Nonlinear Optimization: Duality

INSEAD, Spring 2006

Jean-Philippe Vert

Ecole des Mines de Paris

Jean-Philippe.Vert@mines.org

Outline

- The Lagrange dual function
- Weak and strong duality
- Geometric interpretation
- Saddle-point interpretation
- Optimality conditions
- Perturbation and sensitivity analysis

The Lagrange dual function

Setting

We consider an equality and inequality constrained optimization problem:

minimize f(x)subject to $h_i(x) = 0$, i = 1, ..., m, $g_j(x) \le 0$, j = 1, ..., r,

making *no assumption* of f, g and h.

We denote by f^* the optimal value of the decision function under the constraints, i.e., $f^* = f(x^*)$ if the minimum is reached at a global minimum x^* .

Lagrange dual function

• Remember the *Lagrangian* of this problem is the function $L : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^r \to \mathbb{R}$ defined by:

$$L(x,\lambda,\mu) = f(x) + \sum_{i=1}^{m} \lambda_i h_i(x) + \sum_{j=1}^{r} \mu_j g_j(x) .$$

• We define the Lagrange dual function $g : \mathbb{R}^m \times \mathbb{R}^r \to \mathbb{R}$ as:

$$q(\lambda,\mu) = \inf_{x \in \mathbb{R}^n} L(x,\lambda,\mu)$$
$$= \inf_{x \in \mathbb{R}^n} \left(f(x) + \sum_{i=1}^m \lambda_i h_i(x) + \sum_{j=1}^r \mu_j g_j(x) \right)$$

Properties of the dual function

When *L* in unbounded below in *x*, the dual function $q(\lambda, \mu)$ takes on the value $-\infty$. It has two important properties:

- 1. *q* is concave in (λ, μ) , even if the original problem is not convex.
- 2. The dual function yields lower bounds on the optimal value f^* of the original problem when μ is nonnegative:

 $q(\lambda,\mu) \leq f^*$, $\forall \lambda \in \mathbb{R}^m, \forall \mu \in \mathbb{R}^r, \mu \geq 0$.

Proof

- 1. For each x, the function $(\lambda, \mu) \mapsto L(x, \lambda, \mu)$ is linear, and therefore both convex and concave in (λ, μ) . The pointwise minimum of concave functions is concave, therefore q is concave.
- 2. Let \bar{x} be any feasible point, i.e., $h(\bar{x}) = 0$ and $g(\bar{x}) \le 0$. Then we have, for any λ and $\mu \ge 0$:

$$\sum_{i=1}^{m} \lambda_i h_i(\bar{x}) + \sum_{i=1}^{r} \mu_i h_i(\bar{x}) \le 0 ,$$

$$\implies L(\bar{x},\lambda,\mu) = f(\bar{x}) + \sum_{i=1}^{m} \lambda_i h_i(\bar{x}) + \sum_{i=1}^{r} \mu_i h_i(\bar{x}) \le f(\bar{x}) ,$$
$$\implies q(\lambda,\mu) = \inf_x L(x,\lambda,\mu) \le L(\bar{x},\lambda,\mu) \le f(\bar{x}) , \quad \forall \bar{x} .$$

Proof complement

We used the fact that the poinwise maximum (resp. minimum) of convex (resp. concave) functions is itself convex (concave).

To prove this, suppose that for each $y \in A$ the function f(x, y) is convex in x, and let the function:

$$g(x) = \sup_{y \in \mathcal{A}} f(x, y) .$$

Then the domain of g is convex as an intersection of convex domains, and for any $\theta \in [0, 1]$ and x_1, x_2 in the domain of g:

$$g(\theta x_1 + (1 - \theta) x_2) = \sup_{y \in \mathcal{A}} f(\theta x_1 + (1 - \theta) x_2, y)$$

$$\leq \sup_{y \in \mathcal{A}} (\theta f(x_1, y) + (1 - \theta) f(x_2, y))$$

$$\leq \sup_{y \in \mathcal{A}} (\theta f(x_1, y)) + \sup_{y \in \mathcal{A}} ((1 - \theta) f(x_2, y))$$

$$= \theta g(x_1) + (1 - \theta) g(x_2) . \square$$

Illustration

Least-squares solution of linear equations:

minimize $x^{\top}x$ subject to Ax = b,

where $A \in \mathbb{R}^{p \times n}$. There are *p* equality constraints, the Lagrangian with domain $\mathbb{R}^n \times \mathbb{R}^p$ is:

$$L(x,\lambda) = x^{\top}x + \lambda^{\top} (Ax - b).$$

To minimize *L* over *x* for λ fixed, we set the gradient equal to zero:

$$\nabla_x L(x,\lambda) = 2x + A^{\top}\lambda = 0 \quad \Longrightarrow \quad x = -\frac{1}{2}A^{\top}\lambda \;.$$

Example 1 (cont.)

Plug it in *L* to obtain the dual function:

$$q(\lambda) = L\left(-\frac{1}{2}A^{\top}\lambda,\lambda\right) = -\frac{1}{4}\lambda^{\top}AA^{\top}\lambda - b^{\top}\lambda$$

q is a concave function of λ , and the following lower bound holds:

$$f^* \ge -\frac{1}{4}\lambda^\top A A^\top \lambda - b^\top \lambda , \quad \forall \lambda \in \mathbb{R}^p$$

Standard form LP:

 $\begin{array}{ll} \mbox{minimize} & c^{\top}x\\ \mbox{subject to} & Ax = b \ ,\\ & x \geq 0 \ . \end{array}$

where $A \in \mathbb{R}^{p \times n}$. There are *p* equality and *n* inequality constraints, the Lagrangian with domain $\mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R}^n$ is:

$$L(x,\lambda,\mu) = c^{\top}x + \lambda^{\top} (Ax - b) - \mu^{\top}x$$
$$= -\lambda^{\top}b + \left(c + A^{\top}\lambda - \mu\right)^{\top}x$$

Example 2 (cont.)

L is linear in x, and its minimum can only be 0 or $-\infty$:

$$g(\lambda,\mu) = \inf_{x \in \mathbb{R}^n} L(x,\lambda,\mu) = \begin{cases} -\lambda^\top b & \text{if } A^\top \lambda - \mu + c = 0\\ -\infty & \text{otherwise.} \end{cases}$$

g is linear on an affine subspace and therefore concave. The lower bound is non-trivial when λ and μ satisfy $\mu \ge 0$ and $A^{\top}\lambda - \mu + c = 0$, giving the following bound:

$$f^* \ge -\lambda^{\top} b$$
 if $A^{\top} \lambda + c \ge 0$.

Inequality form LP:

minimize $c^{\top}x$ subject to $Ax \leq b$,

where $A \in \mathbb{R}^{p \times n}$. There are *p* inequality constraints, the Lagrangian with domain $\mathbb{R}^n \times \mathbb{R}^p$ is:

$$L(x,\mu) = c^{\top}x + \mu^{\top} (Ax - b)$$
$$= -\mu^{\top}b + \left(A^{\top}\mu + c\right)^{\top}x .$$

Example 3 (cont.)

L is linear in x, and its minimum can only be 0 or $-\infty$:

$$g(\lambda,\mu) = \inf_{x \in \mathbb{R}^n} L(x,\lambda,\mu) = \begin{cases} -\mu^\top b & \text{if } A^\top \mu + c = 0\\ -\infty & \text{otherwise.} \end{cases}$$

g is linear on an affine subspace and therefore concave. The lower bound is non-trivial when μ satisfies $\mu \ge 0$ and $A^{\top}\mu + c = 0$, giving the following bound:

 $f^* \ge -\mu^\top b$ if $A^\top \mu + c = 0$ and $\mu \ge 0$.

Two-way partitioning:

minimize $x^{\top}Wx$ subject to $x_i^2 = 1$, $i = 1, \dots, n$.

This is a *nonconvex* problem, the feasible set contains 2^n discrete points ($x_i = \pm 1$).

Interpretation : partition (1, ..., n) in two sets, W_{ij} is the cost of assigning i, j to the same set, $-W_{ij}$ the cost of assigning them to different sets. Lagrangian with domain $\mathbb{R}^n \times \mathbb{R}^n$:

$$L(x,\lambda) = x^{\top}Wx + \sum_{i=1}^{n} \lambda_i \left(x_i^2 - 1\right)$$
$$= x^{\top} \left(W + diag(\lambda)\right) x - \mathbf{1}^{\top}\lambda .$$

Example 4 (cont.)

For *M* symmetric, the minimum of $x^{\top}Mx$ is 0 if all eigenvalues of *M* are nonnegative, $-\infty$ otherwise. We therefore get the following dual function:

$$q(\lambda) = \begin{cases} -\mathbf{1}^{\top} \lambda & \text{if } W + diag(\lambda) \succeq 0 \\ -\infty & \text{otherwise.} \end{cases}$$

The lower bound is non-trivial for λ such that $W + diag(\lambda) \succeq 0$. This holds in particular for $\lambda = -\lambda_{\min}(W)$, resulting in:

$$f^* \ge -\mathbf{1}^\top \lambda = n\lambda_{\min}(W)$$
.

Weak and strong duality

Dual problem

For the (primal) problem:

minimize f(x)subject to h(x) = 0, $g(x) \le 0$,

the Lagrange dual problem is:

 $\begin{array}{ll} \mbox{maximize} & q(\lambda,\mu) \\ \mbox{subject to} & \mu \geq 0 \ , \end{array}$

where q is the (concave) Lagrange dual function and λ and μ are the Lagrange multipliers associated to the constraints h(x) = 0 and $g(x) \le 0$.

Weak duality

Let d^* the optimal value of the Lagrange dual problem. Each $q(\lambda, \mu)$ is an lower bound for f^* and by definition d^* is the best lower bound that is obtained. The following *weak duality inequality* therefore *always hold:*

 $d^* \le f^* \; .$

This inequality holds when d^* or f^* are infinite. The difference $d^* - f^*$ is called the *optimal duality gap* of the original problem.

Application of weak duality

For *any* optimization problem, we always have:

- the dual problem is a *convex* optimization problem (="easy to solve")
- weak duality holds.

Hence solving the dual problem can provide *useful lower bounds for the original problem, no matter how difficult it is.* For example, solving the following SDP problem (using classical optimization toolbox) provides a non-trivial lower bound for the optimal two-way partitioning problem:

minimize
$$\mathbf{1}^{\top}\lambda$$

subject to $W + diag(\lambda) \succeq 0$

Strong duality

We say that strong duality holds if the optimal duality gap is zero, i.e.:

 $d^* = f^* \; .$

- If strong duality holds, then the best lower bound that can be obtained from the Lagrange dual function is *tight*
- Strong duality does not hold for general nonlinear problems.
- It usually holds for convex problems.
- Conditions that ensure strong duality for convex problems are called *constraint qualification*.

Slater's constraint qualification

Strong duality holds for a *convex* problem:

minimize
$$f(x)$$

subject to $g_j(x) \le 0$, $j = 1, ..., r$,
 $Ax = b$,

if it is *strictly feasible*, i.e., there exists at least one *feasible point* that satisfies:

$$g_j(x) < 0$$
, $j = 1, ..., r$, $Ax = b$.

Remarks

Slater's conditions also ensure that the maximum d^* (if $> -\infty$) is *attained*, i.e., there exists a point (λ^*, μ^*) with

$$q\left(\lambda^{*},\mu^{*}\right)=d^{*}=f^{*}$$

- They can be sharpened. For example, strict feasibility is not required for affine constraints.
- There exist many other types of constraint qualifications

Least-squares solution of linear equations:

minimize $x^{\top}x$ subject to Ax = b,

where $A \in \mathbb{R}^{p \times n}$. The dual problem is:

maximize
$$-\frac{1}{4}\lambda^{\top}AA^{\top}\lambda - b^{\top}\lambda$$
.

- Slater's conditions holds if the primal is feasible, i.e., $b \in Im(A)$. In that case strong duality holds.
- In fact strong duality also holds if $f^* = +\infty$: there exists z with $A^{\top}z = 0$ and $b^{\top}z \neq 0$, so the dual is unbounded above and $d^* = +\infty = f^*$.

Inequality form LP:

minimize $c^{\top}x$ subject to $Ax \le b$,

Remember the dual function:

$$g(\lambda,\mu) = \inf_{x \in \mathbb{R}^n} L(x,\lambda,\mu) = \begin{cases} -\mu^\top b & \text{if } A^\top \mu + c = 0\\ -\infty & \text{otherwise.} \end{cases}$$

Example 2 (cont.)

The dual problem is therefore equivalent to the following *standard form LP*:

minimize $b^{\top}\mu$ subject to $A^{\top}\mu + c = 0, \quad \mu \ge 0$.

- From the weaker form of Slater's conditions, strong duality holds for any LP provided the primal problem is feasible.
- In fact, $f^* = d^*$ except when both the primal LP and the dual LP are infeasible.

Quadratic program (QP):

minimize $x^{\top} P x$ subject to $Ax \leq b$,

where we assume $P \succ 0$. There are *p* inequality constraints, the Lagrangian is:

$$L(x,\mu) = x^{\top} P x + \mu^{\top} (Ax - b) .$$

This is a strictly convex function of x minimized for

$$x^*(\mu) = -\frac{1}{2}P^{-1}A^{\top}\mu.$$

The dual function is therefore

$$q(\mu) = -\frac{1}{4}\mu^{\top}AP^{-1}A^{\top}\mu - b^{\top}\mu.$$

and the dual problem:

maximize
$$-\frac{1}{4}\mu^{\top}AP^{-1}A^{\top}\mu - b^{\top}\mu$$

subject to $\mu \ge 0$.

- By the weak form of Slater's conditions, strong duality holds if the primal problem is feasible: $f^* = d^*$.
- In fact, strong duality always holds, even if the primal is not feasible (in which case $f^* = d^* = +\infty$), cf LP case.

The following QCQP problem is *not convex* if *A* symmetric but not positive semidefinite:

minimize $x^{\top}Ax + 2b^{\top}x$ subject to $x^{\top}x \le 1$.

Its dual problem is the following SDP (left as exercice):

$$\begin{array}{ll} \textit{maximize} & -t - \mu \\ \\ \textit{subject to} & \left(\begin{array}{cc} A + \mu I & b \\ b^{\top} & t \end{array} \right) \succ 0 \; . \end{array}$$

In fact, strong duality holds in this case (more generally for quadratic ob-

jective and one quadratic inequality constraint, provided Slater's condition holds, see Annex B.1 in B&V).

Geometric interpretation

Setting

We consider the simple problem

minimize f(x)subject to $g(x) \le 0$,

where $f, g : \mathbb{R}^n \to \mathbb{R}$. We will give a geometric interpretation of the weak and strong duality.

Optimal value f^*

We consider the subset of \mathbb{R}^2 defined by:

 $S = \{ (g(x), f(x) \mid x \in \mathbb{R}^n) \} .$

The optimal value f^* is determined by:

 $f^* = \inf \{t \mid (u,t) \in S, u \le 0\}$.

Dual function $q(\mu)$

The dual function for $\mu \ge 0$ is:

$$q(\mu) = \inf_{x \in \mathbb{R}^n} \left\{ f(x) + \mu g(x) \right\}$$
$$= \inf_{(u,t) \in S} \left\{ \mu u + t \right\} .$$

Dual optimal d^*

$$d^* = \sup_{\mu \ge 0} q(\mu)$$

=
$$\sup_{\mu \ge 0} \inf_{(u,t) \in S} \{\mu u + t\} .$$

Weak duality

Strong duality

For convex problems with strictly feasible points:

Saddle-point interpretations

Setting

We consider a general optimization problem with inequality constraints:

minimize f(x)subject to $g_j(x) \le 0$, j = 1, ..., r.

Its Lagrangian is

$$L(x,\mu) = f(x) + \sum_{j=1}^{r} \mu_j g_j(x) .$$

Inf-sup form of f^*

We note that, for any $x \in \mathbb{R}^n$:

$$\begin{split} \sup_{\mu \ge 0} L(x,\mu) &= \sup_{\mu \ge 0} \left\{ f(x) + \sum_{j=1}^r \mu_j g_j(x) \right\} \\ &= \begin{cases} f(x) & \text{if } g_j(x) \le 0 \ , \quad j = 1, \dots, r \ , \\ +\infty & \text{otherwise.} \end{cases} \end{split}$$

Therefore:

$$f^* = \inf_{x \in \mathbb{R}^n} \sup_{\mu \ge 0} L(x, \mu) .$$

Duality

By definition we also have

$$d^* = \sup_{\mu \ge 0} \inf_{x \in \mathbb{R}^n} L(x, \mu) .$$

The *weak duality* can thus be rewritten:

$$\sup_{\mu \ge 0} \inf_{x \in \mathbb{R}^n} L(x,\mu) \le \inf_{x \in \mathbb{R}^n} \sup_{\mu \ge 0} L(x,\mu) .$$

and the *strong duality* as the equality:

$$\sup_{\mu \ge 0} \inf_{x \in \mathbb{R}^n} L(x, \mu) = \inf_{x \in \mathbb{R}^n} \sup_{\mu \ge 0} L(x, \mu) .$$

Max-min inequality

In fact the weak duality does not depend on any property of L, it is just an instance of the general *max-min inequality* that states that

$$\sup_{z \in Z} \inf_{w \in W} f(w, z) \le \inf_{w \in W} \sup_{z \in Z} f(w, z) ,$$

for any $f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$, $W \subset \mathbb{R}^n$ and $Z \subset \mathbb{R}^m$. When equality holds, i.e.,

$$\sup_{z \in Z} \inf_{w \in W} f(w, z) = \inf_{w \in W} \sup_{z \in Z} f(w, z) ,$$

we say that f satisfies the strong max-min property. This holds only in special cases.

Proof of Max-min inequality

For any $(w_0, z_0) \in W \times Z$ we have by definition of the infimum in w:

$$\inf_{w \in W} f(w, z_0) \le f(w_0, z_0) \; .$$

For w_0 fixed, this holds for any choice of z_0 so we can take the supremum in z_0 on both sides to obtain:

$$\sup_{z \in Z} \inf_{w \in W} f(w, z) \le \sup_{z \in Z} f(w_0, z) .$$

The left-hand side is a constant, and the right-hand side is a function of w_0 . The inequality is valid for any w_0 , so we can take the infimum to obtain the result:

$$\sup_{z \in Z} \inf_{w \in W} f(w, z) \le \inf_{w \in W} \sup_{z \in Z} f(w, z) .$$

Saddle-point interpretation

A pair $(w^*, z^*) \in W \times Z$ is called a *saddle-point* for f if

 $f(w^*, z) \le f(w^*, z^*) \le f(w, z^*), \quad \forall w \in W, z \in Z.$

If a saddle-point exists then *strong max-min property holds* because:

$$\sup_{z \in Z} \inf_{w \in W} f(w, z) \ge \inf_{w \in W} f(w, z^*) = f(w^*, z^*)$$
$$= \sup_{z \in Z} f(w^*, z) \ge \inf_{w \in W} \sup_{z \in Z} f(w^*, z) .$$

Hence if strong duality holds, (x^*, μ^*) form a saddle-point of *the Lagrangian*. Conversily, if the Lagrangian has a saddle-point then strong duality holds.

Game interpretation

Consider a game with two players:

- 1. Player 1 chooses $w \in W$;
- 2. then Player 2 chooses $z \in Z$;
- 3. then Player 1 pays f(w, z) to Player 2.

Player 1 wants to minimize f, while Player 2 wants to maximize it. If Player 1 chooses w, then Player 2 will choose $z \in Z$ to obtain the maximum payoff $\sup_{z \in Z} f(w, z)$. Knowing this, Player must chose w to make this payoff minimum, equal to:

$$\inf_{w \in W} \sup_{z \in Z} f(w, z) \; .$$

Game interpretation (cont.)

If Player 2 plays first, following a similar argument, the payoff will be:

 $\sup_{z \in Z} \inf_{w \in W} f(w, z) \; .$

The general max-min inequality states that *it is better for a player to know his or her opponent's choice before choos-ing*. The optimal duality gap is the advantage afforded to the player who plays second. *If there is a saddle-point, then there is no advantage to the players of knowing their opponent's choice*.

Optimality conditions

Setting

We consider an equality and inequality constrained optimization problem:

minimize f(x)subject to $h_i(x) = 0$, i = 1, ..., m, $g_j(x) \le 0$, j = 1, ..., r,

making *no assumption* of f, g and h.

We will revisit the optimality conditions at the light of duality.

Dual optimal pairs

Suppose that strong duality holds, x^* is primal optimal, (λ^*, μ^*) is dual optimal. Then we have:

$$f(x^*) = q\left(\lambda^*, \mu^*\right)$$
$$= \inf_{x \in \mathbb{R}^n} \left\{ f(x) + \sum_{i=1}^m \lambda_i^* h_i(x) + \sum_{j=1}^r \mu_j^* g_j(x) \right\}$$
$$\leq f(x^*) + \sum_{i=1}^m \lambda_i h_i(x^*) + \sum_{j=1}^r \mu_j g_j(x^*)$$
$$\leq f(x^*)$$

Hence both inequalities are in fact equalities.

Complimentary slackness

The first equality shows that:

$$L(x^*, \lambda^*, \mu^*) = \inf_{x \in \mathbb{R}^n} L(x, \lambda^*, \mu^*) ,$$

showing that x^* minimizes the Lagrangian at (λ^*, μ^*) . The second equality shows that:

$$\mu_j g_j(x^*) = 0$$
, $j = 1, ..., r$.

This property is called *complementary slackness*: the *i*th optimal Lagrange multiplier is zero unless the *i*th constraint is active at the optimum.

KKT conditions

If the functions f, g, h are differentiable and there is no duality gap, then we have seen that x^* minimizes $L(x, \lambda^*, \mu^*)$, therefore:

$$\nabla_x L(x^*, \lambda^*, \mu^*) = \nabla f(x^*) + \sum_{i=1}^m \nabla \lambda_i^* h_i(x^*) + \sum_{j=1}^r \nabla \mu_j^* g_i(x^*) = 0.$$

Combined with the complimentary slackness and feasibility conditions, we recover the KKT optimality conditions that x^* must fulfill. λ^* and μ^* now have the interpretation of dual optimal.

KKT conditions for convex problems

Suppose now that the problem is convex, i.e., f and g are convex functions, h is affine, and let x^* and (λ^*, μ^*) satisfy the KKT conditions:

 $\begin{aligned} h_i(x^*) &= 0 \quad i = 1, \dots, m \\ g_j(x^*) &\leq 0 \quad j = 1, \dots, r \\ \mu_j^* &\geq 0 \quad j = 1, \dots, r \\ \mu_j^* g_j(x^*) &= 0 \quad j = 1, \dots, r \end{aligned}$ $\nabla f(x^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(x^*) + \sum_{j=1}^r \mu_j^* \nabla g_i(x^*) = 0 ,$

then x^* and (λ^*, μ^*) are primal and dual optimal, with zero duality gap (the KKT conditions are sufficient in this case).

Proof

The first 2 conditions show that x^* is feasible. Because $\mu^* \ge 0$, the Lagrangian $L(x, \lambda^*, \mu^*)$ is convex in x. Therefore, the last equality shows that x^* minimized it, therefore:

$$q(\lambda^*, \mu^*) = L(x^*, \lambda^*, \mu^*)$$

= $f(x^*) + \sum_{i=1}^m \lambda_i h_i(x^*) + \sum_{j=1}^r \mu_j g_j(x^*)$
= $f(x^*)$,

showing that x^* and (λ^*, μ^*) have zero duality gap, and are therefore primal and dual optimal.

Summary

For *any* problem with *differentiable* objective and constraints:

- If x and (λ, μ) satisfy $f(x) = q(\lambda, \mu)$ (which implies in particular that x is optimal), then (x, λ, μ) satisfy KKT.
- For a *convex* problem the converse is true: x and (λ, μ) satisfy $f(x) = q(\lambda, \mu) \text{ if and only if they satisfy KKT.}$
- For a convex problem where *Slater's condition* holds, we know that strong duality holds and that the dual optimal is attained, so x is optimal if and only if there are (λ, μ) that together with x satisfy the KKT conditions.
- We showed previously without convexity assumption, if x is optimal and regular, then there exists (λ, μ) that together with x satisfy KKT. In that case, however, we do note have in general $f(x) = q(\lambda, \mu)$ (otherwise strong duality would hold).

Equality constrained quadratic minimization:

minimize
$$\frac{1}{2}x^{\top}Px + q^{\top}x + r$$

subject to $Ax = b$,

where $P \succeq 0$. This problem is convex with no inequality constraint, so the KKT conditions are necessary and sufficient:

$$\left(\begin{array}{cc} P & A^{\top} \\ A & 0 \end{array}\right) \left(\begin{array}{c} x^* \\ \lambda^* \end{array}\right) = \left(\begin{array}{c} -q \\ b \end{array}\right)$$

This is a set of m + n equations with m + n variables.

Water-filling problem (assuming $\alpha_i \ge 0$):

minimize
$$-\sum_{i=1}^{n} \log (\alpha_i + x_i)$$

subject to $x \ge 0$, $\mathbf{1}^{\top} x = 1$.

By the KKT conditions for this convex problem that satisfies Slater's conditions, x is optimal iff $x \ge 0$, $\mathbf{1}^{\top}x = 1$, and there exists $\lambda \in \mathbb{R}$ and $\mu \in \mathbb{R}^n$ s.t.

$$\mu \ge 0$$
, $\mu_i x_i = 0$, $\frac{1}{x_i + \alpha_i} + \mu_i = \lambda$.

This problem is easily solved directly:

- If $\lambda < 1/\alpha_i$: $\mu_i = 0$ and $x_i = 1/\lambda \alpha_i$
- If $\lambda \ge 1/\alpha_i$: $\mu_i = \lambda 1/\alpha_i$ and $x_i = 0$
- determine λ from $\mathbf{1}^{\top} x = \sum_{i=1}^{n} \max \{0, 1/\lambda \alpha_i\} = 1$

Interpretation:

- *n* patches; level of patch *i* is at height α_i
- flood area with unit amount of water
- resulting level is $1/\lambda^*$

Perturbation and sensitivity analysis

Unperturbed optimization problem

We consider the general problem:

minimize
$$f(x)$$

subject to $h_i(x) = 0$, $i = 1, ..., m$,
 $g_j(x) \le 0$, $j = 1, ..., r$,

with optimal value f^* , and its dual:

 $\begin{array}{ll} \mbox{maximize} & q(\lambda,\mu) \\ \mbox{subject to} & \mu \geq 0 \; . \end{array}$

Perturbed problem and its dual

The *perturbed problem* is

minimize f(x)subject to $h_i(x) = u_i$, i = 1, ..., m, $g_j(x) \le v_j$, j = 1, ..., r,

with optimal value $f^*(u, v)$, and its dual:

 $\begin{array}{ll} \mbox{maximize} & q(\lambda,\mu) - u^\top \lambda - v^\top \mu \ . \\ \mbox{subject to} & \mu \geq 0 \ . \end{array}$

Interpretation

- When u = v = 0, this coincides with the original problem: $f^*(0,0) = f^*$.
- When $v_j > 0$, we have *relaxed* the *j*th inequality constraint.
- Solution When $v_j < 0$, we have *tightened* the *j*th inequality constraing.
- We are interested in *informations about* $f^*(u, v)$ that can be obtained from the solution of the unperturbed problem and its dual.

A global sensitivity result

Now we assume that:

- Strong duality holds, i.e., $f^* = d^*$.
- The dual optimum is attained, i.e., *there exist* (λ^*, μ^*) such that $d^* = q (\lambda^*, \mu^*)$.

Applying weak duality to the perturbed problem we obtain

$$f^*(u,v) \ge q \left(\lambda^*, \mu^*\right) - u^\top \lambda^* - v^\top \mu^*$$
$$= f^* - u^\top \lambda^* - v^\top \mu^* .$$

Global sensitivity interpretation

$$f^*(u,v) \ge f^* - u^{\top} \lambda^* - v^{\top} \mu^*$$
.

- If μ_j^* is large: f^* increases greatly if we tighten the *j*th inequality constraint ($v_j < 0$)
- If μ_j^* is small: f^* does not decrease much if we loosen the *j*th inequality constraint $(v_j > 0)$
- If λ_i^* is large and positive: f^* increases greatly if we decrease the *i*th equality constraint ($u_i < 0$)
- If λ_i^* is large and negative: f^* increases greatly if we increase the *i*th equality constraint ($u_i > 0$)
- If λ_i^* is small and positive: f^* does not decrease much if we increase the *i*th equality constraint ($u_i > 0$)
- If λ_i^* is small and negative: f^* does not decrease much if we decrease the *i*th equality constraint ($u_i < 0$)

Local sensitivity analysis

If (in addition) we assume that $f^*(u, v)$ is differentiable at (0, 0), then the following holds:

$$\lambda_i^* = -\frac{\partial f^*(0,0)}{\partial u_i} , \quad \mu_i^* = -\frac{\partial f^*(0,0)}{\partial v_i} ,$$

In that case, the Lagrange multipliers are exactly the *local* sensitivities of the optimal value with respect to constraint perturbation. Tightening the *i*th inequality constraint a small amount $v_j < 0$ yields an increase in f^* of approximately $-\lambda_j^* v_j$.

Proof

For λ_i^* : from the global sensitivity result, it holds that:

$$t > 0 \implies \frac{f^*(te_i, 0) - f^*(0, 0)}{t} \ge -\lambda_i^*,$$

and therefore

$$\frac{\partial f^*(0,0)}{\partial u_i} \ge -\lambda_i^* \; .$$

A similar analysis with t < 0 yields $\partial f^*(0,0) / \partial u_i \leq -\lambda_i^*$, and therefore:

$$\frac{\partial f^*(0,0)}{\partial u_i} = -\lambda_i^* \; .$$

A similar proof holds for μ_j .

Shadow price interpretation

We assume the following problem is convex and Slater's condition holds:

minimize f(x)subject to $g_j(x) \le v_j$, j = 1, ..., r,

- $x \in \mathbb{R}^n$ determines how a firm operates.
- The objective f is the cost, i.e., -f is the profit.
- Each constraint $g_j(x) \le 0$ is a limit on some resource (labor, steel, warehouse space...)

Shadow price interpretation (cont.)

- $-f^*(v)$ is how much more or less profit could be made if more or less of each resource were made available to the firm.
- μ_j^* is therefore the natural or equilibrium price for resource j.