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The Lagrange dual function
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Setting

We consider an equality and inequality constrained
optimization problem:

minimize f(x)

subject to hi(x) = 0 , i = 1, . . . ,m ,

gj(x) ≤ 0 , j = 1, . . . , r ,

making no assumption of f , g and h.

We denote by f∗ the optimal value of the decision function

under the constraints, i.e., f∗ = f (x∗) if the minimum is

reached at a global minimum x∗.
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Lagrange dual function

Remember the Lagrangian of this problem is the
function L : R

n × R
m × R

r → R defined by:

L (x, λ, µ) = f(x) +
m
∑

i=1

λihi (x) +
r
∑

j=1

µjgj(x) .

We define the Lagrange dual function g : R
m × R

r → R

as:

q(λ, µ) = inf
x∈Rn

L (x, λ, µ)

= inf
x∈Rn



f(x) +
m
∑

i=1

λihi (x) +
r
∑

j=1

µjgj(x)



 .
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Properties of the dual function

When L in unbounded below in x, the dual function q(λ, µ)
takes on the value −∞. It has two important properties:

1. q is concave in (λ, µ), even if the original problem is not
convex.

2. The dual function yields lower bounds on the optimal
value f∗ of the original problem when µ is nonnegative:

q(λ, µ) ≤ f∗ , ∀λ ∈ R
m,∀µ ∈ R

r, µ ≥ 0 .
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Proof

1. For each x, the function (λ, µ) 7→ L(x, λ, µ) is linear, and
therefore both convex and concave in (λ, µ). The
pointwise minimum of concave functions is concave,
therefore q is concave.

2. Let x̄ be any feasible point, i.e., h(x̄) = 0 and g(x̄) ≤ 0.
Then we have, for any λ and µ ≥ 0:

m
∑

i=1

λihi(x̄) +
r
∑

i=1

µihi(x̄) ≤ 0 ,

=⇒ L(x̄, λ, µ) = f(x̄)+
m
∑

i=1

λihi(x̄)+
r
∑

i=1

µihi(x̄) ≤ f(x̄) ,

=⇒ q(λ, µ) = inf
x

L(x, λ, µ) ≤ L(x̄, λ, µ) ≤ f(x̄) , ∀x̄ . �
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Proof complement

We used the fact that the poinwise maximum (resp. minimum) of convex
(resp. concave) functions is itself convex (concave).
To prove this, suppose that for each y ∈ A the function f(x, y) is convex in
x, and let the function:

g(x) = sup
y∈A

f(x, y) .

Then the domain of g is convex as an intersection of convex domains, and
for any θ ∈ [0, 1] and x1, x2 in the domain of g:

g (θx1 + (1 − θ)x2) = sup
y∈A

f(θx1 + (1 − θ)x2, y)

≤ sup
y∈A

(θf(x1, y) + (1 − θ)f(x2, y))

≤ sup
y∈A

(θf(x1, y)) + sup
y∈A

((1 − θ)f(x2, y))

= θg(x1) + (1 − θ)g(x2) . �
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Illustration
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Example 1

Least-squares solution of linear equations:

minimize x>x

subject to Ax = b ,

where A ∈ R
p×n. There are p equality constraints, the

Lagrangian with domain R
n × R

p is:

L(x, λ) = x>x + λ> (Ax − b) .

To minimize L over x for λ fixed, we set the gradient equal
to zero:

∇xL(x, λ) = 2x + A>λ = 0 =⇒ x = −
1

2
A>λ .
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Example 1 (cont.)

Plug it in L to obtain the dual function:

q(λ) = L

(

−
1

2
A>λ, λ

)

= −
1

4
λ>AA>λ − b>λ

q is a concave function of λ, and the following lower bound
holds:

f∗ ≥ −
1

4
λ>AA>λ − b>λ , ∀λ ∈ R

p .
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Example 2

Standard form LP:

minimize c>x

subject to Ax = b ,

x ≥ 0 .

where A ∈ R
p×n. There are p equality and n inequality

constraints, the Lagrangian with domain R
n × R

p × R
n is:

L(x, λ, µ) = c>x + λ> (Ax − b) − µ>x

= −λ>b +
(

c + A>λ − µ
)>

x .
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Example 2 (cont.)

L is linear in x, and its minimum can only be 0 or −∞:

g(λ, µ) = inf
x∈Rn

L(x, λ, µ) =

{

−λ>b if A>λ − µ + c = 0

−∞ otherwise.

g is linear on an affine subspace and therefore concave.
The lower bound is non-trivial when λ and µ satisfy µ ≥ 0

and A>λ − µ + c = 0, giving the following bound:

f∗ ≥ −λ>b if A>λ + c ≥ 0 .
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Example 3

Inequality form LP:

minimize c>x

subject to Ax ≤ b ,

where A ∈ R
p×n. There are p inequality constraints, the

Lagrangian with domain R
n × R

p is:

L(x, µ) = c>x + µ> (Ax − b)

= −µ>b +
(

A>µ + c
)>

x .
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Example 3 (cont.)

L is linear in x, and its minimum can only be 0 or −∞:

g(λ, µ) = inf
x∈Rn

L(x, λ, µ) =

{

−µ>b if A>µ + c = 0

−∞ otherwise.

g is linear on an affine subspace and therefore concave.
The lower bound is non-trivial when µ satisfies µ ≥ 0 and
A>µ + c = 0, giving the following bound:

f∗ ≥ −µ>b if A>µ + c = 0 and µ ≥ 0 .
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Example 4

Two-way partitioning:

minimize x>Wx

subject to x2
i = 1 , i = 1, . . . , n .

This is a nonconvex problem, the feasible set contains 2n

discrete points (xi = ±1).
Interpretation : partition (1, . . . , n) in two sets, Wij is the cost
of assigning i, j to the same set, −Wij the cost of assigning
them to different sets. Lagrangian with domain R

n × R
n:

L(x, λ) = x>Wx +
n
∑

i=1

λi

(

x2
i − 1

)

= x> (W + diag(λ)) x − 1
>λ .
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Example 4 (cont.)

For M symmetric, the minimum of x>Mx is 0 if all
eigenvalues of M are nonnegative, −∞ otherwise. We
therefore get the following dual function:

q(λ) =

{

−1
>λ if W + diag(λ) � 0 ,

−∞ otherwise.

The lower bound is non-trivial for λ such that
W + diag(λ) � 0. This holds in particular for λ = −λmin(W ),
resulting in:

f∗ ≥ −1
>λ = nλmin(W ) .
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Weak and strong duality
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Dual problem

For the (primal) problem:

minimize f(x)

subject to h(x) = 0 , g(x) ≤ 0 ,

the Lagrange dual problem is:

maximize q(λ, µ)

subject to µ ≥ 0 ,

where q is the (concave) Lagrange dual function and λ and

µ are the Lagrange multipliers associated to the constraints

h(x) = 0 and g(x) ≤ 0.
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Weak duality

Let d∗ the optimal value of the Lagrange dual problem.
Each q(λ, µ) is an lower bound for f∗ and by definition d∗ is
the best lower bound that is obtained. The following weak
duality inequality therefore always hold:

d∗ ≤ f∗ .

This inequality holds when d∗ or f∗ are infinite. The differ-

ence d∗ − f∗ is called the optimal duality gap of the original

problem.
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Application of weak duality

For any optimization problem, we always have:

the dual problem is a convex optimization problem
(=“easy to solve”)

weak duality holds.

Hence solving the dual problem can provide useful lower
bounds for the original problem, no matter how difficult it is.
For example, solving the following SDP problem (using
classical optimization toolbox) provides a non-trivial lower
bound for the optimal two-way partitioning problem:

minimize 1
>λ

subject to W + diag(λ) � 0
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Strong duality

We say that strong duality holds if the optimal duality gap is
zero, i.e.:

d∗ = f∗ .

If strong duality holds, then the best lower bound that
can be obtained from the Lagrange dual function is tight

Strong duality does not hold for general nonlinear
problems.

It usually holds for convex problems.

Conditions that ensure strong duality for convex
problems are called constraint qualification.
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Slater’s constraint qualification

Strong duality holds for a convex problem:

minimize f(x)

subject to gj(x) ≤ 0 , j = 1, . . . , r ,

Ax = b ,

if it is strictly feasible, i.e., there exists at least one feasible
point that satisfies:

gj(x) < 0 , j = 1, . . . , r , Ax = b .
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Remarks

Slater’s conditions also ensure that the maximum d∗ (if
> −∞) is attained, i.e., there exists a point (λ∗, µ∗) with

q (λ∗, µ∗) = d∗ = f∗

They can be sharpened. For example, strict feasibility is
not required for affine constraints.

There exist many other types of constraint qualifications
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Example 1

Least-squares solution of linear equations:

minimize x>x

subject to Ax = b ,

where A ∈ R
p×n. The dual problem is:

maximize −
1

4
λ>AA>λ − b>λ .

Slater’s conditions holds if the primal is feasible, i.e.,

b ∈ Im(A). In that case strong duality holds.

In fact strong duality also holds if f∗ = +∞: there exists z with

A>z = 0 and b>z 6= 0, so the dual is unbounded above and
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Example 2

Inequality form LP:

minimize c>x

subject to Ax ≤ b ,

Remember the dual function:

g(λ, µ) = inf
x∈Rn

L(x, λ, µ) =

{

−µ>b if A>µ + c = 0

−∞ otherwise.
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Example 2 (cont.)

The dual problem is therefore equivalent to the following
standard form LP:

minimize b>µ

subject to A>µ + c = 0, µ ≥ 0 .

From the weaker form of Slater’s conditions, strong
duality holds for any LP provided the primal problem is
feasible.

In fact, f∗ = d∗ except when both the primal LP and the
dual LP are infeasible.
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Example 3

Quadratic program (QP):

minimize x>Px

subject to Ax ≤ b ,

where we assume P � 0. There are p inequality constraints,
the Lagrangian is:

L(x, µ) = x>Px + µ> (Ax − b) .

This is a strictly convex function of x minimized for

x∗(µ) = −
1

2
P−1A>µ.
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Example 3

The dual function is therefore

q(µ) = −
1

4
µ>AP−1A>µ − b>µ.

and the dual problem:

maximize −
1

4
µ>AP−1A>µ − b>µ

subject to µ ≥ 0 .

By the weak form of Slater’s conditions, strong duality
holds if the primal problem is feasible: f∗ = d∗.

In fact, strong duality always holds, even if the primal is
not feasible (in which case f∗ = d∗ = +∞), cf LP case.
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Example 4

The following QCQP problem is not convex if A symmetric but not positive
semidefinite:

minimize x>Ax + 2b>x

subject to x>x ≤ 1 .

Its dual problem is the following SDP (left as exercice):

maximize − t − µ

subject to





A + µI b

b> t



 � 0 .

In fact, strong duality holds in this case (more generally for quadratic ob-

jective and one quadratic inequality constraint, provided Slater’s condition

holds, see Annex B.1 in B&V).
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Geometric interpretation
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Setting

We consider the simple problem

minimize f(x)

subject to g(x) ≤ 0 ,

where f, g : R
n → R. We will give a geometric interpretation

of the weak and strong duality.
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Optimal value f ∗

We consider the subset of R
2 defined by:

S = {(g(x), f(x) | x ∈ R
n)} .

The optimal value f∗ is determined by:

f∗ = inf {t | (u, t) ∈ S, u ≤ 0} .

u

t

f∗

S
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Dual function q(µ)

The dual function for µ ≥ 0 is:

q(µ) = inf
x∈Rn

{f(x) + µg(x)}

= inf
(u,t)∈S

{µu + t} .

u

t

u+t=

f

µµ q(  )

∗

µ q(  )

S
µu+t= cte
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Dual optimal d∗

d∗ = sup
µ≥0

q(µ)

= sup
µ≥0

inf
(u,t)∈S

{µu + t} .

u

t

f∗

S

d∗
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Weak duality

d∗ ≤ f∗

u

t

f∗

S

d∗
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Strong duality

For convex problems with strictly feasible points:

d∗ = f∗

u

t

S

d∗
f ∗

u

t

S

f ∗
d∗
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Saddle-point interpretations
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Setting

We consider a general optimization problem with inequality
constraints:

minimize f(x)

subject to gj(x) ≤ 0 , j = 1, . . . , r .

Its Lagrangian is

L(x, µ) = f(x) +
r
∑

j=1

µjgj(x) .
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Inf-sup form of f ∗

We note that, for any x ∈ R
n:

sup
µ≥0

L(x, µ) = sup
µ≥0







f(x) +

r
∑

j=1

µjgj(x)







=

{

f(x) if gj(x) ≤ 0 , j = 1, . . . , r ,

+∞ otherwise.

Therefore:
f∗ = inf

x∈Rn
sup
µ≥0

L(x, µ) .
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Duality

By definition we also have

d∗ = sup
µ≥0

inf
x∈Rn

L(x, µ) .

The weak duality can thus be rewritten:

sup
µ≥0

inf
x∈Rn

L(x, µ) ≤ inf
x∈Rn

sup
µ≥0

L(x, µ) .

and the strong duality as the equality:

sup
µ≥0

inf
x∈Rn

L(x, µ) = inf
x∈Rn

sup
µ≥0

L(x, µ) .
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Max-min inequality

In fact the weak duality does not depend on any property of
L, it is just an instance of the general max-min inequality
that states that

sup
z∈Z

inf
w∈W

f(w, z) ≤ inf
w∈W

sup
z∈Z

f(w, z) ,

for any f : R
n × R

m → R, W ⊂ R
n and Z ⊂ R

m. When
equality holds, i.e.,

sup
z∈Z

inf
w∈W

f(w, z) = inf
w∈W

sup
z∈Z

f(w, z) ,

we say that f satisfies the strong max-min property. This

holds only in special cases.
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Proof of Max-min inequality

For any (w0, z0) ∈ W × Z we have by definition of the infimum in w:

inf
w∈W

f(w, z0) ≤ f(w0, z0) .

For w0 fixed, this holds for any choice of z0 so we can take the supremum
in z0 on both sides to obtain:

sup
z∈Z

inf
w∈W

f(w, z) ≤ sup
z∈Z

f(w0, z) .

The left-hand side is a constant, and the right-hand side is a function of
w0. The inequality is valid for any w0, so we can take the infimum to obtain
the result:

sup
z∈Z

inf
w∈W

f(w, z) ≤ inf
w∈W

sup
z∈Z

f(w, z) .
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Saddle-point interpretation

A pair (w∗, z∗) ∈ W × Z is called a saddle-point for f if

f(w∗, z) ≤ f(w∗, z∗) ≤ f(w, z∗) , ∀w ∈ W , z ∈ Z .

If a saddle-point exists then strong max-min property holds
because:

sup
z∈Z

inf
w∈W

f(w, z) ≥ inf
w∈W

f(w, z∗) = f(w∗, z∗)

= sup
z∈Z

f(w∗, z) ≥ inf
w∈W

sup
z∈Z

f(w∗, z) .

Hence if strong duality holds, (x∗, µ∗) form a saddle-point of

the Lagrangian. Conversily, if the Lagrangian has a saddle-

point then strong duality holds.
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Game interpretation

Consider a game with two players:

1. Player 1 chooses w ∈ W ;

2. then Player 2 chooses z ∈ Z;

3. then Player 1 pays f(w, z) to Player 2.

Player 1 wants to minimize f , while Player 2 wants to
maximize it. If Player 1 chooses w, then Player 2 will
choose z ∈ Z to obtain the maximum payoff supz∈Z f(w, z).
Knowing this, Player must chose w to make this payoff
minimum, equal to:

inf
w∈W

sup
z∈Z

f(w, z) .
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Game interpretation (cont.)

If Player 2 plays first, following a similar argument, the
payoff will be:

sup
z∈Z

inf
w∈W

f(w, z) .

The general max-min inequality states that it is better for a

player to know his or her opponent’s choice before choos-

ing. The optimal duality gap is the advantage afforded to

the player who plays second. If there is a saddle-point, then

there is no advantage to the players of knowing their oppo-

nent’s choice.
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Optimality conditions
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Setting

We consider an equality and inequality constrained
optimization problem:

minimize f(x)

subject to hi(x) = 0 , i = 1, . . . ,m ,

gj(x) ≤ 0 , j = 1, . . . , r ,

making no assumption of f , g and h.

We will revisit the optimality conditions at the light of duality.
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Dual optimal pairs

Suppose that strong duality holds, x∗ is primal optimal,
(λ∗, µ∗) is dual optimal. Then we have:

f(x∗) = q (λ∗, µ∗)

= inf
x∈Rn







f(x) +

m
∑

i=1

λ∗
i hi(x) +

r
∑

j=1

µ∗
jgj(x)







≤ f(x∗) +
m
∑

i=1

λihi(x
∗) +

r
∑

j=1

µjgj(x
∗)

≤ f(x∗)

Hence both inequalities are in fact equalities.
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Complimentary slackness

The first equality shows that:

L (x∗, λ∗, µ∗) = inf
x∈Rn

L (x, λ∗, µ∗) ,

showing that x∗ minimizes the Lagrangian at (λ∗, µ∗). The
second equality shows that:

µjgj(x
∗) = 0 , j = 1, . . . , r .

This property is called complementary slackness:

the ith optimal Lagrange multiplier is zero unless the ith con-

straint is active at the optimum.
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KKT conditions

If the functions f, g, h are differentiable and there is no
duality gap, then we have seen that x∗ minimizes
L(x, λ∗, µ∗), therefore:

∇xL(x∗, λ∗, µ∗) = ∇f(x∗)+

m
∑

i=1

∇λ∗
i hi(x

∗)+

r
∑

j=1

∇µ∗
jgi(x

∗) = 0 .

Combined with the complimentary slackness and feasibility

conditions, we recover the KKT optimality conditions that x∗

must fulfill. λ∗ and µ∗ now have the interpretation of dual

optimal.

Nonlinear optimization c©2006 Jean-Philippe Vert, (Jean-Philippe.Vert@mines.org) – p.51/67



KKT conditions for convex problems

Suppose now that the problem is convex, i.e., f and g are
convex functions, h is affine, and let x∗ and (λ∗, µ∗) satisfy
the KKT conditions:

hi(x
∗) = 0 i = 1, . . . ,m

gj(x
∗) ≤ 0 j = 1, . . . , r

µ∗
j ≥ 0 j = 1, . . . , r

µ∗
jgj(x

∗) = 0 j = 1, . . . , r

∇f(x∗) +

m
∑

i=1

λ∗
i∇hi(x

∗) +

r
∑

j=1

µ∗
j∇gi(x

∗) = 0 ,

then x∗ and (λ∗, µ∗) are primal and dual optimal, with zero

duality gap ( the KKT conditions are sufficient in this case).
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Proof

The first 2 conditions show that x∗ is feasible. Because
µ∗ ≥ 0, the Lagrangian L(x, λ∗, µ∗) is convex in x. Therefore,
the last equality shows that x∗ minimized it, therefore:

q (λ∗, µ∗) = L (x∗, λ∗, µ∗)

= f(x∗) +
m
∑

i=1

λihi(x
∗) +

r
∑

j=1

µjgj(x
∗)

= f(x∗) ,

showing that x∗ and (λ∗, µ∗) have zero duality gap, and are

therefore primal and dual optimal.
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Summary

For any problem with differentiable objective and constraints:

If x and (λ, µ) satisfy f(x) = q(λ, µ) (which implies in particular

that x is optimal), then (x, λ, µ) satisfy KKT.

For a convex problem the converse is true: x and (λ, µ) satisfy

f(x) = q(λ, µ) if and only if they satisfy KKT.

For a convex problem where Slater’s condition holds, we know

that strong duality holds and that the dual optimal is attained,

so x is optimal if and only if there are (λ, µ) that together with x

satisfy the KKT conditions.

We showed previously without convexity assumption, if x is

optimal and regular, then there exists (λ, µ) that together with x

satisfy KKT. In that case, however, we do note have in general

f(x) = q(λ, µ) (otherwise strong duality would hold).
Nonlinear optimization c©2006 Jean-Philippe Vert, (Jean-Philippe.Vert@mines.org) – p.54/67



Example 1

Equality constrained quadratic minimization:

minimize
1

2
x>Px + q>x + r

subject to Ax = b ,

where P � 0. This problem is convex with no inequality
constraint, so the KKT conditions are necessary and
sufficient:

(

P A>

A 0

)(

x∗

λ∗

)

=

(

−q

b

)

This is a set of m + n equations with m + n variables.

Nonlinear optimization c©2006 Jean-Philippe Vert, (Jean-Philippe.Vert@mines.org) – p.55/67



Example 2

Water-filling problem (assuming αi ≥ 0):

minimize −
n
∑

i=1

log (αi + xi)

subject to x ≥ 0 , 1
>x = 1 .

By the KKT conditions for this convex problem that satisfies
Slater’s conditions, x is optimal iff x ≥ 0, 1

>x = 1, and there
exists λ ∈ R and µ ∈ R

n s.t.

µ ≥ 0 , µixi = 0 ,
1

xi + αi
+ µi = λ .
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Example 2

This problem is easily solved directly:

If λ < 1/αi: µi = 0 and xi = 1/λ − αi

If λ ≥ 1/αi: µi = λ − 1/αi and xi = 0

determine λ from 1
>x =

∑n
i=1 max {0, 1/λ − αi} = 1

Interpretation:

n patches; level of patch i
is at height αi

flood area with unit
amount of water

resulting level is 1/λ∗
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Perturbation and sensitivity analysis
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Unperturbed optimization problem

We consider the general problem:

minimize f(x)

subject to hi(x) = 0 , i = 1, . . . ,m ,

gj(x) ≤ 0 , j = 1, . . . , r ,

with optimal value f∗, and its dual:

maximize q(λ, µ)

subject to µ ≥ 0 .
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Perturbed problem and its dual

The perturbed problem is

minimize f(x)

subject to hi(x) = ui , i = 1, . . . ,m ,

gj(x) ≤ vj , j = 1, . . . , r ,

with optimal value f∗(u, v), and its dual:

maximize q(λ, µ) − u>λ − v>µ .

subject to µ ≥ 0 .
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Interpretation

When u = v = 0, this coincides with the original
problem: f∗(0, 0) = f∗.

When vj > 0, we have relaxed the jth inequality
constraint.

When vj < 0, we have tightened the jth inequality
constraing.

We are interested in informations about f∗(u, v) that can
be obtained from the solution of the unperturbed
problem and its dual.
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A global sensitivity result

Now we assume that:

Strong duality holds, i.e., f∗ = d∗.

The dual optimum is attained, i.e., there exist (λ∗, µ∗)
such that d∗ = q (λ∗, µ∗).

Applying weak duality to the perturbed problem we obtain

f∗(u, v) ≥ q (λ∗, µ∗) − u>λ∗ − v>µ∗

= f∗ − u>λ∗ − v>µ∗ .
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Global sensitivity interpretation

f∗(u, v) ≥ f∗ − u>λ∗ − v>µ∗ .

If µ∗
j

is large: f∗ increases greatly if we tighten the jth inequality constraint (vj < 0)

If µ∗
j

is small: f∗ does not decrease much if we loosen the jth inequality constraint
(vj > 0)

If λ∗i is large and positive: f∗ increases greatly if we decrease the ith equality
constraint (ui < 0)

If λ∗
i

is large and negative: f∗ increases greatly if we increase the ith equality
constraint (ui > 0)

If λ∗
i

is small and positive: f∗ does not decrease much if we increase the ith equality
constraint (ui > 0)

If λ∗i is small and negative: f∗ does not decrease much if we decrease the ith equality
constraint (ui < 0)
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Local sensitivity analysis

If (in addition) we assume that f∗(u, v) is differentiable at
(0, 0), then the following holds:

λ∗
i = −

∂f∗(0, 0)

∂ui
, µ∗

i = −
∂f∗(0, 0)

∂vi
,

In that case, the Lagrange multipliers are exactly the local

sensitivities of the optimal value with respect to constraint

perturbation. Tightening the ith inequality constraint a small

amount vj < 0 yields an increase in f∗ of approximately

−λ∗
jvj .
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Proof

For λ∗
i : from the global sensitivity result, it holds that:

t > 0 =⇒
f∗(tei, 0) − f∗(0, 0)

t
≥ −λ∗

i ,

and therefore
∂f∗(0, 0)

∂ui
≥ −λ∗

i .

A similar analysis with t < 0 yields ∂f∗(0, 0)/∂ui ≤ −λ∗
i , and

therefore:
∂f∗(0, 0)

∂ui
= −λ∗

i .

A similar proof holds for µj. �
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Shadow price interpretation

We assume the following problem is convex and Slater’s
condition holds:

minimize f(x)

subject to gj(x) ≤ vj , j = 1, . . . , r ,

x ∈ R
n determines how a firm operates.

The objective f is the cost, i.e., −f is the profit.

Each constraint gj(x) ≤ 0 is a limit on some resource
(labor, steel, warehouse space...)
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Shadow price interpretation (cont.)

−f∗(v) is how much more or less profit could be made if
more or less of each resource were made available to
the firm.

µ∗
j = −∂f∗(0, 0)/∂vj is how much more profit the firm

could make for a small increase in availability of
resource j.

µ∗
j is therefore the natural or equilibrium price for

resource j.
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