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Inequality constrained minimization
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Setting

We consider the problem:

minimize f(x)

subject to gi(x) ≤ 0 , i = 1, . . . ,m ,

Ax = b ,

f and g are supposed to be convex and twice
continuously differentiable.

A is a p × n matrix of rank p < n (i.e., fewer equality
constraints than variables, and independent equality
constraints).

We assume f∗ is finite and attained at x∗
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Strong duality hypothesis

We finally assume the problem is strictly feasible, i.e.,
there exists x with gi(x) < 0, i = 1, . . . ,m, and Ax = 0.
This means that Slater’s constraint qualification holds
=⇒ strong duality holds and dual optimum is attained,
i.e., there exists λ∗ ∈ R

p and µ ∈ R
m which together with

x∗ satisfy the KKT conditions:

Ax∗ = b

gi (x
∗) ≤ 0 , i = 1, . . . ,m

µ∗ ≥ 0

∇f (x∗) +
m

∑

i=1

µ∗

i∇gi (x∗) + A>λ∗ = 0

µ∗

i gi (x
∗) = 0 , i = 1, . . . ,m .
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Examples

Many problems satisfy these conditions, e.g.:

LP, QP, QCQP

Entropy maximization with linear inequality constraints

minimize
n

∑

i=1

xi log xi

subject to Fx ≤ g

Ax = b .
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Examples (cont.)

To obtain differentiability of the objective and constraints
we might reformulate the problem, e.g:

minimize max
i=1,...,n

(

a>i x
)

+ bi

with nondifferentiable objective is equivalent to the LP:

minimize t

subject to ai>x + b ≤ t , i = 1, . . . ,m .

Ax = b .
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Overview

Interior-point methods solve the problem (or the KKT
conditions) by applying Newton’s method to a sequence of
equality-constrained problems. They form another level in
the hierarchy of convex optimization algorithms:

Linear equality constrained quadratic problems (LCQP)
are the simplest (set of linear equations that can be
solved analytically)

Newton’s method: reduces linear equality constrained
convex optimization problems (LCCP) with twice
differentiable objective to a sequence of LCQP.

Interior-point methods reduce a problem with linear
equality and inequality constraints to a sequence of
LCCP.
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Logarithmic barrier function and
central path
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Problem reformulation

Our goal is to approximately formulate the inequality
constrained problem as an equality constrained problem to
which Newton’s method can be applied. To this end we first
hide the inequality constraint implicit in the objective:

minimize f(x) +
m

∑

i=1

I− (gi(x))

subject to Ax = b ,

where I− : R → R is the indicator function for nonpositive
reals:

I−(u) =

{

0 if u ≤ 0 ,

+∞ if u > 0 .
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Logarithmic barrier

The basic idea of the barrier method is to approximate the
indicator function I− by the convex and differentiable
function

Î−(u) = −
1

t
log(−u) , u < 0 ,

where t > 0 is a parameter that sets the accuracy of the
prediction.
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Problem reformulation

Subsituting Î− for I− in the optimization problem gives the
approximation:

minimize f(x) +
m

∑

i=1

−
1

t
log (−gi(x))

subject to Ax = b ,

The objective function of this problem is convex and twice

differentiable, so Newton’s method can be used to solve it.

Of course this problem is just an approximation to the origi-

nal problem. We will see that the quality of the approximation

of the solution increases when t increases.
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Logarithmic barrier function

The function

φ(x) = −
m

∑

i=1

log (−gi(x))

is called the logarithmic barrier or log barrier for the original
optimization problem. Its domain is the set of points that
satisfy all inequality constraints strictly, and it grows without
bound if gi(x) → 0 for any i. Its gradient and Hessian are
given by:

∇φ(x) =
m

∑

i=1

1

−gi(x)
∇gi(x) ,

∇2φ(x) =
m

∑

i=1

1

gi (x)2
∇gi(x)∇gi(x)> +

m
∑

i=1

1

−gi(x)
∇2gi(x) .
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Central path

Our approximate problem is therefore (equivalent to) the
following problem:

minimize tf(x) + φ(x)

subject to Ax = b .

We assume for now that this problem can be solved via
Newton’s method, in particular that it has a unique solution
x∗(t) for each t > 0.

The central path is the set of solutions, i.e.:

{x∗(t) | t > 0} .
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Characterization of the central path

A point x∗(t) is on the central path if and only if:

it is strictly feasible, i.e., satisfies:

Ax∗(t) = b , gi (x
∗(t)) < 0 , i = 1, . . . ,m .

there exists a λ̂ ∈ R
p such that:

0 = t∇f (x∗(t)) + ∇φ (x∗(t)) + A>λ̂

= t∇f (x∗(t)) +
m

∑

i=1

1

−gi (x∗(t))
∇gi (x

∗(t)) + A>λ̂ .
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Example: LP central path

The log barrier for a LP:

minimize c>x

subject to Ax ≤ b ,

is given by

φ(x) = −

m
∑

i=1

log
(

bi − a>i x
)

,

where ai is the ith row of A. Its derivatives are:

∇φ(x) =

m
∑

i=1

1

bi − a>i x
ai , ∇2φ(x) =

m
∑

i=1

1
(

bi − a>i x
)2aia

>

i .
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Example (cont.)

The derivatives can be rewritten more compactly:

∇φ(x) = A>d , ∇2φ(x) = A>diag(d)2A ,

where d ∈ R
m is defined by di = 1/

(

bi − a>i x
)

. The centrality
condition for x∗(t) is:

tc + A>d = 0

=⇒ at each point on
the central path, ∇φ(x)
is parallel to −c.
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Dual points on central path

Remember that x = x∗(t) if there exists a w such that

t∇f (x∗(t)) +
m

∑

i=1

1

−gi (x∗(t))
∇gi (x∗(t)) + A>λ̂ = 0 , Ax = b .

Let us now define:

µ∗

i (t) = −
1

tgi (x∗(t))
, i = 1, . . . ,m, λ∗(t) =

λ̂

t
.

We claim that the pair λ∗(t), µ∗(t) is dual feasible.
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Dual points on central path (cont.)

Indeed:

µ∗(t) > 0 because gi (x
∗(t)) < 0

x∗(t) minimizes the Lagrangian

L (x, λ∗(t), µ∗(t)) = f(x)+
m

∑

i=1

µ∗

i (t)gi(x)+λ∗(t)> (Ax − b) .

Therefore the dual function q (µ∗(t), λ∗(t)) is finite and:

q (µ∗(t), λ∗(t)) = L (x∗(t), λ∗(t), µ∗(t)) = f (x∗(t)) −
m

t
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Convergence of the central path

From the equation:

q (µ∗(t), λ∗(t)) = f (x∗(t)) −
m

t

we deduce that the duality gap associated with x∗(t) and
the dual feasible pair λ∗(t), µ∗(t) is simply m/t. As an
important consequence we have:

f (x∗(t)) − f∗ ≤
m

t

This confirms the intuition that f (x∗(t)) → f∗ if t → ∞.
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Interpretation via KKT conditions

We can rewrite the conditions for x to be on the central path
by the existence of λ, µ such that:

1. Primal constraints: gi(x) ≤ 0, Ax = b

2. Dual constraints : µ ≥ 0

3. approximate complementary slackness: −µigi(x) = 1/t

4. gradient of Lagrangian w.r.t. x vanishes:

∇f(x) +
m

∑

i=1

µi∇gi(x) + A>λ = 0

The only difference with KKT is that 0 is replaced by 1/t in
3. For “large” t, the point on the central path “almost”
satisfies the KKT conditions.
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The barrier method
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Motivations

We have seen that the point x∗(t) is m/t-suboptimal. In
order to solve the optimization problem with a guaranteed
specific accuracy ε > 0, it suffices to take t = m/ε and solve
the equality constrained problem:

minimize
m

ε
f(x) + φ(x)

subject to Ax = b

by Newton’s method. However this only works for small

problems, good starting points and moderate accuracy. It

is rarely, if ever, used.
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Barrier method

given strictly feasible x, t = t(0) > 0, µ > 1, tolerance
ε > 0.

repeat
1. Centering step: compute x∗(t) by minimizing tf + φ,

subject to Ax = b

2. Update: x := x∗(t).
3. Stopping criterion: quit if m/t < ε.
4. Increase t: t := µt.
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Barrier method: Centering

Centering is usually done with Newton’s method,
starting at current x

Inexact centering is possible, since the goal is only to
obtain a sequence of points x(k) that converges to an
optimal point. In practice, however, the cost of
computing an extremely accurate minimizer of tf0 + φ
as compared to the cost of computing a good minimizer
is only marginal.
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Barrier method: choice of µ

The choice of µ involves a trade-off

For small µ, the initial point of each Newton process is
good and few Newton iterations are required; however,
many outer loops (update of t) are required.

For large µ, many Newton steps are required after each
update of t, since the initial point is probably not very
good. However few outer loops are required.

In practice µ = 10 − 20 works well.
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Barrier method: choice of t(0)

The choice of t(0) involves a simple trade-off

if t(0) is chosen too large, the first outer iteration will
require too many Newton iterations

if t(0) is chosen too small, the algorithm will require extra
outer iterations

Several heuristics exist for this choice.
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Example: LP in inequality form

m = 100 inequalities, n = 50 variables.

start with x on central paht (t(0) = 1, duality gap 100), terminates when t = 10
8 (gap

10
−6)

centering uses Newton’s method with backtracking

total number of Newton iterations not very sensitive for µ > 10

Nonlinear optimization c©2006 Jean-Philippe Vert, (Jean-Philippe.Vert@mines.org) – p.28/32



Example: A family of standard LP

minimize c>x subject to Ax = b, x ≥ 0

for A ∈ R
m×2m. Test for m = 10, . . . , 1000:

The number of iterations grows very slowly as m ranges over

a 100 : 1 ratio.
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Feasibility and phase I methods

The barrier method requires a strictly feasible starting point
x(0):

gi

(

x(0)
)

< 0 , i = 1, . . . ,m Ax(0) = 0 .

When such a point is not known, the barrier method is pre-

ceded by a preliminary stage, called phase I, in which a

strictly feasible point is computed.
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Basic phase I method

minimize s

subject to gi(x) ≤ s , i = 1, . . . ,m ,

Ax = b ,

this problem is always strictly feasible (choose any x,
and s large enough).

apply the barrier method to this problem = phase I
optimization problem.

If x, s feasible with s < 0 then x is strictly feasible for the
initial problem

If f∗ > 0 then the original problem is infeasible.
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Primal-dual interior-point methods

A variant of the barrier method, more efficient when high
accurary is needed

update primal and dual variables at each iteration: no
distinction between inner and outer iterations

often exhibit superlinear asymptotic convergence

search directions can be interpreted as Newton
directions for modified KKT conditions

can start at infeasible points

cost per iteration same as barrier method
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