Nonlinear Optimization: Duality

 INSEAD, Spring 2006

 INSEAD, Spring 2006}

Jean-Philippe Vert
Ecole des Mines de Paris
Jean-Philippe.Vert@mines.org

Outline

- The Lagrange dual function
- Weak and strong duality
- Geometric interpretation
- Saddle-point interpretation
- Optimality conditions
- Perturbation and sensitivity analysis

The Lagrange dual function

Setting

We consider an equality and inequality constrained optimization problem:
minimize $f(x)$
subject to $\quad h_{i}(x)=0, \quad i=1, \ldots, m$,

$$
g_{j}(x) \leq 0, \quad j=1, \ldots, r,
$$

making no assumption of f, g and h.

We denote by f^{*} the optimal value of the decision function under the constraints, i.e., $f^{*}=f\left(x^{*}\right)$ if the minimum is reached at a global minimum x^{*}.

Lagrange dual function

- Remember the Lagrangian of this problem is the function $L: \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{r} \rightarrow \mathbb{R}$ defined by:

$$
L(x, \lambda, \mu)=f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x)+\sum_{j=1}^{r} \mu_{j} g_{j}(x) .
$$

- We define the Lagrange dual function $g: \mathbb{R}^{m} \times \mathbb{R}^{r} \rightarrow \mathbb{R}$ as:

$$
\begin{aligned}
q(\lambda, \mu) & =\inf _{x \in \mathbb{R}^{n}} L(x, \lambda, \mu) \\
& =\inf _{x \in \mathbb{R}^{n}}\left(f(x)+\sum_{i=1}^{m} \lambda_{i} h_{i}(x)+\sum_{j=1}^{r} \mu_{j} g_{j}(x)\right) .
\end{aligned}
$$

Properties of the dual function

When L in unbounded below in x, the dual function $q(\lambda, \mu)$ takes on the value $-\infty$. It has two important properties:

1. q is concave in (λ, μ), even if the original problem is not convex.
2. The dual function yields lower bounds on the optimal value f^{*} of the original problem when μ is nonnegative:

$$
q(\lambda, \mu) \leq f^{*}, \quad \forall \lambda \in \mathbb{R}^{m}, \forall \mu \in \mathbb{R}^{r}, \mu \geq 0 .
$$

Proof

1. For each x, the function $(\lambda, \mu) \mapsto L(x, \lambda, \mu)$ is linear, and therefore both convex and concave in (λ, μ). The pointwise minimum of concave functions is concave, therefore q is concave.
2. Let \bar{x} be any feasible point, i.e., $h(\bar{x})=0$ and $g(\bar{x}) \leq 0$. Then we have, for any λ and $\mu \geq 0$:

$$
\begin{gather*}
\sum_{i=1}^{m} \lambda_{i} h_{i}(\bar{x})+\sum_{i=1}^{r} \mu_{i} h_{i}(\bar{x}) \leq 0, \\
\Longrightarrow \quad L(\bar{x}, \lambda, \mu)=f(\bar{x})+\sum_{i=1}^{m} \lambda_{i} h_{i}(\bar{x})+\sum_{i=1}^{r} \mu_{i} h_{i}(\bar{x}) \leq f(\bar{x}), \\
\Longrightarrow \quad q(\lambda, \mu)=\inf _{x} L(x, \lambda, \mu) \leq L(\bar{x}, \lambda, \mu) \leq f(\bar{x}), \quad \forall \bar{x} .
\end{gather*}
$$

Proof complement

We used the fact that the poinwise maximum (resp. minimum) of convex (resp. concave) functions is itself convex (concave).
To prove this, suppose that for each $y \in \mathcal{A}$ the function $f(x, y)$ is convex in x, and let the function:

$$
g(x)=\sup _{y \in \mathcal{A}} f(x, y) .
$$

Then the domain of g is convex as an intersection of convex domains, and for any $\theta \in[0,1]$ and x_{1}, x_{2} in the domain of g :

$$
\begin{aligned}
g\left(\theta x_{1}+(1-\theta) x_{2}\right) & =\sup _{y \in \mathcal{A}} f\left(\theta x_{1}+(1-\theta) x_{2}, y\right) \\
& \leq \sup _{y \in \mathcal{A}}\left(\theta f\left(x_{1}, y\right)+(1-\theta) f\left(x_{2}, y\right)\right) \\
& \leq \sup _{y \in \mathcal{A}}\left(\theta f\left(x_{1}, y\right)\right)+\sup _{y \in \mathcal{A}}\left((1-\theta) f\left(x_{2}, y\right)\right) \\
& =\theta g\left(x_{1}\right)+(1-\theta) g\left(x_{2}\right)
\end{aligned}
$$

Illustration

Example 1

Least-squares solution of linear equations:

$$
\begin{aligned}
\text { minimize } & x^{\top} x \\
\text { subject to } & A x=b,
\end{aligned}
$$

where $A \in \mathbb{R}^{p \times n}$. There are p equality constraints, the Lagrangian with domain $\mathbb{R}^{n} \times \mathbb{R}^{p}$ is:

$$
L(x, \lambda)=x^{\top} x+\lambda^{\top}(A x-b) .
$$

To minimize L over x for λ fixed, we set the gradient equal to zero:

$$
\nabla_{x} L(x, \lambda)=2 x+A^{\top} \lambda=0 \quad \Longrightarrow \quad x=-\frac{1}{2} A^{\top} \lambda .
$$

Example 1 (cont.)

Plug it in L to obtain the dual function:

$$
q(\lambda)=L\left(-\frac{1}{2} A^{\top} \lambda, \lambda\right)=-\frac{1}{4} \lambda^{\top} A A^{\top} \lambda-b^{\top} \lambda
$$

q is a concave function of λ, and the following lower bound holds:

$$
f^{*} \geq-\frac{1}{4} \lambda^{\top} A A^{\top} \lambda-b^{\top} \lambda, \quad \forall \lambda \in \mathbb{R}^{p} .
$$

Example 2

Standard form LP:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x=b, \\
& x \geq 0
\end{aligned}
$$

where $A \in \mathbb{R}^{p \times n}$. There are p equality and n inequality constraints, the Lagrangian with domain $\mathbb{R}^{n} \times \mathbb{R}^{p} \times \mathbb{R}^{n}$ is:

$$
\begin{aligned}
L(x, \lambda, \mu) & =c^{\top} x+\lambda^{\top}(A x-b)-\mu^{\top} x \\
& =-\lambda^{\top} b+\left(c+A^{\top} \lambda-\mu\right)^{\top} x .
\end{aligned}
$$

Example 2 (cont.)

L is linear in x, and its minimum can only be 0 or $-\infty$:

$$
g(\lambda, \mu)=\inf _{x \in \mathbb{R}^{n}} L(x, \lambda, \mu)= \begin{cases}-\lambda^{\top} b & \text { if } A^{\top} \lambda-\mu+c=0 \\ -\infty & \text { otherwise } .\end{cases}
$$

g is linear on an affine subspace and therefore concave. The lower bound is non-trivial when λ and μ satisfy $\mu \geq 0$ and $A^{\top} \lambda-\mu+c=0$, giving the following bound:

$$
f^{*} \geq-\lambda^{\top} b \quad \text { if } \quad A^{\top} \lambda+c \geq 0 .
$$

Example 3

Inequality form LP:

$$
\begin{aligned}
\text { minimize } & c^{\top} x \\
\text { subject to } & A x \leq b,
\end{aligned}
$$

where $A \in \mathbb{R}^{p \times n}$. There are p inequality constraints, the Lagrangian with domain $\mathbb{R}^{n} \times \mathbb{R}^{p}$ is:

$$
\begin{aligned}
L(x, \mu) & =c^{\top} x+\mu^{\top}(A x-b) \\
& =-\mu^{\top} b+\left(A^{\top} \mu+c\right)^{\top} x .
\end{aligned}
$$

Example 3 (cont.)

L is linear in x, and its minimum can only be 0 or $-\infty$:

$$
g(\lambda, \mu)=\inf _{x \in \mathbb{R}^{n}} L(x, \lambda, \mu)= \begin{cases}-\mu^{\top} b & \text { if } A^{\top} \mu+c=0 \\ -\infty & \text { otherwise } .\end{cases}
$$

g is linear on an affine subspace and therefore concave. The lower bound is non-trivial when μ satisfies $\mu \geq 0$ and $A^{\top} \mu+c=0$, giving the following bound:

$$
f^{*} \geq-\mu^{\top} b \quad \text { if } \quad A^{\top} \mu+c=0 \quad \text { and } \mu \geq 0 .
$$

Example 4

Two-way partitioning:

$$
\begin{aligned}
\operatorname{minimize} & x^{\top} W x \\
\text { subject to } & x_{i}^{2}=1, \quad i=1, \ldots, n .
\end{aligned}
$$

This is a nonconvex problem, the feasible set contains 2^{n} discrete points ($x_{i}= \pm 1$). Interpretation : partition $(1, \ldots, n)$ in two sets, $W_{i j}$ is the cost of assigning i, j to the same set, $-W_{i j}$ the cost of assigning them to different sets. Lagrangian with domain $\mathbb{R}^{n} \times \mathbb{R}^{n}$:

$$
\begin{aligned}
L(x, \lambda) & =x^{\top} W x+\sum_{i=1}^{n} \lambda_{i}\left(x_{i}^{2}-1\right) \\
& =x^{\top}(W+\operatorname{diag}(\lambda)) x-\mathbf{1}^{\top} \lambda
\end{aligned}
$$

Example 4 (cont.)

For M symmetric, the minimum of $x^{\top} M x$ is 0 if all eigenvalues of M are nonnegative, $-\infty$ otherwise. We therefore get the following dual function:

$$
q(\lambda)= \begin{cases}-1^{\top} \lambda & \text { if } W+\operatorname{diag}(\lambda) \succeq 0 \\ -\infty & \text { otherwise } .\end{cases}
$$

The lower bound is non-trivial for λ such that $W+\operatorname{diag}(\lambda) \succeq 0$. This holds in particular for $\lambda=-\lambda_{\min }(W)$, resulting in:

$$
f^{*} \geq-\mathbf{1}^{\top} \lambda=n \lambda_{\min }(W) .
$$

Weak and strong duality

Dual problem

For the (primal) problem:

$$
\begin{array}{cl}
\operatorname{minimize} & f(x) \\
\text { subject to } & h(x)=0, \quad g(x) \leq 0,
\end{array}
$$

the Lagrange dual problem is:
maximize $\quad q(\lambda, \mu)$
subject to $\mu \geq 0$,
where q is the (concave) Lagrange dual function and λ and μ are the Lagrange multipliers associated to the constraints $h(x)=0$ and $g(x) \leq 0$.

Weak duality

Let d^{*} the optimal value of the Lagrange dual problem. Each $q(\lambda, \mu)$ is an lower bound for f^{*} and by definition d^{*} is the best lower bound that is obtained. The following weak duality inequality therefore always hold:

$$
d^{*} \leq f^{*} .
$$

This inequality holds when d^{*} or f^{*} are infinite. The difference $d^{*}-f^{*}$ is called the optimal duality gap of the original problem.

Application of weak duality

For any optimization problem, we always have:

- the dual problem is a convex optimization problem (="easy to solve")
- weak duality holds.

Hence solving the dual problem can provide useful lower bounds for the original problem, no matter how difficult it is. For example, solving the following SDP problem (using classical optimization toolbox) provides a non-trivial lower bound for the optimal two-way partitioning problem:

$$
\begin{array}{cl}
\operatorname{minimize} & 1^{\top} \lambda \\
\text { subject to } & W+\operatorname{diag}(\lambda) \succeq 0
\end{array}
$$

Strong duality

We say that strong duality holds if the optimal duality gap is zero, i.e.:

$$
d^{*}=f^{*} .
$$

- If strong duality holds, then the best lower bound that can be obtained from the Lagrange dual function is tight
- Strong duality does not hold for general nonlinear problems.
- It usually holds for convex problems.
- Conditions that ensure strong duality for convex problems are called constraint qualification.

Slater's constraint qualification

Strong duality holds for a convex problem:

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{j}(x) \leq 0, \quad j=1, \ldots, r, \\
& A x=b,
\end{aligned}
$$

if it is strictly feasible, i.e., there exists at least one feasible point that satisfies:

$$
g_{j}(x)<0, \quad j=1, \ldots, r, \quad A x=b .
$$

Remarks

- Slater's conditions also ensure that the maximum d^{*} (if $>-\infty)$ is attained, i.e., there exists a point $\left(\lambda^{*}, \mu^{*}\right)$ with

$$
q\left(\lambda^{*}, \mu^{*}\right)=d^{*}=f^{*}
$$

- They can be sharpened. For example, strict feasibility is not required for affine constraints.
- There exist many other types of constraint qualifications

Example 1

Least-squares solution of linear equations:

$$
\begin{aligned}
\operatorname{minimize} & x^{\top} x \\
\text { subject to } & A x=b,
\end{aligned}
$$

where $A \in \mathbb{R}^{p \times n}$. The dual problem is:

$$
\text { maximize } \quad-\frac{1}{4} \lambda^{\top} A A^{\top} \lambda-b^{\top} \lambda .
$$

- Slater's conditions holds if the primal is feasible, i.e., $b \in \operatorname{Im}(A)$. In that case strong duality holds.
- In fact strong duality also holds if $f^{*}=+\infty$: there exists z with $A^{\top} z=0$ and $b^{\top} z \neq 0$, so the dual is unbounded above and $d^{*}=+\infty=f^{*}$.

Example 2

Inequality form LP:

$$
\begin{aligned}
\operatorname{minimize} & c^{\top} x \\
\text { subject to } & A x \leq b
\end{aligned}
$$

Remember the dual function:

$$
g(\lambda, \mu)=\inf _{x \in \mathbb{R}^{n}} L(x, \lambda, \mu)= \begin{cases}-\mu^{\top} b & \text { if } A^{\top} \mu+c=0 \\ -\infty & \text { otherwise }\end{cases}
$$

Example 2 (cont.)

The dual problem is therefore equivalent to the following standard form LP:
minimize $b^{\top} \mu$
subject to $A^{\top} \mu+c=0, \quad \mu \geq 0$.

- From the weaker form of Slater's conditions, strong duality holds for any LP provided the primal problem is feasible.
- In fact, $f^{*}=d^{*}$ except when both the primal LP and the dual LP are infeasible.

Example 3

Quadratic program (QP):

minimize $x^{\top} P x$
subject to $A x \leq b$,

where we assume $P \succ 0$. There are p inequality constraints, the Lagrangian is:

$$
L(x, \mu)=x^{\top} P x+\mu^{\top}(A x-b) .
$$

This is a strictly convex function of x minimized for

$$
x^{*}(\mu)=-\frac{1}{2} P^{-1} A^{\top} \mu .
$$

Example 3

The dual function is therefore

$$
q(\mu)=-\frac{1}{4} \mu^{\top} A P^{-1} A^{\top} \mu-b^{\top} \mu
$$

and the dual problem:

$$
\begin{array}{ll}
\text { maximize } & -\frac{1}{4} \mu^{\top} A P^{-1} A^{\top} \mu-b^{\top} \mu \\
\text { subject to } & \mu \geq 0 .
\end{array}
$$

- By the weak form of Slater's conditions, strong duality holds if the primal problem is feasible: $f^{*}=d^{*}$.
- In fact, strong duality always holds, even if the primal is not feasible (in which case $f^{*}=d^{*}=+\infty$), cf LP case.

Example 4

The following QCQP problem is not convex if A symmetric but not positive semidefinite:

$$
\begin{aligned}
\operatorname{minimize} & x^{\top} A x+2 b^{\top} x \\
\text { subject to } & x^{\top} x \leq 1
\end{aligned}
$$

Its dual problem is the following SDP (left as exercice):

$$
\begin{array}{ll}
\text { maximize } & -t-\mu \\
\text { subject to } & \left(\begin{array}{cc}
A+\mu I & b \\
b^{\top} & t
\end{array}\right) \succ 0 .
\end{array}
$$

In fact, strong duality holds in this case (more generally for quadratic objective and one quadratic inequality constraint, provided Slater's condition holds, see Annex B. 1 in B\&V).

Geometric interpretation

Setting

We consider the simple problem

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & g(x) \leq 0,
\end{aligned}
$$

where $f, g: \mathbb{R}^{n} \rightarrow \mathbb{R}$. We will give a geometric interpretation of the weak and strong duality.

Optimal value f^{*}

We consider the subset of \mathbb{R}^{2} defined by:

$$
S=\left\{\left(g(x), f(x) \mid x \in \mathbb{R}^{n}\right)\right\} .
$$

The optimal value f^{*} is determined by:

$$
f^{*}=\inf \{t \mid(u, t) \in S, u \leq 0\} .
$$

Dual function $q(\mu)$

The dual function for $\mu \geq 0$ is:

$$
\begin{aligned}
q(\mu) & =\inf _{x \in \mathbb{R}^{n}}\{f(x)+\mu g(x)\} \\
& =\inf _{(u, t) \in S}\{\mu u+t\} .
\end{aligned}
$$

Dual optimal d^{*}

$$
\begin{aligned}
d^{*} & =\sup _{\mu \geq 0} q(\mu) \\
& =\sup _{\mu \geq 0} \inf _{(u, t) \in S}\{\mu u+t\}
\end{aligned}
$$

Weak duality

Strong duality

For convex problems with strictly feasible points:

$$
d^{*}=f^{*}
$$

Saddle-point interpretations

Setting

We consider a general optimization problem with inequality constraints:

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{j}(x) \leq 0, \quad j=1, \ldots, r .
\end{aligned}
$$

Its Lagrangian is

$$
L(x, \mu)=f(x)+\sum_{j=1}^{r} \mu_{j} g_{j}(x)
$$

Inf-sup form of f^{*}

We note that, for any $x \in \mathbb{R}^{n}$:

$$
\begin{aligned}
\sup _{\mu \geq 0} L(x, \mu) & =\sup _{\mu \geq 0}\left\{f(x)+\sum_{j=1}^{r} \mu_{j} g_{j}(x)\right\} \\
& = \begin{cases}f(x) & \text { if } g_{j}(x) \leq 0, \quad j=1, \ldots, r, \\
+\infty & \text { otherwise. }\end{cases}
\end{aligned}
$$

Therefore:

$$
f^{*}=\inf _{x \in \mathbb{R}^{n}} \sup _{\mu \geq 0} L(x, \mu) .
$$

Duaity

By definition we also have

$$
d^{*}=\sup _{\mu \geq 0} \inf _{x \in \mathbb{R}^{n}} L(x, \mu)
$$

The weak duality can thus be rewritten:

$$
\sup _{\mu \geq 0} \inf _{x \in \mathbb{R}^{n}} L(x, \mu) \leq \inf _{x \in \mathbb{R}^{n}} \sup _{\mu \geq 0} L(x, \mu)
$$

and the strong duality as the equality:

$$
\sup _{\mu \geq 0} \inf _{x \in \mathbb{R}^{n}} L(x, \mu)=\inf _{x \in \mathbb{R}^{n}} \sup _{\mu \geq 0} L(x, \mu)
$$

Max-min inequality

In fact the weak duality does not depend on any property of L, it is just an instance of the general max-min inequality that states that

$$
\sup _{z \in Z} \inf _{w \in W} f(w, z) \leq \inf _{w \in W} \sup _{z \in Z} f(w, z),
$$

for any $f: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}, W \subset \mathbb{R}^{n}$ and $Z \subset \mathbb{R}^{m}$. When equality holds, i.e.,

$$
\sup _{z \in Z} \inf _{w \in W} f(w, z)=\inf _{w \in W} \sup _{z \in Z} f(w, z),
$$

we say that f satisfies the strong max-min property. This holds only in special cases.

Proof of Max-min inequality

For any $\left(w_{0}, z_{0}\right) \in W \times Z$ we have by definition of the infimum in w :

$$
\inf _{w \in W} f\left(w, z_{0}\right) \leq f\left(w_{0}, z_{0}\right) .
$$

For w_{0} fixed, this holds for any choice of z_{0} so we can take the supremum in z_{0} on both sides to obtain:

$$
\sup _{z \in Z} \inf _{w \in W} f(w, z) \leq \sup _{z \in Z} f\left(w_{0}, z\right)
$$

The left-hand side is a constant, and the right-hand side is a function of w_{0}. The inequality is valid for any w_{0}, so we can take the infimum to obtain the result:

$$
\sup _{z \in Z} \inf _{w \in W} f(w, z) \leq \inf _{w \in W} \sup _{z \in Z} f(w, z)
$$

Saddle-point interpretation

A pair $\left(w^{*}, z^{*}\right) \in W \times Z$ is called a saddle-point for f if

$$
f\left(w^{*}, z\right) \leq f\left(w^{*}, z^{*}\right) \leq f\left(w, z^{*}\right), \quad \forall w \in W, z \in Z .
$$

If a saddle-point exists then strong max-min property holds because:

$$
\begin{aligned}
& \sup _{z \in Z} \inf _{w \in W} f(w, z) \geq \inf _{w \in W} f\left(w, z^{*}\right)=f\left(w^{*}, z^{*}\right) \\
&=\sup _{z \in Z} f\left(w^{*}, z\right) \geq \inf _{w \in W} \sup _{z \in Z} f\left(w^{*}, z\right) .
\end{aligned}
$$

Hence if strong duality holds, $\left(x^{*}, \mu^{*}\right)$ form a saddle-point of the Lagrangian. Conversily, if the Lagrangian has a saddlepoint then strong duality holds.

Game interpretation

Consider a game with two players:

1. Player 1 chooses $w \in W$;
2. then Player 2 chooses $z \in Z$;
3. then Player 1 pays $f(w, z)$ to Player 2.

Player 1 wants to minimize f, while Player 2 wants to maximize it. If Player 1 chooses w, then Player 2 will choose $z \in Z$ to obtain the maximum payoff $\sup _{z \in Z} f(w, z)$. Knowing this, Player must chose w to make this payoff minimum, equal to:

$$
\inf _{w \in W} \sup _{z \in Z} f(w, z) .
$$

Game interpretation (cont.)

If Player 2 plays first, following a similar argument, the payoff will be:

$$
\sup _{z \in Z} \inf _{w \in W} f(w, z) .
$$

The general max-min inequality states that it is better for a player to know his or her opponent's choice before choosing. The optimal duality gap is the advantage afforded to the player who plays second. If there is a saddle-point, then there is no advantage to the players of knowing their opponent's choice.

Optimality conditions

Setting

We consider an equality and inequality constrained optimization problem:

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & h_{i}(x)=0, \quad i=1, \ldots, m, \\
& g_{j}(x) \leq 0, \quad j=1, \ldots, r,
\end{aligned}
$$

making no assumption of f, g and h.
We will revisit the optimality conditions at the light of duality.

Dual optimal pairs

Suppose that strong duality holds, x^{*} is primal optimal, (λ^{*}, μ^{*}) is dual optimal. Then we have:

$$
\begin{aligned}
f\left(x^{*}\right) & =q\left(\lambda^{*}, \mu^{*}\right) \\
& =\inf _{x \in \mathbb{R}^{n}}\left\{f(x)+\sum_{i=1}^{m} \lambda_{i}^{*} h_{i}(x)+\sum_{j=1}^{r} \mu_{j}^{*} g_{j}(x)\right\} \\
& \leq f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i} h_{i}\left(x^{*}\right)+\sum_{j=1}^{r} \mu_{j} g_{j}\left(x^{*}\right) \\
& \leq f\left(x^{*}\right)
\end{aligned}
$$

Hence both inequalities are in fact equalities.

Complimentary slackness

The first equality shows that:

$$
L\left(x^{*}, \lambda^{*}, \mu^{*}\right)=\inf _{x \in \mathbb{R}^{n}} L\left(x, \lambda^{*}, \mu^{*}\right),
$$

showing that x^{*} minimizes the Lagrangian at $\left(\lambda^{*}, \mu^{*}\right)$. The second equality shows that:

$$
\mu_{j} g_{j}\left(x^{*}\right)=0, \quad j=1, \ldots, r .
$$

This property is called complementary slackness:
the ith optimal Lagrange multiplier is zero unless the i th constraint is active at the optimum.

KKT conditions

If the functions f, g, h are differentiable and there is no duality gap, then we have seen that x^{*} minimizes $L\left(x, \lambda^{*}, \mu^{*}\right)$, therefore:
$\nabla_{x} L\left(x^{*}, \lambda^{*}, \mu^{*}\right)=\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \nabla \lambda_{i}^{*} h_{i}\left(x^{*}\right)+\sum_{j=1}^{r} \nabla \mu_{j}^{*} g_{i}\left(x^{*}\right)=0$.
Combined with the complimentary slackness and feasibility conditions, we recover the KKT optimality conditions that x^{*} must fulfill. λ^{*} and μ^{*} now have the interpretation of dual optimal.

KKT conditions for convex problems

Suppose now that the problem is convex, i.e., f and g are convex functions, h is affine, and let x^{*} and (λ^{*}, μ^{*}) satisfy the KKT conditions:

$$
\begin{aligned}
h_{i}\left(x^{*}\right) & =0 & & i=1, \ldots, m \\
g_{j}\left(x^{*}\right) & \leq 0 & & j=1, \ldots, r \\
\mu_{j}^{*} & \geq 0 & & j=1, \ldots, r \\
\mu_{j}^{*} g_{j}\left(x^{*}\right) & =0 & & j=1, \ldots, r \\
\nabla f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} \nabla h_{i}\left(x^{*}\right)+\sum_{j=1}^{r} \mu_{j}^{*} \nabla g_{i}\left(x^{*}\right) & =0, & &
\end{aligned}
$$

then x^{*} and $\left(\lambda^{*}, \mu^{*}\right)$ are primal and dual optimal, with zero duality gap (the KKT conditions are sufficient in this case).

Proof

The first 2 conditions show that x^{*} is feasible. Because $\mu^{*} \geq 0$, the Lagrangian $L\left(x, \lambda^{*}, \mu^{*}\right)$ is convex in x. Therefore, the last equality shows that x^{*} minimized it, therefore:

$$
\begin{aligned}
q\left(\lambda^{*}, \mu^{*}\right) & =L\left(x^{*}, \lambda^{*}, \mu^{*}\right) \\
& =f\left(x^{*}\right)+\sum_{i=1}^{m} \lambda_{i} h_{i}\left(x^{*}\right)+\sum_{j=1}^{r} \mu_{j} g_{j}\left(x^{*}\right) \\
& =f\left(x^{*}\right),
\end{aligned}
$$

showing that x^{*} and $\left(\lambda^{*}, \mu^{*}\right)$ have zero duality gap, and are therefore primal and dual optimal.

Summary

For any problem with differentiable objective and constraints:

- If x and (λ, μ) satisfy $f(x)=q(\lambda, \mu)$ (which implies in particular that x is optimal), then (x, λ, μ) satisfy KKT.
- For a convex problem the converse is true: x and (λ, μ) satisfy $f(x)=q(\lambda, \mu)$ if and only if they satisfy KKT.
- For a convex problem where Slater's condition holds, we know that strong duality holds and that the dual optimal is attained, so x is optimal if and only if there are $(\lambda, \mu$) that together with x satisfy the KKT conditions.
- We showed previously without convexity assumption, if x is optimal and regular, then there exists (λ, μ) that together with x satisfy KKT. In that case, however, we do note have in general $f(x)=q(\lambda, \mu)$ (otherwise strong duality would hold).

Example 1

Equality constrained quadratic minimization:

$$
\begin{aligned}
\text { minimize } & \frac{1}{2} x^{\top} P x+q^{\top} x+r \\
\text { subject to } & A x=b,
\end{aligned}
$$

where $P \succeq 0$. This problem is convex with no inequality constraint, so the KKT conditions are necessary and sufficient:

$$
\left(\begin{array}{cc}
P & A^{\top} \\
A & 0
\end{array}\right)\binom{x^{*}}{\lambda^{*}}=\binom{-q}{b}
$$

This is a set of $m+n$ equations with $m+n$ variables.

Example 2

Water-filling problem (assuming $\alpha_{i} \geq 0$):

$$
\begin{aligned}
\text { minimize } & -\sum_{i=1}^{n} \log \left(\alpha_{i}+x_{i}\right) \\
\text { subject to } & x \geq 0, \quad \mathbf{1}^{\top} x=1 .
\end{aligned}
$$

By the KKT conditions for this convex problem that satisfies Slater's conditions, x is optimal iff $x \geq 0, \mathbf{1}^{\top} x=1$, and there exists $\lambda \in \mathbb{R}$ and $\mu \in \mathbb{R}^{n}$ s.t.

$$
\mu \geq 0, \quad \mu_{i} x_{i}=0, \quad \frac{1}{x_{i}+\alpha_{i}}+\mu_{i}=\lambda .
$$

Example 2

This problem is easily solved directly:

- If $\lambda<1 / \alpha_{i}: \mu_{i}=0$ and $x_{i}=1 / \lambda-\alpha_{i}$
- If $\lambda \geq 1 / \alpha_{i}: \mu_{i}=\lambda-1 / \alpha_{i}$ and $x_{i}=0$
- determine λ from $\mathbf{1}^{\top} x=\sum_{i=1}^{n} \max \left\{0,1 / \lambda-\alpha_{i}\right\}=1$

Interpretation:

- n patches; level of patch i is at height α_{i}
- flood area with unit amount of water
- resulting level is $1 / \lambda^{*}$

Perturbation and sensitivity analysis

Unperturbed optimization problem

We consider the general problem:

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & h_{i}(x)=0, \quad i=1, \ldots, m, \\
& g_{j}(x) \leq 0, \quad j=1, \ldots, r,
\end{aligned}
$$

with optimal value f^{*}, and its dual:

$$
\begin{array}{ll}
\text { maximize } & q(\lambda, \mu) \\
\text { subject to } & \mu \geq 0 .
\end{array}
$$

Perturbed problem and its dual

The perturbed problem is

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & h_{i}(x)=u_{i}, \quad i=1, \ldots, m, \\
& g_{j}(x) \leq v_{j}, \quad j=1, \ldots, r,
\end{aligned}
$$

with optimal value $f^{*}(u, v)$, and its dual:
maximize $q(\lambda, \mu)-u^{\top} \lambda-v^{\top} \mu$.
subject to $\mu \geq 0$.

Interpretation

- When $u=v=0$, this coincides with the original problem: $f^{*}(0,0)=f^{*}$.
- When $v_{j}>0$, we have relaxed the j th inequality constraint.
- When $v_{j}<0$, we have tightened the j th inequality constraing.
- We are interested in informations about $f^{*}(u, v)$ that can be obtained from the solution of the unperturbed problem and its dual.

A global sensitivity result

Now we assume that:

- Strong duality holds, i.e., $f^{*}=d^{*}$.
- The dual optimum is attained, i.e., there exist $\left(\lambda^{*}, \mu^{*}\right)$ such that $d^{*}=q\left(\lambda^{*}, \mu^{*}\right)$.
Applying weak duality to the perturbed problem we obtain

$$
\begin{aligned}
f^{*}(u, v) & \geq q\left(\lambda^{*}, \mu^{*}\right)-u^{\top} \lambda^{*}-v^{\top} \mu^{*} \\
& =f^{*}-u^{\top} \lambda^{*}-v^{\top} \mu^{*} .
\end{aligned}
$$

Global sensitivity interpretation

$$
f^{*}(u, v) \geq f^{*}-u^{\top} \lambda^{*}-v^{\top} \mu^{*} .
$$

- If μ_{j}^{*} is large: f^{*} increases greatly if we tighten the j th inequality constraint $\left(v_{j}<0\right)$
- If μ_{j}^{*} is small: f^{*} does not decrease much if we loosen the j th inequality constraint $\left(v_{j}>0\right)$
- If λ_{i}^{*} is large and positive: f^{*} increases greatly if we decrease the i th equality constraint ($u_{i}<0$)
- If λ_{i}^{*} is large and negative: f^{*} increases greatly if we increase the i th equality constraint ($u_{i}>0$)
- If λ_{i}^{*} is small and positive: f^{*} does not decrease much if we increase the i th equality constraint ($u_{i}>0$)
- If λ_{i}^{*} is small and negative: f^{*} does not decrease much if we decrease the i th equality constraint ($u_{i}<0$)

Local sensitivity analysis

If (in addition) we assume that $f^{*}(u, v)$ is differentiable at $(0,0)$, then the following holds:

$$
\lambda_{i}^{*}=-\frac{\partial f^{*}(0,0)}{\partial u_{i}}, \quad \mu_{i}^{*}=-\frac{\partial f^{*}(0,0)}{\partial v_{i}},
$$

In that case, the Lagrange multipliers are exactly the local sensitivities of the optimal value with respect to constraint perturbation. Tightening the i th inequality constraint a small amount $v_{j}<0$ yields an increase in f^{*} of approximately $-\lambda_{j}^{*} v_{j}$.

Proof

For λ_{i}^{*} : from the global sensitivity result, it holds that:

$$
t>0 \Longrightarrow \frac{f^{*}\left(t e_{i}, 0\right)-f^{*}(0,0)}{t} \geq-\lambda_{i}^{*},
$$

and therefore

$$
\frac{\partial f^{*}(0,0)}{\partial u_{i}} \geq-\lambda_{i}^{*} .
$$

A similar analysis with $t<0$ yields $\partial f^{*}(0,0) / \partial u_{i} \leq-\lambda_{i}^{*}$, and therefore:

$$
\frac{\partial f^{*}(0,0)}{\partial u_{i}}=-\lambda_{i}^{*} .
$$

A similar proof holds for μ_{j}.

Shadow price interpretation

We assume the following problem is convex and Slater's condition holds:

$$
\begin{aligned}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{j}(x) \leq v_{j}, \quad j=1, \ldots, r,
\end{aligned}
$$

- $x \in \mathbb{R}^{n}$ determines how a firm operates.
- The objective f is the cost, i.e., $-f$ is the profit.
- Each constraint $g_{j}(x) \leq 0$ is a limit on some resource (labor, steel, warehouse space...)

Shadow price interpretation (cont.)

- $-f^{*}(v)$ is how much more or less profit could be made if more or less of each resource were made available to the firm.
- $\mu_{j}^{*}=-\partial f^{*}(0,0) / \partial v_{j}$ is how much more profit the firm could make for a small increase in availability of resource j.
- μ_{j}^{*} is therefore the natural or equilibrium price for resource j.

