smooth
constraints, tricky barrier functions)
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The CVX package
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Motivation

A (new) modeling framework for convex programming in
MATLAB.

Offers functions that can be called within other scripts

Intuitive syntax

Powerful features (e.g., non-smooth convex functions)
that go beyond this course
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Disciplined convex programming

CVX can solve any convex program expressed in a
particular form called disciplined convex programming

Two key elements
An expandable atom library: a collection of functions
and sets with known properties of convexity,
monotonicity and range
A ruleset which governs how those atoms can be
used and combined to form a valid problem (e.g., a
sum of convex functions is ok).

We will only use basic features in this course, because
there are already quite a few atoms defined.
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General syntax

cvx_begin
variable x
minimize( ... );
subject to

...
cvx_end

After the last command the problem is solved and the solu-

tion returned in the variable x. The value of the minimum is

available in the variable cvx_optval
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Dual variables

cvx_begin
variable x
dual variable y
minimize( ... );
subject to

y : ...
cvx_end

After the last command the optimal dual variable is available

in the y dual variable
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Example: linear program

minimize c>x

subject to Ax ≤ b

n = size(A,2)
cvx_begin

variable x(n);
minimize( c’ * x );
subject to

A * x <= b;
cvx_end

(see example_lp.m and exampl_lp2.m)
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Example: QP with inequality constraints

minimize
1

2
x>Px + q>x + r

subject to − 1 ≤ x ≤ 1

cvx_begin
variable x(n)
minimize ( (1/2)*quad_form(x,P) + q’*x + r)
x >= -1;
x <= 1;

cvx_end

(see example_qp.m)
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Example: sensitivity analysis for QCQP

We consider (ex. 5.1, homework 5):

minimize x2 + 1

subject to (x − 2)(x − 4) ≤ u

Compute the optimal value p∗ as a function of u, and check
that the optimal dual variable λ∗ satisfies:

dp∗

du
= −λ∗.

(see example_qcqp_sensitivity.m)
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Example (cont.)

u = linspace(-0.9,10,50);
p_star = zeros(1,length(u));
lambda_star = zeros(1,length(u))
for i = 1:length(u)

cvx_begin
variable x(1)
minimize ( quad_form(x,1) + 1 )
lambda : quad_form(x,1) - 6*x + 8 <= u(i);

cvx_end
p_star(i) = cvx_optval;
lambda_star(i) = lambda

end
plot(u,-lambda_star,u,p_star)
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Log-optimal investment strategy
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The problem

n assets held over N periods

At the beginning of each period we re-invest our total
wealth, redistributing it over the n assets using a fixed,
constant, allocation strategy x ∈ R

n where x ≥ 0 and
∑n

i=1
xi = 1.

We want to determine an allocation strategy x that
maximizes growth of our total wealth for large N .
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The model

We use a discrete stochastic model to account for the
uncertainty in the returns

During each period there are m possible scenarios with
probabilities π1, . . . , πm.

In scenario j the return for asset i over one period is
given by pij

We assume the same scenarios for each period, with
identical independent distributions.
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Formalization

Let W (t − 1) our wealth at the beginning of period t.

During period t we therefore invest xiW (t− 1) in asset i.

If scenario j happens in period t then our wealth at the
end of period t is:

W (t) =
n

∑

i=1

pijxiW (t − 1)

The total return during period t is therefore:

λ(t) =
W (t)

W (t − 1)
= p>j x .
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Growth rate

At the end of the N periods our wealth has been
multiplied by the factor

∏N
t=1

λ(t)

The growth rate of the investment over the N periods is

GN =
1

N

N
∑

t=1

log λ(t)

By the law of large numbers, for large N :

lim
N→∞

GN = E log λ(t) =

m
∑

j=1

πj log
(

p>j x
)

.
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Optimization problem

The problem can therefore be formulated as:

maximize
m

∑

j=1

πj log
(

p>j x
)

subject to x ≥ 0 ,

1>x = 1 .

The investment strategy x ∈ R
n that solves this problem

is called the log-optimal investment strategy.

This is a convex optimization problem with differentiable
objective and constraints.
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Example

5 assets, 10 equiprobable scenarios.

Asset 1 is very risky, with occasional large return but
(most of the time) substantial loss

Asset 5 gives a fixed and certain return of 1%.

(see example_logoptimalportfolio.m)
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Scenarios

P = [3.5000 1.1100 1.1100 1.0400 1.0100;

0.5000 0.9700 0.9800 1.0500 1.0100;

0.5000 0.9900 0.9900 0.9900 1.0100;

0.5000 1.0500 1.0600 0.9900 1.0100;

0.5000 1.1600 0.9900 1.0700 1.0100;

0.5000 0.9900 0.9900 1.0600 1.0100;

0.5000 0.9200 1.0800 0.9900 1.0100;

0.5000 1.1300 1.1000 0.9900 1.0100;

0.5000 0.9300 0.9500 1.0400 1.0100;

3.5000 0.9900 0.9700 0.9800 1.0100];
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Solving the problem with CVX

[m,n] = size(P);

cvx_begin
variable x_opt(n)
maximize(geomean(P*x_opt))
sum(x_opt) == 1
x_opt >= 0

cvx_end

x_opt
x_unif = ones(n,1)/n
R_opt = sum(log(P*x_opt))/m
R_unif = sum(log(P*x_unif))/m
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Solution

The log-optimal investment strategy is:

xopt = [0.0580 0.3995 0.2921 0.2504 0.0000]>

The long-term growth rate achieved is Ropt = 2.31%

The long-term growth rate achieved by the uniform
strategy is Runif = 1.14%

The optimal strategy is to invest very little on the very
risky asset, and nothing on the sure asset. Most of the
wealth goes to asset 2.
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