Differentiable ranking and sorting

Jean-Philippe Vert

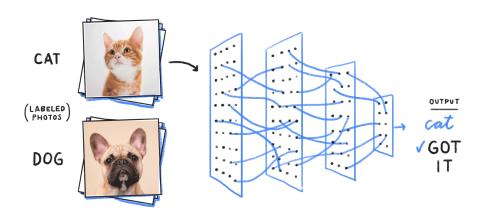
Outline

- Motivation
- 2 Embed
 - SUQUAN embedding
 - Kendall embedding
- 3 Differentiate
- Extensions
 - Differentiable quantiles
 - Matrix factorization with quantile normalization
 - Smoothing by regularization
 - Smoothing by perturbation
 - Extensions to other discrete problems
- Conclusion

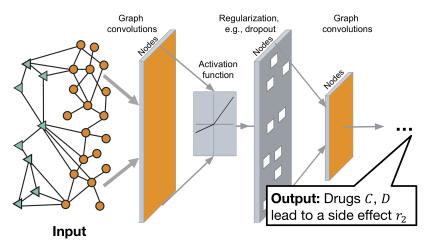
Outline

- Motivation
- 2 Embed
 - SUQUAN embedding
 - Kendall embedding
- 3 Differentiate
- 4 Extensions
 - Differentiable quantiles
 - Matrix factorization with quantile normalization
 - Smoothing by regularization
 - Smoothing by perturbation
 - Extensions to other discrete problems
- 6 Conclusion

Differentiable programming



Going beyond vectors (strings, graphs...)



http://snap.stanford.edu/decagon

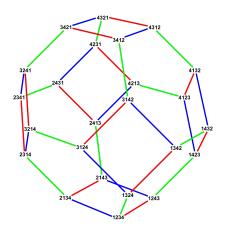
What about rankings / permutations?

Some data are permutations (input, output)

Some operations may involve ranking

(histogram equalization, quantile normalization...)

More formally



Permutation: a bijection

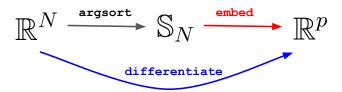
$$\sigma: [\mathbf{1}, \mathbf{N}] \to [\mathbf{1}, \mathbf{N}]$$

- $\sigma(i)$ = rank of item i
- Composition

$$(\sigma_1\sigma_2)(i) = \sigma_1(\sigma_2(i))$$

- S_N the symmetric group
- $|\mathbb{S}_N| = N!$

Ingredients

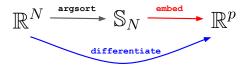


- Embed
 - To define / optimize $f_{\theta}(\sigma) = g_{\theta}(\mathsf{embed}(\sigma))$ for $\sigma \in \mathbb{S}_N$
 - E.g., σ given as input, or output
- ② Differentiate
 - To define / optimize $h_{\theta}(x) = f_{\theta}(\operatorname{argsort}(x))$ for $x \in \mathbb{R}^n$
 - E.g., normalization layer or rank-based loss

Outline

- Motivation
- 2 Embed
 - SUQUAN embedding
 - Kendall embedding
- 3 Differentiate
- 4 Extensions
 - Differentiable quantiles
 - Matrix factorization with quantile normalization
 - Smoothing by regularization
 - Smoothing by perturbation
 - Extensions to other discrete problems
- 6 Conclusion

How to define an embedding $\Phi : \mathbb{S}_N \to \mathbb{R}^p$?



- Should encode interesting features
- Should lead to efficient algorithms

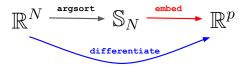
Geometry should not change by arbitrary renaming of items, i.e.,

$$\forall \sigma_1, \sigma_2, \pi \in \mathbb{S}_N, \quad \|\Phi(\sigma_1 \pi) - \Phi(\sigma_2 \pi)\| = \|\Phi(\sigma_1) - \Phi(\sigma_2)\|$$

Equivalently, the kernel should be translation-invariant

$$\forall \sigma_1, \sigma_2 \in \mathbb{S}_N, \quad K(\sigma_1, \sigma_2) = \langle \Phi(\sigma_1), \Phi(\sigma_2) \rangle = \kappa(\sigma_1 \sigma_2^{-1})$$

How to define an embedding $\Phi : \mathbb{S}_N \to \mathbb{R}^p$?



- Should encode interesting features
- Should lead to efficient algorithms

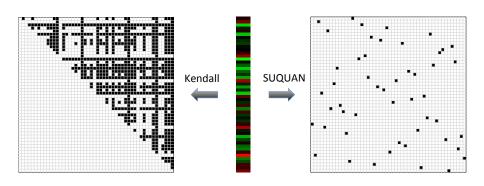
Geometry should not change by arbitrary renaming of items, i.e.,

$$\forall \sigma_1, \sigma_2, \pi \in \mathbb{S}_N, \quad \|\Phi(\sigma_1 \pi) - \Phi(\sigma_2 \pi)\| = \|\Phi(\sigma_1) - \Phi(\sigma_2)\|$$

Equivalently, the kernel should be translation-invariant

$$\forall \sigma_1, \sigma_2 \in \mathbb{S}_N, \quad K(\sigma_1, \sigma_2) = \langle \Phi(\sigma_1), \Phi(\sigma_2) \rangle = \kappa(\sigma_1 \sigma_2^{-1})$$

Some attempts

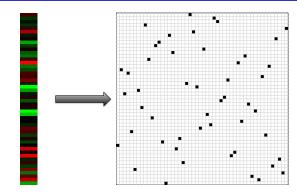


(Jiao and Vert, 2015, 2017, 2018; Le Morvan and Vert, 2017)

Outline

- Motivation
- 2 Embed
 - SUQUAN embedding
 - Kendall embedding
- 3 Differentiate
- 4 Extensions
 - Differentiable quantiles
 - Matrix factorization with quantile normalization
 - Smoothing by regularization
 - Smoothing by perturbation
 - Extensions to other discrete problems
- 6 Conclusion

SUQUAN embedding (Le Morvan and Vert, 2017)



• Let $\Phi(\sigma) = \Pi_{\sigma}$ the permutation representation (Serres, 1977):

$$[\Pi_{\sigma}]_{ij} = \begin{cases} 1 & \text{if } \sigma(j) = i, \\ 0 & \text{otherwise.} \end{cases}$$

Right invariant:

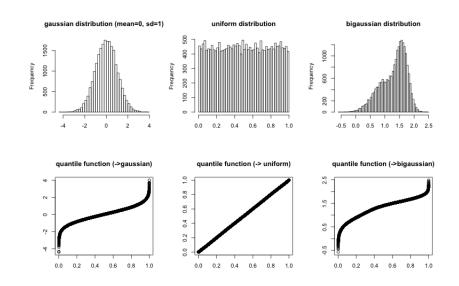
$$<\Phi(\sigma), \Phi(\sigma')> = \operatorname{Tr}\left(\Pi_{\sigma}\Pi_{\sigma'}^{\top}\right) = \operatorname{Tr}\left(\Pi_{\sigma}\Pi_{\sigma'}^{-1}\right) = \operatorname{Tr}\left(\Pi_{\sigma}\Pi_{\sigma'^{-1}}\right) = \operatorname{Tr}\left(\Pi_{\sigma\sigma'^{-1}}\right)$$

Link with quantile normalization (QN)

- Take $\sigma(x) = \operatorname{rank}(x)$ with $x \in \mathbb{R}^N$
- Fix a target quantile $f \in \mathbb{R}^n$
- "Keep the order of x, change the values to f"

$$[\Psi_f(x)]_i = f_{\sigma(x)(i)} \quad \Leftrightarrow \quad \Psi_f(x) = \prod_{\sigma(x)}^{\top} f$$

How to choose a "good" target distribution?



Supervised QN (SUQUAN)

Standard QN:

- Fix f arbitrarily
- **2** QN all samples to get $\Psi_f(x_1), \dots, \Psi_f(x_N)$
- Learn a model on normalized data, e.g.:

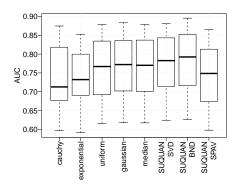
$$\min_{\theta} \left\{ \frac{1}{N} \sum_{i=1}^{N} \ell_i \left(f_{\theta}(\Psi_f(x_i)) \right) \right\}$$

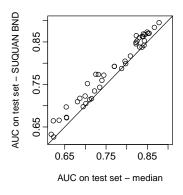
SUQUAN: jointly learn *f* and the model:

$$\min_{\boldsymbol{\theta}, \boldsymbol{f}} \left\{ \frac{1}{N} \sum_{i=1}^{N} \ell_i \left(f_{\boldsymbol{\theta}}(\Psi_{\boldsymbol{f}}(\boldsymbol{x}_i)) \right) \right\} = \min_{\boldsymbol{\theta}, \boldsymbol{f}} \left\{ \frac{1}{N} \sum_{i=1}^{N} \ell_i \left(f_{\boldsymbol{\theta}}(\Pi_{\sigma(\boldsymbol{x}_i)}^{\top} \boldsymbol{f}) \right) \right\}$$

Experiments: CIFAR-10

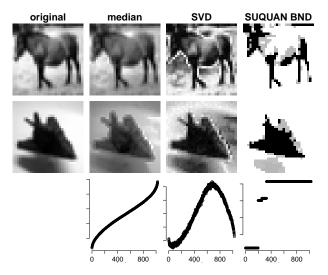
- Image classification into 10 classes (45 binary problems)
- N = 5,000 per class, p = 1,024 pixels
- Linear logistic regression on raw pixels



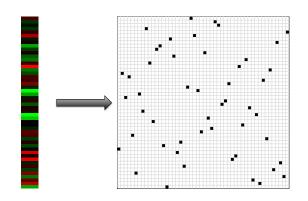


Experiments: CIFAR-10

- Example: horse vs. plane
- Different methods learn different quantile functions



Limits of the SUQUAN embedding

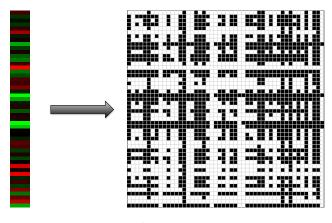


- Linear model on $\Phi(\sigma) = \Pi_{\sigma} \in \mathbb{R}^{N \times N}$
- Captures first-order information of the form "i-th feature ranked at the j-th position"
- What about higher-order information such as "feature i larger than feature j"?

Outline

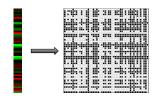
- Motivation
- 2 Embed
 - SUQUAN embedding
 - Kendall embedding
- Oifferentiate
- 4 Extensions
 - Differentiable quantiles
 - Matrix factorization with quantile normalization
 - Smoothing by regularization
 - Smoothing by perturbation
 - Extensions to other discrete problems
- 6 Conclusion

The Kendall embedding (Jiao and Vert, 2015, 2017)



$$\Phi_{i,j}(\sigma) = \begin{cases} 1 & \text{if } \sigma(i) < \sigma(j), \\ 0 & \text{otherwise.} \end{cases}$$

Geometry of the embedding



For any two permutations $\sigma, \sigma' \in \mathbb{S}_N$:

Inner product

$$\Phi(\sigma)^{\top}\Phi(\sigma') = \sum_{1 \leq i \neq j \leq n} \mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)} = n_c(\sigma, \sigma')$$

 n_c = number of concordant pairs

Distance

$$\|\Phi(\sigma) - \Phi(\sigma')\|^2 = \sum_{1 \le i, i \le n} (\mathbb{1}_{\sigma(i) < \sigma(j)} - \mathbb{1}_{\sigma'(i) < \sigma'(j)})^2 = 2n_d(\sigma, \sigma')$$

 n_d = number of discordant pairs

Kendall and Mallows kernels

The Kendall kernel is

$$K_{\tau}(\sigma, \sigma') = n_{c}(\sigma, \sigma')$$

The Mallows kernel is

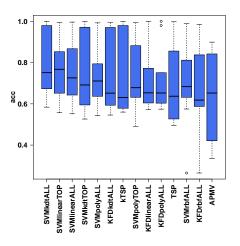
$$\forall \lambda \geq 0 \quad K_{M}^{\lambda}(\sigma, \sigma') = e^{-\lambda n_{d}(\sigma, \sigma')}$$

Theorem (Jiao and Vert, 2015, 2017)

The Kendall and Mallows kernels are positive definite right-invariant kernels and can be evaluated in $O(N \log N)$ time

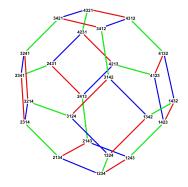
Kernel trick useful with few samples in large dimensions

Applications



Average performance on 10 microarray classification problems (Jiao and Vert, 2017).

Remark



Cayley graph of \mathbb{S}_4

- Kondor and Barbarosa (2010) proposed the diffusion kernel on the Cayley graph of the symmetric group generated by adjacent transpositions.
- Computationally intensive $(O(N^{2N}))$
- Mallows kernel is written as

$$K_{M}^{\lambda}(\sigma,\sigma')=e^{-\lambda n_{d}(\sigma,\sigma')}$$
,

where $n_d(\sigma, \sigma')$ is the shortest path distance on the Cayley graph.

- It can be computed in $O(N \log N)$
- Extension to weighted Kendall kernel (Jiao and Vert, 2018)

Remark

The SUQUAN and Kendall representations are two particular cases of the more general

Bochner's theorem

An embedding $\Phi: \mathbb{S}_N \to \mathbb{R}^p$ defines a right-invariant kernel $K(\sigma_1, \sigma_2) = \Phi(\sigma_1)^T \Phi(\sigma_2)$ if and only there exists $\phi: \mathbb{S}_N \to \mathbb{R}$ such that

$$\forall \sigma_1, \sigma_2 \in \mathbb{S}_N, \quad K(\sigma_1, \sigma_2) = \phi(\sigma_2^{-1}\sigma_1)$$

and

$$\forall \lambda \in \Lambda$$
, $\hat{\phi}(\rho_{\lambda}) \succeq 0$

where for any $f: \mathbb{S}_N \to \mathbb{R}$, the Fourier transform of f is

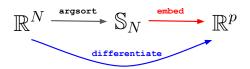
$$\forall \lambda \in \Lambda, \quad \hat{f}(\rho_{\lambda}) = \sum_{\sigma \in \mathbb{S}_{+}} f(\sigma) \rho_{\lambda}(\sigma)$$

with $\{\rho_{\lambda}:\lambda\in\Lambda\}$ the irreductible representations of the symmetric group.

Outline

- Motivation
- 2 Embed
 - SUQUAN embedding
 - Kendall embedding
- Oifferentiate
- 4 Extensions
 - Differentiable quantiles
 - Matrix factorization with quantile normalization
 - Smoothing by regularization
 - Smoothing by perturbation
 - Extensions to other discrete problems
- 6 Conclusion

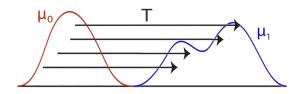
The problem



- $x \in \mathbb{R}^N \mapsto \operatorname{argsort}(x) \in \mathbb{S}_N$ is piecewise constant
- Derivative a.e. equal to zero
- Same for $x \mapsto \Phi(\operatorname{argsort}(x))$, for any embedding Φ

How to create a differentiable approximation to $\Phi(argsort(x))$?

Optimal transport (OT)

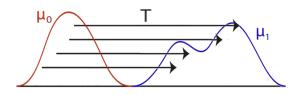


Given a cost matrix $C \in \mathbb{R}^{n \times n}$ (where C_{ij} is the cost of moving the *i*-th point to the *j*-th location), OT solves

$$\min_{P\in B_n}\langle P,C\rangle$$

where $B_n = \left\{ P \in \mathbb{R}_+^{n \times n} \, | \, P \mathbf{1}_n = P^\top \mathbf{1}_n = \mathbf{1}_n \right\}$ is the Birkhoff polytope.

Variational formulation of SUQUAN embedding



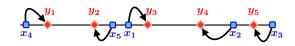
Lemma

Take

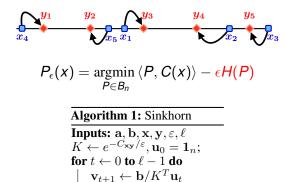
- $y \in \mathbb{R}^n$ with $y_1 < \ldots < y_n$,
- $h \in C^2(\mathbb{R}^2)$ and $\partial^2 h/\partial x \partial y > 0$ (eg, $h(a,b) = (b-a)^2$).

For any $x \in \mathbb{R}^n$, let $C(x) \in \mathbb{R}^{n \times n}$ given by $C(x)_{ij} = h(y_i, x_j)$. Then

$$\underset{P \in B_n}{\operatorname{argmin}} \langle P, C(x) \rangle = \Pi_{\sigma(x)}.$$



Entropic regularization (Cuturi et al., 2019)



 $\mathbf{u}_{t+1} \leftarrow \mathbf{a}/K\mathbf{v}_{t+1}$

• $P = \text{diag}(u_{\ell})K\text{diag}(v_{\ell})$ is the differentiable approximate permutation matrix of the input vector x

Result: $\mathbf{u}_{\ell}, K, \mathbf{v}_{\ell}$

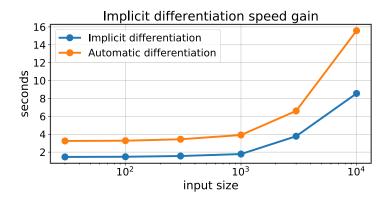
end

Complexity O(nmℓ), GPU-friendly

Derivatives

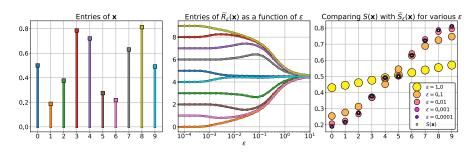
$\nabla P_{\epsilon}(x)$ can be computed by

- Automatic differentiation of Sinkhorn iterations (Cuturi et al., 2019)
- Implicit differentiation (Cuturi et al., 2020)



Differentiable sort, argsort and rank

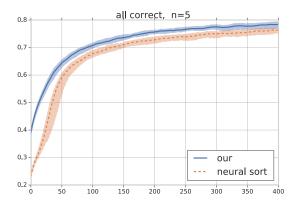
$$S_{\epsilon}(x) = P_{\epsilon}(x)x$$
 $R_{\epsilon}(x) = P_{\epsilon}(x)^{\top}(1, 2, ..., n)^{\top}$



https://github.com/google-research/google-research/tree/master/soft_sort

Application: learning to rank

Task: Sort 5 numbers between 0000 and 9999 (concatenation of MNIST digits) (Grover et al, 2019)



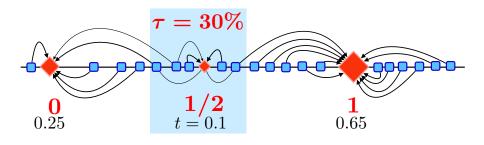
Outline

- Motivation
- 2 Embed
 - SUQUAN embedding
 - Kendall embedding
- 3 Differentiate
- Extensions
 - Differentiable quantiles
 - Matrix factorization with quantile normalization
 - Smoothing by regularization
 - Smoothing by perturbation
 - Extensions to other discrete problems
- 6 Conclusion

- Motivation
- 2 Embed
 - SUQUAN embedding
 - Kendall embedding
- 3 Differentiate
- Extensions
 - Differentiable quantiles
 - Matrix factorization with quantile normalization
 - Smoothing by regularization
 - Smoothing by perturbation
 - Extensions to other discrete problems
- 6 Conclusion

Soft quantization and soft quantiles

- Take $C(x) \in \mathbb{R}^{m \times n}$ with m < n and $B_n = \left\{ P \in \mathbb{R}_+^{m \times n} \mid P \mathbf{1}_n = \mathbf{b}, P^\top \mathbf{1}_m = \mathbf{1}_n \right\}$
- E.g., m = 3, $\mathbf{y} = (0, 0.5, 1)$, $\mathbf{b} = (\tau t/2, t, \tau + t/2)$
- Overall complexity O(nmℓ)



Application: soft top-k loss

$$\text{S-top-}k\text{-loss}(f_{\theta}(\omega_0), l_0) = J_k \left(1 - \left(\widetilde{F}^{\ell}\left(\frac{\mathbf{1}_L}{L}, f_{\theta}(\omega); \frac{\mathbf{1}_m}{m}, \mathbf{y}\right)\right)_{l_0}\right)$$
 accuracy
$$\frac{0.8}{0.7}$$

$$\frac{0.6}{0.5}$$

$$\frac{1}{0.4}$$

$$\frac{1}{0.3}$$

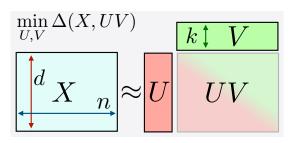
$$\frac{1}{0.5}$$

$$\frac{1}{0.$$

Figure 4: Error bars for test accuracy curves on CIFAR-100 and CIFAR-10 using the same network (averages over 12 runs).

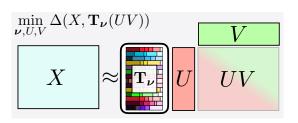
- Motivation
- 2 Embed
 - SUQUAN embedding
 - Kendall embedding
- 3 Differentiate
- Extensions
 - Differentiable quantiles
 - Matrix factorization with quantile normalization
 - Smoothing by regularization
 - Smoothing by perturbation
 - Extensions to other discrete problems
- 6 Conclusion

Nonnegative Matrix Factorization (NMF)

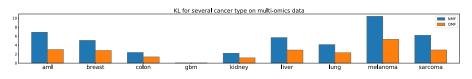


- Useful to decompose a signal as a superposition of basic elements
 - e.g., images, text, genomics...
- But one usually pre-process X so that it resembles a low-rank matrix
 - e.g., tf-idf, log-transform, quantile normalization etc...
- Can we jointly learn U, V and the pre-processing of X?

NMF with quantile normalization (Cuturi et al., 2020)

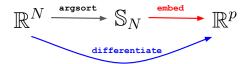


- T_{ν} is a *soft-quantile normalization* operator, applied row-wise, differentiable w.r.t. the input row and the target quantiles (generalization of SUQUAN)
- T_{ν} is optimized jointly with the low-rank matrix UV
- Application: multiomics data integration for cancer stratification



- Motivation
- 2 Embed
 - SUQUAN embedding
 - Kendall embedding
- 3 Differentiate
- Extensions
 - Differentiable quantiles
 - Matrix factorization with quantile normalization
 - Smoothing by regularization
 - Smoothing by perturbation
 - Extensions to other discrete problems
- 6 Conclusion

What we have done



Variational formulation through OT:

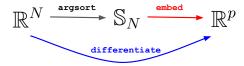
$$\Phi(\operatorname{argsort}(x)) = \arg\min_{z \in B_n} < z, C(x) >$$

with $\Phi: \mathbb{S}_N \to \mathbb{R}^{n \times n}$ the SUQUAN embedding

Smooth by entropy regularization

$$P_{\epsilon}(x) = \arg\min_{z \in B_n} [\langle z, C(x) \rangle - \epsilon H(z)]$$

More general differentiable argsort



Variational formulation: For a given embedding $\Phi: \mathbb{S}_N \to \mathbb{R}^p$, find $\mathcal{Z} \subset \mathbb{R}^p$ and $\Psi: \mathbb{R}^N \to \mathbb{R}^p$ such that

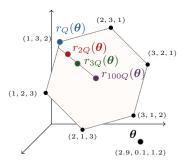
$$\Phi(\operatorname{argsort}(x)) = \arg\min_{z \in \mathcal{Z}} < z, \Psi(x) >$$

Smooth by regularization

$$h_{\epsilon}(x) = \arg\min_{z \in \mathcal{Z}} \left[\langle z, \Psi(x) \rangle + \epsilon \Omega(z) \right]$$

with $\Omega: \mathcal{Z} \to \mathbb{R}$ a regularization that makes h_{ϵ} differentiable

Example: FastSoftSort (Blondel et al., 2020)



- Embed to the permutahedron $(\mathcal{P}_N = B_N \times (1, 2, ..., N)^\top)$
- Ranking: $h(x) = \arg \min_{z \in \mathcal{P}_N} \langle x, z \rangle$
- Regularization by negative entropy or Euclidean norm
- Fast $O(n \log(n))$ algorithm using isotonic regression to project onto the permutahedron and compute $h_{\epsilon}(x)$ and $\nabla h_{\epsilon}(x)$

https://github.com/google-research/fast-soft-sort

- Motivation
- 2 Embed
 - SUQUAN embedding
 - Kendall embedding
- 3 Differentiate
- Extensions
 - Differentiable quantiles
 - Matrix factorization with quantile normalization
 - Smoothing by regularization
 - Smoothing by perturbation
 - Extensions to other discrete problems
- 6 Conclusion

Reminder: the "Gumbel trick" for soft-max

• For $x \in \mathbb{R}^N$, the one-hot encoded argmax of x is

$$\arg\min_{\mathbf{z}\in\Delta^{N-1}}<\mathbf{z},-\mathbf{x}>$$

• The soft-max of x is

$$\operatorname{softmax}(x) = e^x / (\sum_i e^{x_i})$$

It is obtained from the argmax by entropic regularization

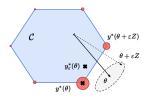
$$softmax(x) = arg \min_{z \in \Lambda^{N-1}} [\langle z, -x \rangle - H(z)]$$

• It is also equal to (Gumbel, 1954):

$$\operatorname{softmax}(x) = \mathbf{E}\left[\arg\min_{z \in \Delta^{N-1}} \langle z, -(x + \mathbf{U}) \rangle\right]$$

where U is a random variable following the Gumbel distribution.

Smoothing by perturbation (Berthet et al., 2020)

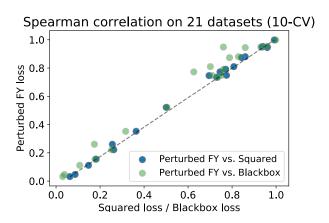


$$h(x) = \arg\min_{z \in \mathcal{Z}} \langle z, \Psi(x) \rangle$$

$$h_{\epsilon}(x) = E \left[\arg\min_{z \in \mathcal{Z}} \langle z, \Psi(x + \epsilon U) \rangle \right]$$

- Generalization of the "Gumbel trick" for soft-max (Gumbel, 1954)
- h_{ϵ} is differentiable if the density of U is smooth (e.g. normal)
- Stochastic gradient of h_{ϵ} can be computed efficiently
- Fast gradient for Fenchel-Young losses (Blondel et al., 2019)
- Sometimes equivalent to smoothing by regularization

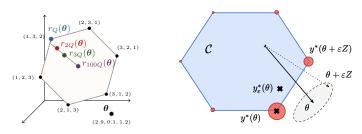
Experiments



- 21 datasets (simulations and biology) of ranking prediction
- Compare perturbed FY loss on the permutahedron, with squared loss and Blackbox loss of Vlastelica et al. (2020)

- Motivation
- 2 Embed
 - SUQUAN embedding
 - Kendall embedding
- 3 Differentiate
- Extensions
 - Differentiable quantiles
 - Matrix factorization with quantile normalization
 - Smoothing by regularization
 - Smoothing by perturbation
 - Extensions to other discrete problems
- 6 Conclusion

General setting



Given a non-smooth (discrete) mapping $h : \mathbb{R}^n \to \mathbb{R}^p$ with a variational form:

$$h(x) = \left[\arg\min_{z \in \mathcal{Z}} \langle z, \Psi(x) \rangle\right]$$

create differentiable versions:

$$h_{\epsilon}^{\mathsf{Regularization}}(x) = \arg\min_{z \in \mathcal{Z}} \left[\langle z, \Psi(x) \rangle - \epsilon \Omega(z) \right]$$

$$h_{\epsilon}^{\mathsf{Perturbation}}(x) = E\left[\arg\min_{z \in \mathcal{Z}} \langle z, \Psi(x + \epsilon U) \rangle\right]$$

Example: shortest path (Berthet et al., 2020)

ullet Take a graph G=(V,E), positive edge costs $c\in\mathbb{R}_+^E$, polytope

$$\mathcal{C} = \left\{ y \in \mathbb{R}_{+}^{E} : \forall i \in V, (\mathbf{1}_{\rightarrow i} - \mathbf{1}_{i \rightarrow})^{\top} y = \delta_{i=s} - \delta_{i=t} \right\}$$

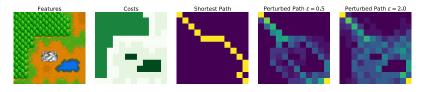
• Shortest path (computable in O(|E|) by DP) solves

$$y^* = \arg\min_{y \in \mathcal{C}} \langle c, y \rangle$$

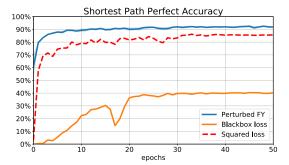
Differentiable shortest path (w.r.t c):

$$oldsymbol{y_{\epsilon}^*} = oldsymbol{E} \left[rg \min_{oldsymbol{y} \in \mathcal{C}} < oldsymbol{c} + \epsilon oldsymbol{U}, oldsymbol{y} >
ight]$$

(Toy) application

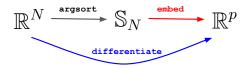


- Given 10k images of Warcraft terrains with 12x12 patches, and a shortest-path from upper-left to lower-right..
- Learn the cost of a patch (with a ResNet18 deep CNN)



- Motivation
- 2 Embed
 - SUQUAN embedding
 - Kendall embedding
- 3 Differentiate
- 4 Extensions
 - Differentiable quantiles
 - Matrix factorization with quantile normalization
 - Smoothing by regularization
 - Smoothing by perturbation
 - Extensions to other discrete problems
- 5 Conclusion

Conclusion



- Machine learning beyond vectors, strings and graphs
- Different embeddings of the symmetric group
- Differentiable sorting and ranking through regularization and perturbation
- Can be generalized to other discrete operations

THANK YOU!

References

- Q. Berthet, M. Blondel, O. Teboul, M. Cuturi, and F. Bach. Learning with differentiable perturbed optimizers. Technical Report 2002.08676, arXiv, 2020.
- M. Blondel, A. F. T. Martins, and V. Niculae. Learning with Fenchel-Young losses. Technical Report 1901.02324, arXiv, 2019.
- M. Blondel, O. Teboul, Q. Berthet, and J. Djolonga. Fast differentiable sorting and ranking. In *Proceedings of the 37th International Conference on Machine Learning*, 2020.
- M. Cuturi, O. Teboul, and J.-P. Vert. Differentiable sorting using optimal transport: the Sinkhorn CDF and quantile operator. In Adv. Neural. Inform. Process Syst. 31, 2019.
- M. Cuturi, O. Teboul, J. Niles-Weed, and J.-P. Vert. Supervised quantile normalization for low-rank matrix approximation. In *Proceedings of the 37th International Conference on Machine Learning*, 2020.
- E. J. Gumbel. Statistical theory of extreme values and some practical applications;: A series of lectures. Number 33. US Govt. Print. Office, 1954.
- Y. Jiao and J.-P. Vert. The Kendall and Mallows kernels for permutations. In *Proceedings of The 32nd International Conference on Machine Learning*, volume 37 of *JMLR:W&CP*, pages 1935–1944, 2015. URL http://jmlr.org/proceedings/papers/v37/jiao15.html.
- Y. Jiao and J.-P. Vert. The Kendall and Mallows kernels for permutations. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2017. doi: 10.1109/TPAMI.2017.2719680. URL http://dx.doi.org/10.1109/TPAMI.2017.2719680.
- Y. Jiao and J.-P. Vert. The weighted kendall and high-order kernels for permutations. Technical Report 1802.08526, arXiv, 2018.

References (cont.)

- M. Le Morvan and J.-P. Vert. Supervised quantile normalisation. Technical Report 1706.00244, arXiv, 2017.
- J.-P. Serres. *Linear Representations of Finite Groups*. Graduate Texts in Mathematics. Springer-Verlag New York, 1977. doi: 10.1007/978-1-4684-9458-7. URL http://dx.doi.org/10.1007/978-1-4684-9458-7.
- M. Vlastelica, A. Paulus, V. Musil, G. Martius, and M. Rolinek. Differentiation of blackbox combinatorial solvers. In *International Conference on Learning Representations*, 2020.

Harmonic analysis on \mathbb{S}_N

• A representation of \mathbb{S}_N is a matrix-valued function $\rho: \mathbb{S}_N \to \mathbb{C}^{d_\rho \times d_\rho}$ such that

$$\forall \sigma_1, \sigma_2 \in \mathbb{S}_N, \quad \rho(\sigma_1 \sigma_2) = \rho(\sigma_1)\rho(\sigma_2)$$

- A representation is irreductible (irrep) if it is not equivalent to the direct sum of two other representations
- \mathbb{S}_N has a finite number of irreps $\{\rho_\lambda : \lambda \in \Lambda\}$ where $\Lambda = \{\lambda \vdash N\}^1$ is the set of partitions of N
- For any $f: \mathbb{S}_N \to \mathbb{R}$, the Fourier transform of f is

$$\forall \lambda \in \Lambda, \quad \hat{f}(\rho_{\lambda}) = \sum_{\sigma \in \mathbb{S}_{N}} f(\sigma) \rho_{\lambda}(\sigma)$$

 $^{^{1}\}lambda \vdash N \text{ iff } \lambda = (\lambda_{1}, \dots, \lambda_{r}) \text{ with } \lambda_{1} \geq \dots \geq \lambda_{r} \text{ and } \sum_{i=1}^{r} \lambda_{i} = N$

Right-invariant kernels

Bochner's theorem

An embedding $\Phi: \mathbb{S}_N \to \mathbb{R}^p$ defines a right-invariant kernel $K(\sigma_1, \sigma_2) = \Phi(\sigma_1)^T \Phi(\sigma_2)$ if and only there exists $\phi: \mathbb{S}_N \to \mathbb{R}$ such that

$$\forall \sigma_1, \sigma_2 \in \mathbb{S}_N, \quad K(\sigma_1, \sigma_2) = \phi(\sigma_2^{-1}\sigma_1)$$

and

$$\forall \lambda \in \Lambda$$
, $\hat{\phi}(\rho_{\lambda}) \succeq 0$