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1 Presentation

The goal of this exam is to design and test an automatic spam filter using
convex programming. In order to design such a filter, you will design func-
tion that can automatically predict if a given email is a spam or not. The
functions will be automatically optimized to be as accurate as possible using
a dataset of known undesirable and normal emails.

Each email is a text. In order to process them easily, each text is con-
verted into a vector of positive scalar of dimension 57. Most of these 57
features are the frequencies of particular words that have been observed to
be important to decide whether an e-mail is a spam or not, e.g., words like
credit, free or meeting1.

In order to design your spam filter you can use a set of 500 emails
converted into 57-dimensional vectors, together with their classes +1 (spam)
or −1 (non-spam). These data are avaible in the respective variables xtrain
and ytrain. Once you have designed a nice filter, you can test it on a set
of 2000 additional e-mails stored in the variable xtest, and compare your
prediction with the correct class stored in the variable ytest. All data are
stored in the file

http://cg.ensmp.fr/~vert/teaching/2006insead/exam/spamdata.mat

You can load them in MATLAB by the command:

>> load spamdata.mat

1A precise description is avaible at http://www.ics.uci.edu/ mlearn/databases/spambase/spambase names
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2 Building the filter: general strategy

Let x1, . . . , xn be the n = 500 vectors of dimension p = 57 available for
training. We will investigate filters that compute a score for each vector x
by an affine function:

f(x) = w>x + b,

and predict that the e-mail represented by the vector x is a spam if f(x) > 0,
or is a normal e-mail if f(x) ≤ 0. We denote by y1, . . . , yn the spam indicator
variable, i.e., yi = 1 if xi is a spam, yi = −1 otherwise. The function f is
defined by the vector w and the scalar b which we must set by fitting the
training set of e-mails according to the following principles:

• f(x) should be positive if y = +1, negative if y = −1. This means
that in all cases yf(x) should be ”as positive as possiible”.

• Because the value of f(x) can be arbitrarily increased by changing the
scale of w, we must control this scaling, e.g., make sure ||w|| is not too
large.

We will therefore investigate below filters f based on the minimization of
the function:

min
w,b

1
n

n∑
i=1

L(yi(w>xi + b)) + γ||w||2 (1)

where L is usually a decreasing function and γ > 0 is a parameter. This
formulation will find a trade-off between the first term (increasing yf(x) on
the training set) and the second one (making sure that f is not arbitrarily
large because ||w|| is large). Different functions L will lead to different
algorithms.

3 Hard-margin support vector machines

Here we take:

L(u) =

{
+∞ if u < 1,

0 otherwise.

3.1. In this case rewrite (1) as a quadratic program (QP). When is it feasi-
ble? (give a geometric interpretation)
3.2. Write the dual problem. Does strong duality hold?
3.3. Write KKT conditions. Can you give an interpretation to the comple-
mentary slackness conditions?
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3.4. How to you recover w and b if you solve the dual problem?
3.5. Implement the primal problem and solve it on the training set of 500
emails. What do you observe?
3.6. Implement the dual problem and solve it on the training set of 500
emails. What do you observe?
3.7.. Repeat 3.4. and 3.5. on the first 50 examples of the training set only.
What do you observe?

4 Soft-margin support vector machines

Here we take:

L(u) =

{
1− u if u < 1,

0 otherwise.

4.1. In this case rewrite (1) as a quadratic program (QP). Is it feasible?
(hint: introduce slack variables)
4.2. Write the dual problem. Does strong duality hold?
4.3. Write KKT conditions. Can you give an interpretation to the comple-
mentary slackness conditions?
4.4. How do you recover w and b from a solution of the dual?
4.5. Implement the primal and the dual, optimize them on the training set
for γ = 10−3. Compare w and b obtained by the primal and the dual.
4.4. Optimize the primal problem on the training set, and plot the curves
of percentage of errors on the training and on the test set as a function of
log2(γ), for log2(γ) in the range [−15 : 5]. What do you observe?

5 Regularized logistic regression

Here we take:
L(u) = log(1 + eu)− u

5.1. Show that (1) is then an unconstrained convex problem with smooth
(twice differentiable) objective function.
5.2. Compute the gradient and the Hessian of the objective function.
5.2. Implement the problem and plot the curves of training and testing
errors as a function of log2(γ), for log2(γ) in the range [−15 : 5]). What do
you observe? (hint: check the function log(sum(exp())) in the CVX user’s
guide).
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