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“Bulk” genomics is great!

https://www.slideshare.net/nurialopezbigas/identification-of-cancer-drivers-across-tumor-types

● Mutations
○ WGS (whole genome)
○ WES (whole exome)

● Gene expression (RNA-seq)
● DNA accessibility
● DNA methylation
● Histone modification
● ….

https://www.slideshare.net/nurialopezbigas/identification-of-cancer-drivers-across-tumor-types


But sometimes, not enough



From “bulk” to “single-cell” genomics



Eg: single-cell genomics to study intra-tumor 
heterogeneity



Single cell datasets are getting large enough for 
machine learning
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1. Extracting signal from raw data

2. Gene regulatory network inference

3. Integration of multi-omics data
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Some challenges



Some challenges



ZINB-WaVe



Robustness to drop-out

Some 
benefits

Better lineage reconstruction

Robustness to batch effects



Hot topic!

https://satijalab.org/research/



1. Extracting signal from raw data

2. Gene regulatory network inference

3. Integration of multi-omics data



GRN inference from bulk expression data

- Connect “similar” genes (co-expression, mutual information…)
- Causal inference (Bayesian network, causal networks...-)
- Sparse regression (Random forests, lasso..)



Steady-state hypothesis for regression methods 
(Genie3, TIGRESS…)



Steady-state hypothesis for single-cell data?



Pseudo-time

Trapnell (2015)



From steady-state to dynamical model

- Given cells (X_i, t_i) for i=1,...,N
- X_i vector of expression
- t_i inferred pseudo-time

- How to infer a sparse model A?



SCODE (Matsumoto et al 2017)

- Hard to solve (nonconvex…)
- Sensitive to noise for large pseudo-time



GRISLI (Aubin and V., 2018)

- Solve instead

- Pro: 
- easy to solve (convex, sparse regression)
- Not sensitive to outliers for large t

- Cons
- Need to infer velocity v_i=X’_ti of each cell



Velocity inference



Validation (AUC)

Murine: 373 cells, 
direct reprogramming of 
murine embryonic 
fibroblasts to myocytes 
at days 0, 2, 5, 22 
(Treutlein et al 2016)

Human: 758 cells, 
differentiation of human 
ES cells to definitive 
endoderm cells at 0, 
12, 24, 36, 72, 96h 
(Chu et al 2016)



New velocity inference...
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Flood of single-cell data



Data integration is important 

Data integration 

Measurements

Cells
Gene Expression

Open regions

3D Structure

Microscopy 
Images



Gene Expression

Observed Data in BiologyIntegration of single data is challenging

sci-RNA-seq sci-ATAC-seq

?

No 1-1 correspondence 
between cells

No 1-1 correspondence 
between features

Open regions



sci-RNA-seq

sci-ATAC-seq

Learned Space

Manifold 
Alignment

sci-ATAC-seq

sci-RNA-seq

Integrate single-cell data by projecting to a shared manifold



Related work

● Joint Laplacian Manifold Alignment (JLMA; Wang 2011)
○ Construct a joint Laplacian across multiple domains and perform eigenvalue 

decomposition.
○ Relies on k-nearest neighbor graph to characterize local geometry.

● Generalized unsupervised manifold alignment (GUMA; Cui NIPS 2014)
○ Optimize a function with three terms: geometry matching term across domains, 

feature matching, and geometry preserving term within domains.
○ Assumes that instances in the two domains can be matched one-to-one.

● Manifold Alignment Generalized Adversarial Network (MAGAN; Amodio ICML 
2018)
○ Two generative adversarial networks that learn reciprocal mappings between 

two domains
○ In practice, requires prior information about correspondence between features.



An approach: MMD-based algorithm to align single-cell data
(Lui, Huang, Ritambhara, V. and Noble, WABI 2019)

MMD based Manifold 
Alignment algorithm
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Assumption: Data shares a projection to a common manifold structure

Features (p1)



Maximum mean discrepancy (MMD) measures the 
distance between two distributions

sci-RNA

sci-RNA

sci-ATAC

sci-ATAC

Gretton et al. J Machine Learning Research, 2012.
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Parameters learned 
during training

sci-RNA-seq sci-ATAC-seq

 

Distortion term to 
preserve structure

 

 

Penalty term to avoid 
trivial solution

 

MMD manifold alignment (MMD-MA) minimizes the 
distance between two or more distributions



Original manifold
(n=2000)

Set 1 
(n=300)

Set 2 
(n=300)

Sampled points 
(dimension = 2)

MMD-MA works well for simulated data

Learned manifold

MMD-MA
(dimension = 5)

View 1
(n=300)

View 2
(n=300)

1000-dimens
ional space

2000-dimens
ional space

Random 
projection + 

Gaussian 
noise
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Comparing to the baseline (JLMA)
Branching 
structure

Branching structure + Swiss 
roll

Circular frustrum in 
3D



Aligning single-cell RNA-seq and DNA methylation data 

Gene 
Expression 

DNA
methylation

Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Angermueller et al., Nature Methods 
(2016)



MMD-MA aligns single-cell RNAseq and DNA methylation 
data 

MMD-MA
(5 dimensions) 

     Gene Expression
     DNA Methylation



MMD-MA correctly matches cells

● For >50% of the cells, the 
nearest neighbor is the 
correct match.

● On average, only 2.4% of 
the cells are closer than 
the true match.



Summary 

● MMD-MA is an unsupervised algorithm

● Uses MMD measure to match two 
distributions

● Does not require sample or feature 
correspondence

● Performs well for both simulated and 
biological data
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Conclusion
● Single cell genomics moving the field to “big data”
● Many exciting perspectives 
● Many challenges as well

○ Data with largely unknown structure, trade-off quality/quantity
○ Cells communicate


