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0 Motivation



Differentiable programming
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https://codeburst.io/machine-learning-243cc92247al
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Going beyond vectors (strings, graphs...
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http://snap.stanford.edu/decagon

What about rankings / permutations?

@ Some data are permutations (input, output)

(histogram equalization, quantile normalization...)



More formally
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@ Permutation: a bijection
o:[1,N] = [1,N]

23

@ o(i) =rank of item /
@ Composition

(0102)(i) = o1 (02(7))

@ Sy the symmetric group
o |SN| = NI




Ingredients

argsort embed

RY —— Sy —— R?

W
©@ Embed

e To define / optimize fy(c) = gy(embed(c)) for o € Sy
e E.g., o given as input, or output

@ Differentiate
o To define / optimize hy(x) = fy(argsort(x)) for x € R”
e E.g., normalization layer or rank-based loss



@ Embed
@ SUQUAN embedding
@ Kendall embedding



How to define an embedding ® : Sy — RP ?

argsort embed

RN —— Sy —— R?

@ Should encode interesting features
@ Should lead to efficient algorithms



How to define an embedding ® : Sy — RP ?

argsort embed

RY —— Sy —— RP
W

@ Should encode interesting features
@ Should lead to efficient algorithms

@ Geometry should not change by arbitrary renaming of items, i.e.,
Voi,02,m €Sy, || ®(o17) — (o2m)| = [[®(01) — P(02)]]
@ Equivalently, the kernel should be translation-invariant

Voi,02 €Sy,  K(o1,02) =< ®(a1), ®(02) >= k(0103 ")



Some attempts

Kendall SUQUAN

- B -

(Jiao and Vert, 2015, 2017, 2018; Le Morvan and Vert, 2017)



@ Embed
@ SUQUAN embedding



SUQUAN embedding (Le Morvan and Vert, 2017)

@ Let ®(0) = I, the permutation representation (Serres, 1977):
1 ifo())=1,
[no]ij = ( ) .
0 otherwise.

@ Right invariant:

< (), ®(c") >=Tr (M N7) = Tr (MoM,1) = T (MoMy-1) = T (Myprm1)



Link with quantile normalization (QN)

@ Take o(x) = rank(x) with x € RN
@ Fix a target quantile f € R"
@ "Keep the order of x, change the values to "

W)= hooy < Vix) =) f



How to choose a "good" target distribution?

gaussian distribution (mean=0, sd=1) uniform distribution bigaussian distribution
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Supervised QN (SUQUAN)

Standard QN:
@ Fix f arbitrarily
@ QN all samples to get W(xq),..., Vi(xn)
© Learn a model on normalized data, e.g.:

1 N
mein {N Zfi (fe(wf(xi)))}
i=1

SUQUAN: jointly learn f and the model:

N N
min {I1\l Zfi(fa(“’f(xi)))} = min {,1\/ Zﬁi (fe(”I(x,-)f))}

i=1



Experiments: CIFAR-10

@ Image classification into 10 classes (45 binary problems)
@ N =5,000 per class, p = 1,024 pixels
@ Linear logistic regression on raw pixels
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Experiments: CIFAR-10

@ Example: horse vs. plane
@ Different methods learn different quantile functions

original median SUQUAN BND
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Limits of the SUQUAN embedding

@ Linear model on ®(c) = MM, € RV*xN

@ Captures first-order information of the form "i-th feature ranked at
the j-th position"

@ What about higher-order information such as "feature i larger than
feature j"?



@ Embed

@ Kendall embedding



The Kendall embedding (Jiao and Vert, 2015, 2017)

o1y )_{1 it o(i) < o(j).

0 otherwise.



Geometry of the embedding

For any two permutations o, 0’ € Sy:
@ Inner product

O(0) Do) = D Lo(iy<o)loiy<ory) = Nelo,0")
1<i#j<n

ne = number of concordant pairs
@ Distance

[(0) = D) [P= D (Moo — Loi<o())? = 2Ng(0, ")

1<ij<n

ng = number of discordant pairs



Kendall and Mallows kernels

@ The Kendall kernel is
K:(o,0") = ne(o, )
@ The Mallows kernel is

YA>0 Kiy(o,0') = e (o)

Theorem (Jiao and Vert, 2015, 2017)

The Kendall and Mallows kernels are positive definite right-invariant
kernels and can be evaluated in O(N log N) time

Kernel trick useful with few samples in large dimensions
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Average performance on 10 microarray classification problems (Jiao

and Vert, 2017).
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Cayley graph of S4

@ Kondor and Barbarosa (2010)
proposed the diffusion kernel on the
Cayley graph of the symmetric group
generated by adjacent transpositions.

e Computationally intensive (O(N2V))
@ Mallows kernel is written as

Kif(o,o') = o),

where ngy(o, o’) is the shortest path
distance on the Cayley graph.

@ It can be computed in O(N log N)

@ Extension to weighted Kendall kernel
(Jiao and Vert, 2018)



Remark

The SUQUAN and Kendall representations are two particular cases of
the more general

Bochner’s theorem

An embedding ¢ : Sy — RP defines a right-invariant kernel
K(c1,02) = ®(01) T ®(02) if and only there exists ¢ : Sy — R such that

Vo1,00 € SN, K(U1702):¢(02_1U1)

and A
YAEA, d(py) =0

where for any f : Sy — R, the Fourier transform of f is
Aen, Hp) =D f(@)na(o)
oESN

with {p) : A € A} the irreductible representations of the symmetric
group.



e Differentiate



The problem

argsort embed

RY —— Sy ——R?

@ x ¢ RV — argsort(x) € Sy is piecewise constant
@ Derivative a.e. equal to zero
@ Same for x — ®(argsort(x)), for any embedding ¢

How to create a differentiable approximation to #(argsort(x)) ?



Optimal transport (OT)
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Given a cost matrix C € R™" (where Cj is the cost of moving the i-th
point to the j-th location), OT solves

M

;2‘3,7<P’ C)

where B, = {P € R7*"| P1, = PT1, =1,} is the Birkhoff polytope.



Variational formulation of SUQUAN embedding

\ VAN
N S

Lemma

Take
@ yeR"withy; <...<yn,
@ hec C?(R?) and 92h/dxdy > 0 (eg, h(a, b) = (b — a)?).
For any x € R", let C(x) € R"" given by C(x); = h(y;, x;). Then

argmin (P, C(x)) = Mo(x) -
PeB,

-&yl Y2 o &L



Entropic regularization (Cuturi et al., 2019)

D?ﬂ Y2

7@3

P.(x) = argerrllsin (P, C(x)) — eH(P)

Algorithm 1: Sinkhorn

Inputs: a,b,x,y,¢,¢

K e O/e uy=1,;

fort < 0to/ —1do
Vil < b/KTUt

U1 < a/Kvt+1
end
Result: uy, K, vy

@ P =diag(us)Kdiag(v,) is the differentiable approximate
permutation matrix of the input vector x

@ Complexity O(nm¢), GPU-friendly



Derivatives

V P.(x) can be computed by
@ Automatic differentiation of Sinkhorn iterations (Cuturi et al., 2019)
@ Implicit differentiation (Cuturi et al., 2020)

Implicit differentiation speed gain

—@— |mplicit differentiation
—@— Automatic differentiation

seconds
=
o

® —
10?2 103 104
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N B O




Differentiable sort, argsort and rank

S.(x) = P.(x)x R(x)=P.(x)"(1,2,...,n)"
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https://github.com/google-research/google-research/tree/master/
soft_sort


https://github.com/google-research/google-research/tree/master/soft_sort
https://github.com/google-research/google-research/tree/master/soft_sort

Application: learning to rank

Task: Sort 5 numbers between 0000 and 9999 (concatenation of
MNIST digits) (Grover et al, 2019)

all correct, n=5
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e Extensions
@ Differentiable quantiles
@ Matrix factorization with quantile normalization
@ Smoothing by regularization
@ Smoothing by perturbation
@ Extensions to other discrete problems



e Extensions
@ Differentiable quantiles



Soft quantization and soft quantiles

@ Take C(x) € R™ " with m < nand
By={PeRT*"|Pl,=b,P"1,=1,}

@ Eg,m=3,y=(0,05,1),b=(r—-t/2,t,7 +t/2)

@ Overall complexity O(nm¢)

T = 30%

4

1/2 1
0.25 t=0.1 0.65




Application: soft top-k loss
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Figure 4: Error bars for test accuracy curves
on CIFAR-100 and CIFAR-10 using the same
network (averages over 12 runs).



e Extensions

@ Matrix factorization with quantile normalization



Nonnegative Matrix Factorization (NMF)

min A(X,UV)
UV

kL V

T x S0 UV

>

A
<

@ Useful to decompose a signal as a superposition of basic
elements

e e.g., images, text, genomics...

@ But one usually pre-process X so that it resembles a low-rank
matrix

e e.g., tf-idf, log-transform, quantile normalization etc...
@ Can we jointly learn U, V and the pre-processing of X?



NMF with quantile normalization (Cuturi et al., 2020)

min A(X,T,(UV))

v,U,V ’T‘
X

@ T, is a soft-quantile normalization operator, applied row-wise,
differentiable w.r.t. the input row and the target quantiles
(generalization of SUQUAN)

@ T, is optimized jointly with the low-rank matrix UV
@ Application: multiomics data integration for cancer stratification

KL for several cancer type on multi-omics data

- M
== QMF

breast melanoma sarcoma



e Extensions

@ Smoothing by regularization



What we have done

argsort embed

RN—>SN*>RP

@ Variational formulation through OT:

®(argsort(x)) = arg mg1 < z,C(x)>
zZebn

with ¢ : Sy — R"™" the SUQUAN embedding

© Smooth by entropy regularization

P.(x) = arg miBn [< z,C(x) > —eH(2)]

Z&bn



More general differentiable argsort

argsort embed

RY —— Sy —— R?

@ Variational formulation: For a given embedding ¢ : Sy — RP, find
Z C RPand V¥ : RN — RP such that

d(argsort(x)) = arg melg <z,V(x) >
z

© Smooth by regularization

he(x) = arg rznelg [< z,¥(x) > +eQ(2)]

with Q : Z — R a regularization that makes h. differentiable



Example: FastSoftSort (Blondel et al., 2020)

(1,3,2)

(1.2.3)

(2.9,0.1,1.2)

@ Embed to the permutahedron (Py = By x (1,2,...,N)T)
@ Ranking: h(x) = argminzcp, < X,Z >
@ Regularization by negative entropy or Euclidean norm

@ Fast O(nlog(n)) algorithm using isotonic regression to project
onto the permutahedron and compute h.(x) and Vh.(x)

https://github.com/google-research/fast-soft-sort


https://github.com/google-research/fast-soft-sort

e Extensions

@ Smoothing by perturbation



Reminder: the "Gumbel trick" for soft-max

@ For x € RN, the one-hot encoded argmax of x is

arg min < Z,—Xx >
zeAN—1

@ The soft-max of x is

softmax(x) = &*/( Z e)

@ It is obtained from the argmax by entropic regularization

softmax(x) = arg min [<Z —x > —H(z)]
zeAN-
@ ltis also equal to (Gumbel, 1954):

softmax(x) = E |arg min < z,—(x+ U) >
zeAN-1

where U is a random variable following the Gumbel distribution.



Smoothing by perturbation (Berthet et al., 2020)

h(x) = arg Enelg <z,V(x) >

h(x)=E arg;neig <z,V¥(x+el) >

@ Generalization of the “Gumbel trick” for soft-max (Gumbel, 1954)
@ h. is differentiable if the density of U is smooth (e.g. normal)

@ Stochastic gradient of h. can be computed efficiently

@ Fast gradient for Fenchel-Young losses (Blondel et al., 2019)

@ Sometimes equivalent to smoothing by regularization



Spearman correlation on 21 datasets (10-CV)
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@ 21 datasets (simulations and biology) of ranking prediction

@ Compare perturbed FY loss on the permutahedron, with squared
loss and Blackbox loss of Vlastelica et al. (2020)



e Extensions

@ Extensions to other discrete problems



General setting
Q| 0) ey
l 2, oo

rlooQ 9)

y*(0+¢eZ)

(1,2,3)
_v_,o:(3,1,2)
—
6
(2,1,3) °
(2.9,0.1,1.2)

y*(0)

Given a non-smooth (discrete) mapping h : R" — RP with a variational
form:

zeZ

h(x) = [arg min < z, ¥(x) ]
create differentiable versions:

hljegularization(x) = arg mig [< z,W(x) > —€Q(2)]
ze

hEPerturbation(X) — E [arg mig < z,V(x + €el) >]
ze



Example: shortest path (Berthet et al., 2020)
@ Take a graph G = (V, E), positive edge costs ¢ € RE, polytope
C= {y eERE VieV,(1,i—1,)"y =0is— 5i:t}
@ Shortest path (computable in O(|E|) by DP) solves
y* = argTGig <cy>
@ Differentiable shortest path (w.r.t ¢):

*

=E in<c+el y>
Ye argmin < ¢+ ely

Shortest Path Perturbed Path £ = 0.5 Perturbed Path £ = 2.0

F-ERE




oy) application

Costs Shortest Path Perturbed Path £ = 0.5 Perturbed Path £ = 2.0

-]

@ Given 10k images of Warcraft terrains with 12x12 patches, and a
shortest-path from upper-left to lower-right..
@ Learn the cost of a patch (with a ResNet18 deep CNN)

Shortest Path Perfect Accuracy

Features
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= Perturbed FY
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10% = = Squared loss
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e Conclusion



Conclusion

argsort embed

RY ——Sy ——R?

@ Machine learning beyond vectors, strings and graphs
@ Different embeddings of the symmetric group

@ Differentiable sorting and ranking through regularization and
perturbation

@ Can be generalized to other discrete operations
THANK YOU!
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Harmonic analysis on Sy

@ A representation of Sy is a matrix-valued function p : Sy — C%*%
such that

Voy,00 € Sy,  p(o102) = p(o1)p(o2)
@ A representation is irreductible (irrep) if it is not equivalent to the
direct sum of two other representations

@ Sy has a finite number of irreps {py : A\ € A} where A = {\ - N}
is the set of partitions of N

@ Forany f: Sy — R, the Fourier transform of f is

VAEA, F(pa)= ) f(o)palo)

gESN

AENfA= (N, ) with > ...> XN and YL, A =N



Right-invariant kernels

Bochner’s theorem

An embedding ¢ : Sy — RRP defines a right-invariant kernel
K(o1,02) = ®(01) T &(02) if and only there exists ¢ : Sy — R such that

VYoi,00 € SN, K(U1702):¢(05101)

and )
YAENA, d(pr) =0
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