
Learning from ranks, learning to rank

Jean-Philippe Vert

Differentiable programming

https://codeburst.io/machine-learning-243cc92247a1

https://codeburst.io/machine-learning-243cc92247a1

Beyond images and strings

http://snap.stanford.edu/decagon

http://snap.stanford.edu/decagon

What if inputs or outputs are permutations?

Permutation: a bijection

σ : [1,N]→ [1,N]

σ(i) = rank of item i
Composition

(σ1σ2)(i) = σ1(σ2(i))

SN the symmetric group
|SN | = N!

Examples

Rankings (as input or output)

Discretization / normalization of continuous data

(histogram equalization, quantile normalization...)

Goals

1 Permutations as input / intermediate:

σ ∈ SN 7→ fθ(σ) ∈ Rp

How to define / optimize fθ : SN → Rp?
SUQUAN (Le Morvan and Vert, 2017), Kendall (Jiao and Vert,
2015, 2017, 2018)

2 Permutations as intermediate / output:

x ∈ RN 7→ σ(x) ∈ SN 7→ fθ(σ(x)) ∈ Rp

How to differentiate the ranking operator σ : RN → SN?
Sinkhorn ranking (Cuturi et al., 2019)

Permutations as inputs

Assume your data are permutations and you want to learn

f : SN → R

A solutions: embed SN to a Euclidean (or Hilbert) space

Φ : SN → Rp

and learn a linear function:

fβ(σ) = β>Φ(σ)

The corresponding kernel is

K (σ1, σ2) = Φ(σ1)>Φ(σ2)

How to define the embedding Φ : SN → Rp ?

Should encode interesting features
Should lead to efficient algorithms

Should be invariant to renaming of the items, i.e., the kernel
should be right-invariant

∀σ1, σ2, π ∈ SN , K (σ1π, σ2π) = K (σ1, σ2)

Some attempts

SUQUAN	Kendall	

(Jiao and Vert, 2015, 2017, 2018; Le Morvan and Vert, 2017)

SUQUAN embedding (Le Morvan and Vert, 2017)

Let Φ(σ) = Πσ the permutation representation (Serres, 1977):

[Πσ]ij =

{
1 if σ(j) = i ,
0 otherwise.

Right invariant:

< Φ(σ),Φ(σ′) >= Tr
(
ΠσΠ>σ′

)
= Tr

(
ΠσΠ−1

σ′

)
= Tr (ΠσΠσ′−1) = Tr (Πσσ′−1)

Link with quantile normalization (QN)

Take σ(x) = rank(x) with x ∈ RN

Fix a target quantile f ∈ Rn

"Keep the order of x , change the values to f "

[Ψf (x)]i = fσ(x)(i) ⇔ Ψf (x) = Πσ(x)f

How to choose a "good" target distribution?

Supervised QN (SUQUAN)

Standard QN:
1 Fix f arbitrarily
2 QN all samples to get Ψf (x1), . . . ,Ψf (xN)

3 Learn a model on normalized data, e.g.:

min
θ

{
1
N

N∑

i=1

`i (fθ(Ψf (xi)))

}

SUQUAN: jointly learn f and the model:

min
θ,f

{
1
N

N∑

i=1

`i (fθ(Ψf (xi)))

}
= min

θ,f

{
1
N

N∑

i=1

`i
(
fθ(Πσ(xi)f)

)
}

Experiments: CIFAR-10

Image classification into 10 classes (45 binary problems)
N = 5,000 per class, p = 1,024 pixels
Linear logistic regression on raw pixels

ca
uc

hy

ex
po

ne
nt

ia
l

un
ifo

rm

ga
us

si
an

m
ed

ia
n

S
U

Q
U

A
N

S
V

D

S
U

Q
U

A
N

B
N

D

S
U

Q
U

A
N

S
PA

V

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
U

C

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

0.65 0.75 0.85

0.
65

0.
75

0.
85

AUC on test set − median

A
U

C
 o

n
te

st
 s

et
 −

 S
U

Q
U

A
N

 B
N

D

Experiments: CIFAR-10

Example: horse vs. plane
Different methods learn different quantile functions

original median SVD SUQUAN BND

Index
0 400 800

Index
0 400 800

Index
0 400 800

Limits of the SUQUAN embedding

Linear model on Φ(σ) = Πσ ∈ RN×N

Captures first-order information of the form "i -th feature ranked at
the j-th position"
What about higher-order information such as "feature i larger than
feature j"?

The Kendall embedding (Jiao and Vert, 2015, 2017)

Φi,j(σ) =

{
1 if σ(i) < σ(j) ,
0 otherwise.

Geometry of the embedding

For any two permutations σ, σ′ ∈ SN :
Inner product

Φ(σ)>Φ(σ′) =
∑

1≤i 6=j≤n

1σ(i)<σ(j)1σ′(i)<σ′(j) = nc(σ, σ′)

nc = number of concordant pairs
Distance

‖Φ(σ)− Φ(σ′) ‖2 =
∑

1≤i,j≤n

(1σ(i)<σ(j) − 1σ′(i)<σ′(j))
2 = 2nd (σ, σ′)

nd = number of discordant pairs

Kendall and Mallows kernels

The Kendall kernel is

Kτ (σ, σ′) = nc(σ, σ′)

The Mallows kernel is

∀λ ≥ 0 K λ
M(σ, σ′) = e−λnd (σ,σ

′)

Theorem (Jiao and Vert, 2015, 2017)
The Kendall and Mallows kernels are positive definite right-invariant
kernels and can be evaluated in O(N log N) time

Kernel trick useful with few samples in large dimensions

Applications

●

●

●

S
V

M
kd

tA
LL

S
V

M
lin

ea
rT

O
P

S
V

M
lin

ea
rA

LL

S
V

M
kd

tT
O

P

S
V

M
po

ly
A

LL

K
F

D
kd

tA
LL

kT
S

P

S
V

M
po

ly
TO

P

K
F

D
lin

ea
rA

LL

K
F

D
po

ly
A

LL T
S

P

S
V

M
rb

fA
LL

K
F

D
rb

fA
LL

A
P

M
V

0.4

0.6

0.8

1.0

ac
c

Average performance on 10 microarray classification problems (Jiao
and Vert, 2017).

Remark

Cayley graph of S4

Kondor and Barbarosa (2010)
proposed the diffusion kernel on the
Cayley graph of the symmetric group
generated by adjacent transpositions.
Computationally intensive (O(N2N))

Mallows kernel is written as

K λ
M(σ, σ′) = e−λnd (σ,σ

′) ,

where nd (σ, σ′) is the shortest path
distance on the Cayley graph.
It can be computed in O(N log N)

Extension to weighted Kendall kernel
(Jiao and Vert, 2018)

Remark

The SUQUAN and Kendall representations are two particular cases of
the more general

Bochner’s theorem
An embedding Φ : SN → Rp defines a right-invariant kernel
K (σ1, σ2) = Φ(σ1)>Φ(σ2) if and only there exists φ : SN → R such that

∀σ1, σ2 ∈ SN , K (σ1, σ2) = φ(σ−1
2 σ1)

and
∀λ ∈ Λ , φ̂(ρλ) � 0

where for any f : SN → R, the Fourier transform of f is

∀λ ∈ Λ , f̂ (ρλ) =
∑

σ∈SN

f (σ)ρλ(σ)

with {ρλ : λ ∈ Λ} the irreductible representations of the symmetric
group.

Permutations as intermediate / output?

Ranking operator:

rank(−15,2.3,20,−2) = (4,2,1,3)

Main problem:

x ∈ RN 7→ rank(x) ∈ SN is not differentiable

Optimal transport (OT)

Given a cost matrix C ∈ Rn×n (where Cij is the cost of moving the i-th
point to the j-th location), OT solves

min
P∈Bn
〈P,C〉

where Bn =
{

P ∈ Rn×n
+ |P1n = P>1n = 1n

}
is the Birkhoff polytope.

From OT to rank

Lemma
Take

y ∈ Rn with y1 < . . . < yn,
h ∈ C2(R2) and ∂2h/∂x∂y > 0 (eg, h(a,b) = (b − a)2).

For any x ∈ Rn, let C(x) ∈ Rn×n given by C(x)ij = h(yi , xj). Then

argmin
P∈Bn

〈P,C(x)〉 = Πσ(x) .

density ⇢ and apply it pointwise to the K-CDFs, or consider empirical quantiles f = (f1, . . . , fm)
at levels b and mix them using the optimal transport plan. The K-sort operator operates convex
combinations of CDF values (stored in b) while the K-quantile operator mixes quantiles and values
contained in x directly. Because these quantities are only defined pointwise (we output vectors and
not functions) and depend on the ordering of a,x,b,y, f we drop our reference to measure ⇠ in
notations.
Definition 1. Suppose P? 2 U(a,b) is optimal for (1). By analogy to the formulas provided in
Proposition 2, we call the two first vectors below the K-CDF and K-quantiles of a,x evaluated using
b,y. We define next the K-quantile normalizations of a,x using ⇢ or and respectively b, as:

eF (a,x;b,y)
def.
= a�1 � (P?b) 2 [0, 1]n, eQ (a,x;b,y)

def.
= b�1 � (PT

? x) 2 Om,

eT⇢ (a,x,b,y)
def.
= Q⇢(eF (a,x;b,y)) 2 Rn, eTf (a,x,b,y)

def.
= a�1 � (P?f) 2 Rn.

x1 x2 x3x4 x5

y5y4y3y2y1

x1 x2 x3x4 x5

y1

�? = (4, 5, 1, 2, 3)

y2
y3

P? =

�
.08 .12

.04 .16
.2

.2

.2

�
2 U

✓
15

5
,
�

.48

.16

.36

�◆

F =

�
.6
.8
1
.2
.4

�
, Q =

�
x4
x5
x1
x2
x3

�
= x��

.48

.64
1

x1
x2
x3
x4
x5

x1 x2 x3x4 x5

y1
y2

y3

(a)

(b)

(c)

eF =

�
.576
.928
1

.48

.48

�
, eQ =

�
.166 x1+.4167 (x4+x5)

.75 x1+.25 x2
.444 x2+.556 x3

�

Figure 1: (a) sorting seen as transporting optimally
x to y. (b) Kantorovich sorting generalizes the latter
by considering target measures y of different num-
ber of points m = 3 6= n = 5 as well as non-
uniform weights (here .48, .16 and .36). K-CDF and
K-Quantiles are a direct generalization of the original
quantities and operate by mixing CDF values from b

to create eF or mixing original values x to form a set
of m quantiles w.r.t. the cumulative sum of b. (c) En-
tropy regularized OT generalizes further K-operations
by solving OT with the Sinkhorn algorithm which
results in dense yet peaked transport plans.

The K-CDF vector eF is a vector of size n con-
taining an approximate CDF for each entry
for x in that order. eQ is a split-quantile op-
erator outputting m increasing values which
are each, respectively, averages of some of
the entries in x. The fact that these values
are increasing can be obtained by a simple
argument in which ⇠ and ⌫ are cast again
as uniform measures of the same size using
duplicated supports xi and yj , and then use
the monotonicity given by the third identity
of Proposition 2. Finally, two soft-quantile
operators are proposed, using either the quan-
tiles of a reference density ⇢ evaluated at
the soft-CDF levels, or directly averaging
the quantiles of distribution f through P?.
Note that when f and y coincide, the vector
eTy (a,x,b,y) is also known as the barycen-
tric projection of x[20, Remark 4.4].

Equivalence between sort and CDF. A sort-
ing locates n elements within the set of in-
dices in {1, . . . , n}. the empirical CDF does
the same within {1/n, . . . , (n�1)/n, 1}. Up
to a constant they are therefore the same
thing. One could equivalently define a K-
sort e� (a,x;b,y) that would be simply equal
to m eF (a,x;b,y). Because these quantities
are redundant we only keep the CDF opera-
tor which is more versatile since it is always
valued in [0, 1].

Non-differentiability These notations
hardly make sense, but notice that @P?/@x
is, very much like the sorting operation s
as argued above, a null Jacobian almost
everywhere. This is evident from Figure 2 as
one can see that an infinitesimal change in x does not change P? (notice that an infinitesimal change
in a would, and that Jacobian would involve North-west corner type mass transfers). We solve this
issue next using regularized OT.

3 Sinkhorn, Sorting CDF and Quantile Operators

All of the Kantorovich operators are expressed as functions of an optimal solutions P? of the
OT linear program. Because of this, these quantities are not differentiable w.r.t any of the inputs

4

Differentiable permutation matrix

density ⇢ and apply it pointwise to the K-CDFs, or consider empirical quantiles f = (f1, . . . , fm)
at levels b and mix them using the optimal transport plan. The K-sort operator operates convex
combinations of CDF values (stored in b) while the K-quantile operator mixes quantiles and values
contained in x directly. Because these quantities are only defined pointwise (we output vectors and
not functions) and depend on the ordering of a,x,b,y, f we drop our reference to measure ⇠ in
notations.
Definition 1. Suppose P? 2 U(a,b) is optimal for (1). By analogy to the formulas provided in
Proposition 2, we call the two first vectors below the K-CDF and K-quantiles of a,x evaluated using
b,y. We define next the K-quantile normalizations of a,x using ⇢ or and respectively b, as:

eF (a,x;b,y)
def.
= a�1 � (P?b) 2 [0, 1]n, eQ (a,x;b,y)

def.
= b�1 � (PT

? x) 2 Om,

eT⇢ (a,x,b,y)
def.
= Q⇢(eF (a,x;b,y)) 2 Rn, eTf (a,x,b,y)

def.
= a�1 � (P?f) 2 Rn.

x1 x2 x3x4 x5

y5y4y3y2y1

x1 x2 x3x4 x5

y1

�? = (4, 5, 1, 2, 3)

y2
y3

P? =

�
.08 .12

.04 .16
.2

.2

.2

�
2 U

✓
15

5
,
�

.48

.16

.36

�◆

F =

�
.6
.8
1
.2
.4

�
, Q =

�
x4
x5
x1
x2
x3

�
= x��

.48

.64
1

x1
x2
x3
x4
x5

x1 x2 x3x4 x5

y1
y2

y3

(a)

(b)

(c)

eF =

�
.576
.928
1

.48

.48

�
, eQ =

�
.166 x1+.4167 (x4+x5)

.75 x1+.25 x2
.444 x2+.556 x3

�

Figure 1: (a) sorting seen as transporting optimally
x to y. (b) Kantorovich sorting generalizes the latter
by considering target measures y of different num-
ber of points m = 3 6= n = 5 as well as non-
uniform weights (here .48, .16 and .36). K-CDF and
K-Quantiles are a direct generalization of the original
quantities and operate by mixing CDF values from b

to create eF or mixing original values x to form a set
of m quantiles w.r.t. the cumulative sum of b. (c) En-
tropy regularized OT generalizes further K-operations
by solving OT with the Sinkhorn algorithm which
results in dense yet peaked transport plans.

The K-CDF vector eF is a vector of size n con-
taining an approximate CDF for each entry
for x in that order. eQ is a split-quantile op-
erator outputting m increasing values which
are each, respectively, averages of some of
the entries in x. The fact that these values
are increasing can be obtained by a simple
argument in which ⇠ and ⌫ are cast again
as uniform measures of the same size using
duplicated supports xi and yj , and then use
the monotonicity given by the third identity
of Proposition 2. Finally, two soft-quantile
operators are proposed, using either the quan-
tiles of a reference density ⇢ evaluated at
the soft-CDF levels, or directly averaging
the quantiles of distribution f through P?.
Note that when f and y coincide, the vector
eTy (a,x,b,y) is also known as the barycen-
tric projection of x[20, Remark 4.4].

Equivalence between sort and CDF. A sort-
ing locates n elements within the set of in-
dices in {1, . . . , n}. the empirical CDF does
the same within {1/n, . . . , (n�1)/n, 1}. Up
to a constant they are therefore the same
thing. One could equivalently define a K-
sort e� (a,x;b,y) that would be simply equal
to m eF (a,x;b,y). Because these quantities
are redundant we only keep the CDF opera-
tor which is more versatile since it is always
valued in [0, 1].

Non-differentiability These notations
hardly make sense, but notice that @P?/@x
is, very much like the sorting operation s
as argued above, a null Jacobian almost
everywhere. This is evident from Figure 2 as
one can see that an infinitesimal change in x does not change P? (notice that an infinitesimal change
in a would, and that Jacobian would involve North-west corner type mass transfers). We solve this
issue next using regularized OT.

3 Sinkhorn, Sorting CDF and Quantile Operators

All of the Kantorovich operators are expressed as functions of an optimal solutions P? of the
OT linear program. Because of this, these quantities are not differentiable w.r.t any of the inputs

4

Pε(x) = argmin
P∈Bn

〈P,C(x)〉 − εH(P)

Figure 2: Behaviour of the S-CDF eF ` (a,x;b,y) and S-Quantile operators eQ` (a,x;b,y) with
varying parameters. y = (0, . . . , m�1)/(m�1) is the regular grid in [0, 1]. Top-left: m = n means
that x is sorted against a sequence of its size. Both operators yield CDF and quantile functions that
are indistinguishable from the real ones (not plotted). Top-middle: stronger regularization strength "
implies that both curves are compressed vertically (transportation increasingly looks like a simple
averaging and therefore by taking convex combinations tends to erase extreme values). Top-right:
smaller ` means that the marginals of b are no longer fitted, resulting in quantile values that are
wrong, typically in the upper and lower quantiles. Bottom-left: smaller m = 5 values with uniform
b. Bottom-middle: randomized b. Bottom-right: b designed to highlight a particular quantile value,
as explained in Figure 3

a,x,b,y, f nor even ⇢ [4, §5]. To obtain differentiability, we consider a differentiable variant of the
Kantorovich quantities outlined in §2. More specifically, we consider the entropic regularization of
OT problems [8] as detailed in [20, §4]. Such a regularization renders the optimal transport unique,
therefore ensuring the existence of a gradient. Additionally, the solution to a regularized OT problem
is a dense matrix, which can therefore carry out gradient information (i.e. more arrows in plot (c) of
Figure (2)). We define a regularization strength " > 0

P "
?

def.
= argmin

P2U(a,b)

hP, Cxy i � "H(P).

Algorithm 1: Sinkhorn
Inputs: a,b,x,y, ", `
K e�Cxy/",u0 = 1n;
for t 0 to `� 1 do

vt+1 b/KT ut

ut+1 a/Kvt+1

end
Result: u`, K,v`

The optimal solution P "
? is the fixed point of the Sinkhorn iteration,

which consists in computing recursively updates outlined in Alg. 1.
We will consider the result outputted by the Sinkhorn algorithm after
a fixed budget of iteration, typically ` = 100 in our experiments.
The number of iterations required to converge to the solution will
depend typically on "[10], namely the smaller " the more iterations `
are required to obtain that P`

def.
= diag(u`)K diag(v`) has the desired

marginals. By appending an ` superscript to all quantities presented
in Definition 1 we obtain Sinkhorn definitions for sorting, CDFs and
quantile functions, i.e., S-sort, S-CDF, S-quantiles and S-quantile
normalization operators. Note that all of the operations are recovered
by replacing P? by a smooth solutions P` in Definition 1. However,
we write them as outputs of the Sinkhorn algorithm for clarity.
Definition 2 (Sinkhorn-quantiles). Given a regularization strength " > 0 and a number of iterations
` � 0, the S-sort, S-CDF, S-quantiles, and S-quantile normalization operators of (a,x) read

eF ` (a,x;b,y)
def.
= (a�1 � u`)K(v` � b) 2 [0, 1]n, eQ` (a,x;b,y)

def.
= (b�1 � u`)K(v` � x) 2 Rm,

eT `
⇢ (a,x,b,y)

def.
= Q⇢(eF ` (a,x;b,y)) 2 Rn, eT `

f (a,x,b,y)
def.
= (a�1 � u`)K(v` � f) 2 Rn

Sensitivity to " and `. Sinkhorn operators depend explicitly on regularization strength " and number
of iterations `. While we did not pay much attention to ` in our experimental validations (setting ` to
100 typically ensures that the Sinkhorn algorithm converges in all cases, which is easy to monitor), "
is a crucial “temperature” parameter comparable to that used by [11]. While it might be tempting to
believe to choose small values ", one must remember that in that case the gradients typically vanish,

5

P = diag(u`)K diag(v`) is the differentiable approximate
permutation matrix of the input vector x
Complexity O(nm`), GPU-friendly

Differentiable sort and rank

Sε(x) = Pε(x)x Rε(x) = Pε(x)>(1,2, . . . ,n)>

Figure 2: Behaviour of the S-ranks eR" (a,x;b,y) and S-sort operators eS" (a,x;b,y) as a function
of ". Here n = m = 10, b is uniform and y = (0, . . . , m � 1)/(m � 1) is the regular grid in
[0, 1]. (left) input data x presented as a bar plot. (center) Vector output of eR" (a,x;b,y) (various
continuous) ranks as a function of ". When " is small, one recovers an integer valued vector of ranks.
As " increases, regularization kicks in and produces mixtures of rank values that are continuous.
These mixed ranks are closer for values that are close in absolute terms, as is the case with the 0-th
and 9-th index of the input vector whose continuous ranks are almost equal when " ⇡ 10�2. (right)
vector of "soft" sorted values. These converge to the average of values in x as " is increased.

Consider first a regularization strength " > 0 to define the solution to the regularized OT problem:

P "
? := argmin

P2U(a,b)

hP, Cxy i � "H(P) , where H(P) = �
X

i,j

Pij (log Pij � 1) .

One can easily show [10] that P "
? has the factorized form D(u)KD(v), where K = exp(�Cxy/")

and u 2 Rn and v 2 Rm are fixed points of the Sinkhorn iteration outlined in Alg. 1. To differentiate
P "
? w.r.t. a or x one can use the implicit function theorem, but this would require solving a linear

system using K. We consider here a more direct approach, using algorithmic differentiation of the
Sinkhorn iterations, after a number ` of iterations needed for Alg. 1 to converge [19, 4, 15]. That
number ` depends on the choice of " [16]: typically, the smaller ", the more iterations ` are needed to
ensure that each successive update in v,u brings the column-sum of the iterate D(u)KD(v) closer
to b, namely that the difference between v�KT u and b (as measured by a discrepancy function � as
used in Alg. 1) falls below a tolerance parameter ⌘. Assuming P "

? has been computed, we introduce
Sinkhorn ranking and sorting operators by simply appending an " subscript to the quantities presented
in Def. 1, and replacing P? in these definitions by the regularized OT solution P "

? = D(u)KD(v).

Algorithm 1: Sinkhorn
Inputs: a,b,x,y, ", h, ⌘
Cxy [h(yj � xi)]ij ;
K e�Cxy/",u = 1n;
repeat

v b/KT u, u a/Kv
until �(v �KT u,b) < ⌘;
Result: u,v, K

Definition 2 (Sinkhorn Rank & Sort). Given a regularization
strength " > 0, run Alg.1 to define

eR" (a,x;b,y) := na�1 � u �K(v � b) 2 [0, n]n,

eS" (a,x;b,y) := b�1 � v �KT (u � x) 2 Rm.

Sensitivity to ". Parameter " plays the same role as other
temperature parameters in previously proposed smoothed
sorting operators [29, 36, 18]: the smaller " is, the closer the
Sinkhorn operator’s output is to the original vectors of ranks
and sorted values; The bigger ", the closer P "

? to matrix abT , and therefore all entries of eR" collapse
to the average of nb̄, while all entries of eS" collapse to the weigted average (using a) of x, as
illustrated in Fig. 2. Although choosing a small value for " might seem natural, in the sense that
eR", eS" approximate more faithfully R, S, one should not forget that this would result in recovering
the deficiencies of R, S in terms of differentiability. When learning with such operators, it may
therefore be desirable to use a value for " that is large enough to ensure @P "

? /@x has non-null entries.
We usually set " = 10�2 or 10�3 when x,y lie in [0,1] as in Fig. 2. We have kept " fixed throughout
Alg. 1, but we do notice some speedups using scheduling as advocated by [34].

5

Soft quantization and soft quantiles

Take m = 3, y = (0,0.5,1), b = (τ − t/2, t , τ + t/2)

Overall complexity O(n`)

Parallelization. The Sinkhorn computations laid out in Algorithm 1 imply the application of kernels
K or KT to vectors v and u of size m and n respectively. These computation can be carried out in
parallel to compare S vectors x1, . . . ,xS 2 Rn of real numbers, with respective probability weights
a1, . . . ,aS , to a single vector y with weights b. To do so, one can store all kernels Ks := e�Cs/" in
a tensor of size S ⇥ n⇥m, where Cs = Cxsy.

Numerical Stability. When using small regularization strengths, we recommend to cast Sinkhorn
iterations in the log-domain by considering the following stabilized iterations for each pair of vectors
xs,y, resulting in the following updates (with ↵ and � initialized to 0n and 0m),

↵ " log a + min"

⇣
Cxsy �↵1T

m � 1n�
T
⌘

+ ↵,

� " log b + min"

�
CT

xsy � 1m↵T � �1T
n

�
+ �,

(3)

where min" is the soft-minimum operator applied linewise to a matrix to output a vector, namely for
M 2 Rn⇥m, min"(M) 2 Rn and is such that [min"(M)]i = �"(log

P
j e�Mij/"). The rationale

behind the substractions/additions of ↵ and � above is that once a Sinkhorn iteration is carried out,
the terms inside the parenthesis above are normalized, in the sense that once divided by ", their
exponentials sum to one (they can be used to recover a coupling). Therefore, they must be negative,
which improves the stability of summing exponentials [28, §4.4].

Algorithm 2: Sinkhorn Ranks/Sorts

Inputs: (as,xs)s 2 (⌃n ⇥ Rn)S , (b,y) 2 ⌃m ⇥Om, h, ", ⌘, eg.
8s, exs = eg(xs), Cs = [h(yj � (exs)i)]ij , ↵s = 0n,�s = 0m.
repeat
8s,�s " log bs + min"

�
CT

s � 1m↵T
s � �s1

T
n

�
+ �s

8s,↵s " log as + min"

⇣
Cs �↵s1

T
m � 1n�

T
s

⌘
+ ↵s

until maxs �
�
exp

�
CT

xsy � 1m↵T
s � �s1

T
n

�
1n,b

�
< ⌘;

8s, eR"(xs) a�1
s � exp

⇣
Cxsy �↵s1

T
m � 1n�

T
s

⌘
b,

8s, eS"(xs) b�1
s � exp

�
CT

xsy � 1m↵T
s � �s1

T
n

�
xs.

Result:
⇣
eR"(xs), eS"(xs)

⌘
s
.

Cost function. Any nonneg-
ative convex function h can
be used to define the ground
cost, notably h(u) = |u|p,
with p set to either 1 or 2. An-
other important result that we
inherit from OT is that, as-
suming " is close enough to 0,
the transport matrices P ?

" we
obtain should not vary under
the application of any increas-
ing map to each entry in x or
y. We take advantage of this
important result to stabilize
further Sinkhorn’s algorithm,
and at the same time resolve
the thorny issue of being able
to settle for a value for " that can be used consistently, regardless of the range of values in x. We
propose to set y to be the regular grid on [0, 1] with m points, and rescale the input entries of x so
that they cover [0, 1] to define the cost matrice Cxy. We rescale the entries of x using an increasing
squashing function, such as arctan or a logistic map. We also notice in our experiments that it is
important to standardize input vectors x before squashing them into [0, 1]n, namely to apply, given a
squashing function g, the map g̃ on x before computing the cost matrix Cxy:

g̃ : x 7! g

x� (xT 1n)1n

1p
n
kx� (xT 1n)1nk2

!
. (4)

The choices that we have made are summarized in Alg. 2, but we believe there are opportunities to
perfect them depending on the task.

0 1/2 1

� = 30%

0.65t = 0.10.25

Figure 3: Computing the 30% quantile
of 20 values as the weighted average of
values that are selected by the Sinkhorn
algorithm to send their mass onto filler
weight t located halfway in [0, 1], and
“sandwiched” by two masses approxi-
mately equal to ⌧, 1� ⌧ .

Soft ⌧ quantiles. To illustrate the flexibility offered by
the freedom to choose a non-uniform target measure b,y,
we consider the problem of computing a smooth approxi-
mation of the ⌧ quantile of a discrete distribution ⇠, where
⌧ 2 [0, 1]. This smooth approximation can be obtained by
transporting ⇠ towards a tilted distribution, with weights
split roughly as ⌧ on the left and (1 � ⌧) on the right,
with the addition of a small “filler” weight in the mid-
dle. This filler weight is set to a small value t, and
is designed to “capture” whatever values may lie close
to that quantile. This choice results in m = 3, with

6

https://github.com/google-research/google-research/tree/master/
soft_sort

https://github.com/google-research/google-research/tree/master/soft_sort
https://github.com/google-research/google-research/tree/master/soft_sort

Application: soft top-k loss

4 Learning with Sinkhorn-CDFs and Sinkhorn-Quantiles

Differentiable Approximation to the top-k Loss. We consider, given a set L = {1, . . . , L} of
labels, an input points taken in a space ⌦. A parameterized multiclass classifier on ⌦ is a function
f✓ : ⌦! RL. The function decides the class attributed to ! by evaluating l? 2 argmaxl f✓(!)l. To
train the classifier through a training set {(!i, li)} 2 (⌦ ⇥ L)N , one typically resorts to using the
cross-entropy loss, which results in the minimization of min✓

P
i(�f✓(!i)li +

P
j log f✓(!i)j).

We propose a differentiable variant of the 0/1 loss that is avoid combinatorial approaches [19, 24]
and is closer to the quantile approach of in [7]. Given a query !, looking for the index of the selected
output l? is equivalent to finding the index in the empirical CDF of the vector f✓(!) that is equal to 1.
Given a pair (!0, l0), the 0/1 loss of the classifier is therefore, using an exact sort as in Definition 1:

top-1 loss(f✓(!0), l0) = H
⇣
1� (eF

�
1L

L , f✓(!); 1m

m ,y
�
)l0

⌘
,

Figure 4: Error bars for test accuracy curves
on CIFAR-100 and CIFAR-10 using the same
network (averages over 12 runs).

where H is the heaviside function: H(u) = 1 if u >
0 and H(u) = 0 for u  0. More generally, if the
CDF of the correct label is bigger than 1� k/L, then
that label is sure to be caught in the tok-k accuracy.
The top-k accuracy is therefore the same quantity as
above, where 1� F̃ is replaced by 1� F̃ � k/L.

Naturally, these 0/1 losses are particularly unstable
since they very quickly switch from assigning a 0 or
a 1 loss depending on the index of f✓(!)l0 within its
pairs. That standing within the vector f✓(!) itself
is also particularly unstable. The differentiable loss
that we propose, as a replacement for cross-entropy
(or more generalized top-k cross entropy losses[3]),
leverages therefore both the S-CDF operator and a
function H . Moreover, since we will use S-CDFs
which are always within the boundaries of [0, 1], we
propose to modify this loss by considering a smooth
increasing function J from [0, 1] to R:

S-top-k-loss(f✓(!0), l0) = Jk

1�

✓
eF `

✓
1L

L
, f✓(!);

1m

m
,y

◆◆

l0

!
,

We have considered functions Jk(u) = |u� k
L |+ and mostly tested k = 1 (higher k’s gave comparable

results). We train a vanilla CNN (4 Conv2D with 2 max-pooling layers, ReLU activation, 2 fully
connected layers, batchnorm on each) on CIFAR-10 and CIFAR-100. Although we do not expect
to beat cross-entropy on these benchmarks using a new loss (most of the training architectures
and optimization strategies have been considered under the light of the cross entropy), we recover
comparable results. Here " = 0.01, ` = 100 and we use the squared Euclidean metric h(u) = u2.

Quantile Regression. The goal of quantile regression [12] is to minimize, given a vector of response
variables z1, . . . , zN 2 R and regressor variables W = [w1, . . . ,wN] 2 Rd⇥N , the ⌧ -th quantile
of the loss between response and predicted value, namely writing x = (zi � f✓wi)i and setting
a = 1N/N and ⇠ the measure with weights a and support x, to minimize w.r.t. ✓ the ⌧ -th quantile of
⇠. This operation is usually carried out by minimizing a polyhedral function that uses the so called
pinball loss [2] at level ⌧ , loss⌧ (y, ypred) = ⌧ |y � ypred|+ + (1� ⌧)|y � ypred|� .

While the computational challenges associated with the optimization of such polyhedral functions [13]
have hindered large scale usage of quantile regression for many years, recent implementations directly
do away with these considerations to use instead stochastic gradient descent [22]. We try instead to
minimize directly the ⌧ -S-quantile operator (4). We recover code from [22] and use the databases
they shared, and consider the same regressor architecture, namely a 2 hidden layer NN with hidden
layer size 64, ADAM optimizer and steplength 1e� 4. Results are summarized in the table below.
For each quantile/dataset, we display the pinball loss evaluated on a held-out test set. Smaller is
better. Our results show that we are usually equivalent but sometimes worse than the direct approach,
highlighting issues which we believe are related to the handling of outliers in the Sinkhorn algorithm.

7

4 Learning with Sinkhorn-CDFs and Sinkhorn-Quantiles

Differentiable Approximation to the top-k Loss. We consider, given a set L = {1, . . . , L} of
labels, an input points taken in a space ⌦. A parameterized multiclass classifier on ⌦ is a function
f✓ : ⌦! RL. The function decides the class attributed to ! by evaluating l? 2 argmaxl f✓(!)l. To
train the classifier through a training set {(!i, li)} 2 (⌦ ⇥ L)N , one typically resorts to using the
cross-entropy loss, which results in the minimization of min✓

P
i(�f✓(!i)li +

P
j log f✓(!i)j).

We propose a differentiable variant of the 0/1 loss that is avoid combinatorial approaches [19, 24]
and is closer to the quantile approach of in [7]. Given a query !, looking for the index of the selected
output l? is equivalent to finding the index in the empirical CDF of the vector f✓(!) that is equal to 1.
Given a pair (!0, l0), the 0/1 loss of the classifier is therefore, using an exact sort as in Definition 1:

top-1 loss(f✓(!0), l0) = H
⇣
1� (eF

�
1L

L , f✓(!); 1m

m ,y
�
)l0

⌘
,

Figure 4: Error bars for test accuracy curves
on CIFAR-100 and CIFAR-10 using the same
network (averages over 12 runs).

where H is the heaviside function: H(u) = 1 if u >
0 and H(u) = 0 for u  0. More generally, if the
CDF of the correct label is bigger than 1� k/L, then
that label is sure to be caught in the tok-k accuracy.
The top-k accuracy is therefore the same quantity as
above, where 1� F̃ is replaced by 1� F̃ � k/L.

Naturally, these 0/1 losses are particularly unstable
since they very quickly switch from assigning a 0 or
a 1 loss depending on the index of f✓(!)l0 within its
pairs. That standing within the vector f✓(!) itself
is also particularly unstable. The differentiable loss
that we propose, as a replacement for cross-entropy
(or more generalized top-k cross entropy losses[3]),
leverages therefore both the S-CDF operator and a
function H . Moreover, since we will use S-CDFs
which are always within the boundaries of [0, 1], we
propose to modify this loss by considering a smooth
increasing function J from [0, 1] to R:

S-top-k-loss(f✓(!0), l0) = Jk

1�

✓
eF `

✓
1L

L
, f✓(!);

1m

m
,y

◆◆

l0

!
,

We have considered functions Jk(u) = |u� k
L |+ and mostly tested k = 1 (higher k’s gave comparable

results). We train a vanilla CNN (4 Conv2D with 2 max-pooling layers, ReLU activation, 2 fully
connected layers, batchnorm on each) on CIFAR-10 and CIFAR-100. Although we do not expect
to beat cross-entropy on these benchmarks using a new loss (most of the training architectures
and optimization strategies have been considered under the light of the cross entropy), we recover
comparable results. Here " = 0.01, ` = 100 and we use the squared Euclidean metric h(u) = u2.

Quantile Regression. The goal of quantile regression [12] is to minimize, given a vector of response
variables z1, . . . , zN 2 R and regressor variables W = [w1, . . . ,wN] 2 Rd⇥N , the ⌧ -th quantile
of the loss between response and predicted value, namely writing x = (zi � f✓wi)i and setting
a = 1N/N and ⇠ the measure with weights a and support x, to minimize w.r.t. ✓ the ⌧ -th quantile of
⇠. This operation is usually carried out by minimizing a polyhedral function that uses the so called
pinball loss [2] at level ⌧ , loss⌧ (y, ypred) = ⌧ |y � ypred|+ + (1� ⌧)|y � ypred|� .

While the computational challenges associated with the optimization of such polyhedral functions [13]
have hindered large scale usage of quantile regression for many years, recent implementations directly
do away with these considerations to use instead stochastic gradient descent [22]. We try instead to
minimize directly the ⌧ -S-quantile operator (4). We recover code from [22] and use the databases
they shared, and consider the same regressor architecture, namely a 2 hidden layer NN with hidden
layer size 64, ADAM optimizer and steplength 1e� 4. Results are summarized in the table below.
For each quantile/dataset, we display the pinball loss evaluated on a held-out test set. Smaller is
better. Our results show that we are usually equivalent but sometimes worse than the direct approach,
highlighting issues which we believe are related to the handling of outliers in the Sinkhorn algorithm.

7

Application: learning to sort

Task: Sort 5 numbers between 0000 and 9999 (concatenation of
MNIST digits) (Grover et al, 2019)

algorithm n=3 n=5 n=7 n=9 n=15
Stochastic NeuralSort 0.920 (0.946) 0.790 (0.907) 0.636 (0.873) 0.452 (0.829) 0.122 (0.734)

Deterministic NeuralSort 0.919 (0.945) 0.777 (0.901) 0.610 (0.862) 0.434 (0.824) 0.097 (0.716)
Our 0.928 (0.950) 0.811 (0.917) 0.656 (0.882) 0.497 (0.847) 0.126 (0.742)

Table 1: Sorting exact and partial precision on the neural sort task averaged over 10 runs. Our
method performs better than the method presented in [18] for all the sorting tasks, with the exact
same network architecture.

where H is the heaviside function: H(u) = 1 if u > 0 and H(u) = 0 for u  0. More generally, if
for some labelled input !, the entry [R(f✓)]lo is bigger than L� k + 1, then that labelled example
has a top-k error of 0. Conversely, if [R(f✓)]l is smaller than L � k + 1, then the top-k error is 1.
The top-k error can be therefore formulated as in (6), where the argument L� [R(f✓(!)]l within the
Heaviside function is replaced by L� [R(f✓(!)]l � k + 1.

The 0/1 and top-k losses are unstable on two different counts: H is discontinuous, and so is R
with respect to the entries f✓(!). The differentiable loss that we propose, as a replacement for
cross-entropy (or more generalized top-k cross entropy losses [1]), leverages therefore both the
Sinkhorn rank operator and a smoothed Heaviside like function. Because Sinkhorn ranks are always
within the boundaries of [0, L], we propose to modify this loss by considering a continuous increasing
function Jk from [0, L] to R:

eLk,"(f✓(!), l) = Jk

✓
L�


eR"

✓
1L

L
, f✓(!);

1L

L
,
1L

L
, h

◆�

l

◆
,

We propose the simple family of ReLU losses Jk(u) = max(0, u � k + 1), and have focused our
experiments on the case k = 1. We train a vanilla CNN (4 Conv2D with 2 max-pooling layers,
ReLU activation, 2 fully connected layers, batchnorm on each) and a Resnet18 on CIFAR-10 and
CIFAR-100. Fig. 4 and 5 report test-set classification accuracies / epochs. We used " = 10�3,
⌘ = 10�3, a squared distance cost h(u) = u2 and a stepsize of 10�4 with the ADAM optimizer.

Figure 6: Test accuracy on the simultaneous
MNIST CNN / sorting task proposed in [18] (aver-
age of 12 runs)

Learning CNNs by sorting handwritten num-
bers. We use the MNIST experiment setup
in [18], in which a CNN is given n numbers
between between 0 and 9999 given as 4 con-
catenated MNIST images. The labels are the
ranks (within n pairs) of each of these n num-
bers. We use the code kindly made available by
the authors. We use 100 epochs, and confirm
experimentally that S-sort performs on par with
their neural-sort function. We set " = 0.005.

Least quantile regression. The goal of least
quantile regression [32] is to minimize, given
a vector of response variables z1, . . . , zN 2 R
and regressor variables W = [w1, . . . ,wN] 2
Rd⇥N , the ⌧ quantile of the loss between re-
sponse and predicted values, namely writing
x = (|zi � f✓(wi)|)i and setting a = 1N/N
and ⇠ the measure with weights a and support
x, to minimize w.r.t. ✓ the quantile ⌧ of ⇠.

We proceed by drawing mini-batches of size 512. Our baseline method (labelled " = 0) consists in
identifying which point, among those 512, has an error that is equal to the desired quantile, and then
take gradient steps according to that point. Our proposal is to consider the soft ⌧ quantile q̃"(x; ⌧, t)
operator defined in (5), using for the filler weight t = 1/512. This is labelled as " = 10�2. We use
the datasets considered in [31] and consider the same regressor architecture, namely a 2 hidden layer
NN with hidden layer size 64, ADAM optimizer and steplength 10�4. Results are summarized in
Table2. We consider two quantiles, ⌧ = 50% and 90%.

For each quantile/dataset pair, we report the original (not-regularized) ⌧ quantile of the errors
evaluated on the entire training set, on an entire held-out test set, and the MSE on the test set of the

8

Conclusion

SUQUAN	Kendall	

density ⇢ and apply it pointwise to the K-CDFs, or consider empirical quantiles f = (f1, . . . , fm)
at levels b and mix them using the optimal transport plan. The K-sort operator operates convex
combinations of CDF values (stored in b) while the K-quantile operator mixes quantiles and values
contained in x directly. Because these quantities are only defined pointwise (we output vectors and
not functions) and depend on the ordering of a,x,b,y, f we drop our reference to measure ⇠ in
notations.
Definition 1. Suppose P? 2 U(a,b) is optimal for (1). By analogy to the formulas provided in
Proposition 2, we call the two first vectors below the K-CDF and K-quantiles of a,x evaluated using
b,y. We define next the K-quantile normalizations of a,x using ⇢ or and respectively b, as:

eF (a,x;b,y)
def.
= a�1 � (P?b) 2 [0, 1]n, eQ (a,x;b,y)

def.
= b�1 � (PT

? x) 2 Om,

eT⇢ (a,x,b,y)
def.
= Q⇢(eF (a,x;b,y)) 2 Rn, eTf (a,x,b,y)

def.
= a�1 � (P?f) 2 Rn.

x1 x2 x3x4 x5

y5y4y3y2y1

x1 x2 x3x4 x5

y1

�? = (4, 5, 1, 2, 3)

y2
y3

P? =

�
.08 .12

.04 .16
.2

.2

.2

�
2 U

✓
15

5
,
�

.48

.16

.36

�◆

F =

�
.6
.8
1
.2
.4

�
, Q =

�
x4
x5
x1
x2
x3

�
= x��

.48

.64
1

x1
x2
x3
x4
x5

x1 x2 x3x4 x5

y1
y2

y3

(a)

(b)

(c)

eF =

�
.576
.928
1

.48

.48

�
, eQ =

�
.166 x1+.4167 (x4+x5)

.75 x1+.25 x2
.444 x2+.556 x3

�

Figure 1: (a) sorting seen as transporting optimally
x to y. (b) Kantorovich sorting generalizes the latter
by considering target measures y of different num-
ber of points m = 3 6= n = 5 as well as non-
uniform weights (here .48, .16 and .36). K-CDF and
K-Quantiles are a direct generalization of the original
quantities and operate by mixing CDF values from b

to create eF or mixing original values x to form a set
of m quantiles w.r.t. the cumulative sum of b. (c) En-
tropy regularized OT generalizes further K-operations
by solving OT with the Sinkhorn algorithm which
results in dense yet peaked transport plans.

The K-CDF vector eF is a vector of size n con-
taining an approximate CDF for each entry
for x in that order. eQ is a split-quantile op-
erator outputting m increasing values which
are each, respectively, averages of some of
the entries in x. The fact that these values
are increasing can be obtained by a simple
argument in which ⇠ and ⌫ are cast again
as uniform measures of the same size using
duplicated supports xi and yj , and then use
the monotonicity given by the third identity
of Proposition 2. Finally, two soft-quantile
operators are proposed, using either the quan-
tiles of a reference density ⇢ evaluated at
the soft-CDF levels, or directly averaging
the quantiles of distribution f through P?.
Note that when f and y coincide, the vector
eTy (a,x,b,y) is also known as the barycen-
tric projection of x[20, Remark 4.4].

Equivalence between sort and CDF. A sort-
ing locates n elements within the set of in-
dices in {1, . . . , n}. the empirical CDF does
the same within {1/n, . . . , (n�1)/n, 1}. Up
to a constant they are therefore the same
thing. One could equivalently define a K-
sort e� (a,x;b,y) that would be simply equal
to m eF (a,x;b,y). Because these quantities
are redundant we only keep the CDF opera-
tor which is more versatile since it is always
valued in [0, 1].

Non-differentiability These notations
hardly make sense, but notice that @P?/@x
is, very much like the sorting operation s
as argued above, a null Jacobian almost
everywhere. This is evident from Figure 2 as
one can see that an infinitesimal change in x does not change P? (notice that an infinitesimal change
in a would, and that Jacobian would involve North-west corner type mass transfers). We solve this
issue next using regularized OT.

3 Sinkhorn, Sorting CDF and Quantile Operators

All of the Kantorovich operators are expressed as functions of an optimal solutions P? of the
OT linear program. Because of this, these quantities are not differentiable w.r.t any of the inputs

4

Machine learning beyond vectors, strings and graphs
Different embeddings of the symmetric group
Differentiable sorting and ranking
Can be generalized to other discrete operations

THANK YOU!

References

M. Cuturi, O. Teboul, and J.-P. Vert. Differentiable sorting using optimal transport: the Sinkhorn
CDF and quantile operator. In Adv. Neural. Inform. Process Syst. 31, 2019.

Y. Jiao and J.-P. Vert. The Kendall and Mallows kernels for permutations. In Proceedings of The
32nd International Conference on Machine Learning, volume 37 of JMLR:W&CP, pages
1935–1944, 2015. URL http://jmlr.org/proceedings/papers/v37/jiao15.html.

Y. Jiao and J.-P. Vert. The Kendall and Mallows kernels for permutations. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2017. doi: 10.1109/TPAMI.2017.2719680. URL
http://dx.doi.org/10.1109/TPAMI.2017.2719680.

Y. Jiao and J.-P. Vert. The weighted kendall and high-order kernels for permutations. Technical
Report 1802.08526, arXiv, 2018.

M. Le Morvan and J.-P. Vert. Supervised quantile normalisation. Technical Report 1706.00244,
arXiv, 2017.

J.-P. Serres. Linear Representations of Finite Groups. Graduate Texts in Mathematics.
Springer-Verlag New York, 1977. doi: 10.1007/978-1-4684-9458-7. URL
http://dx.doi.org/10.1007/978-1-4684-9458-7.

http://jmlr.org/proceedings/papers/v37/jiao15.html
http://dx.doi.org/10.1109/TPAMI.2017.2719680
http://dx.doi.org/10.1007/978-1-4684-9458-7

Harmonic analysis on SN

A representation of SN is a matrix-valued function ρ : SN → Cdρ×dρ

such that
∀σ1, σ2 ∈ SN , ρ(σ1σ2) = ρ(σ1)ρ(σ2)

A representation is irreductible (irrep) if it is not equivalent to the
direct sum of two other representations
SN has a finite number of irreps {ρλ : λ ∈ Λ} where Λ = {λ ` N}1
is the set of partitions of N
For any f : SN → R, the Fourier transform of f is

∀λ ∈ Λ , f̂ (ρλ) =
∑

σ∈SN

f (σ)ρλ(σ)

1λ ` N iff λ = (λ1, . . . , λr) with λ1 ≥ . . . ≥ λr and
∑r

i=1 λi = N

Right-invariant kernels

Bochner’s theorem
An embedding Φ : SN → Rp defines a right-invariant kernel
K (σ1, σ2) = Φ(σ1)>Φ(σ2) if and only there exists φ : SN → R such that

∀σ1, σ2 ∈ SN , K (σ1, σ2) = φ(σ−1
2 σ1)

and
∀λ ∈ Λ , φ̂(ρλ) � 0

	References

