Learning from ranks, learning to rank
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Beyond images and strings
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What if inputs or outputs are permutations?

3421/4321\4312 . . .
/ i @ Permutation: a bijection
o [1,N] = [1,N]

@ o(f) =rank of item i
@ Composition

(0102)(i) = o1 (02(7))

@ Sy the symmetric group
(] |SN| = NI

23




@ Rankings (as input or output)

(histogram equalization, quantile normalization...)



Goals

@ Permutations as input / intermediate:
o E Sy fg(o‘) € RP
How to define / optimize fy : Sy — RP?

o SUQUAN (Le Morvan and Vert, 2017), Kendall (Jiao and Vert,
2015, 2017, 2018)

@ Permutations as intermediate / output:
x € RN — o(x) € Sy = f(o(x)) € RP

How to differentiate the ranking operator o : RN — Sy?
e Sinkhorn ranking (Cuturi et al., 2019)



Permutations as inputs

@ Assume your data are permutations and you want to learn
f:Sy =R
@ A solutions: embed Sy to a Euclidean (or Hilbert) space
®: Sy — RP
and learn a linear function:
fs(0) = 87 ®(0)
@ The corresponding kernel is

K(oy,02) = ®(ay) " (02)



How to define the embedding ® : Sy — RP ?

@ Should encode interesting features
@ Should lead to efficient algorithms

@ Should be invariant to renaming of the items, i.e., the kernel
should be right-invariant

Voi,00,m € Sy, K(oym,00m) = K(01,02)



Some attempts

Kendall SUQUAN

- B -

(Jiao and Vert, 2015, 2017, 2018; Le Morvan and Vert, 2017)



SUQUAN embedding (Le Morvan and Vert, 2017)

@ Let ®(0) = I, the permutation representation (Serres, 1977):
1 ifo())=1,
[no]ij = ( ) .
0 otherwise.

@ Right invariant:

< (), ®(c") >=Tr (M N7) = Tr (MoM,1) = T (MoMy-1) = T (Myprm1)



Link with quantile normalization (QN)

@ Take o(x) = rank(x) with x € RN
@ Fix a target quantile f € R"
@ "Keep the order of x, change the values to "

WX = Loy < VX)) =Topof



How to choose a "good" target distribution?

gaussian distribution (mean=0, sd=1) uniform distribution bigaussian distribution
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Supervised QN (SUQUAN)

Standard QN:
@ Fix f arbitrarily
@ QN all samples to get W(xq),..., Vi(xn)
© Learn a model on normalized data, e.g.:

1 N
mein {N Zfi (fe(wf(xi)))}
i=1

SUQUAN: jointly learn f and the model:

Y
min {N > 4 (fe("’f(Xi)))}
) e



Experiments: CIFAR-10

@ Image classification into 10 classes (45 binary problems)
@ N =5,000 per class, p = 1,024 pixels
@ Linear logistic regression on raw pixels
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Experiments: CIFAR-10

@ Example: horse vs. plane
@ Different methods learn different quantile functions

original median SUQUAN BND
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Limits of the SUQUAN embedding

@ Linear model on ®(c) = MM, € RV*xN

@ Captures first-order information of the form "i-th feature ranked at
the j-th position"

@ What about higher-order information such as "feature i larger than
feature j"?



The Kendall embedding (Jiao and Vert, 2015, 2017)

o1y )_{1 it o(i) < o(j).

0 otherwise.



Geometry of the embedding

For any two permutations o, 0’ € Sy:
@ Inner product

O(0) Do) = D Lo(iy<o)loiy<ory) = Nelo,0")
1<i#j<n

ne = number of concordant pairs
@ Distance

[(0) = D) [P= D (Moo — Loi<o())? = 2Ng(0, ")

1<ij<n

ng = number of discordant pairs



Kendall and Mallows kernels

@ The Kendall kernel is
K:(o,0") = ne(o, )
@ The Mallows kernel is

YA>0 Kiy(o,0') = e (o)

Theorem (Jiao and Vert, 2015, 2017)

The Kendall and Mallows kernels are positive definite right-invariant
kernels and can be evaluated in O(N log N) time

Kernel trick useful with few samples in large dimensions
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Cayley graph of S4

@ Kondor and Barbarosa (2010)
proposed the diffusion kernel on the
Cayley graph of the symmetric group
generated by adjacent transpositions.

e Computationally intensive (O(N2V))
@ Mallows kernel is written as

Kif(o,o') = o),

where ngy(o, o’) is the shortest path
distance on the Cayley graph.

@ It can be computed in O(N log N)

@ Extension to weighted Kendall kernel
(Jiao and Vert, 2018)



Remark

The SUQUAN and Kendall representations are two particular cases of
the more general

Bochner’s theorem

An embedding ¢ : Sy — RP defines a right-invariant kernel
K(c1,02) = ®(01) T ®(02) if and only there exists ¢ : Sy — R such that

Vo1,00 € SN, K(U1702):¢(02_1U1)

and A
YAEA, d(py) =0

where for any f : Sy — R, the Fourier transform of f is
Aen, Hp) =D f(@)na(o)
oESN

with {p) : A € A} the irreductible representations of the symmetric
group.
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Permutations as intermediate / output?

@ Ranking operator:
rank(—15,2.3,20,-2) = (4,2,1,3)
@ Main problem:

x € RN — rank(x) € Sy is not differentiable



Permutations as intermediate / output?

@ Ranking operator:
rank(—15,2.3,20,-2) = (4,2,1,3)
@ Main problem:

x € RN rank(x) € Sy is not differentiable

Differentiable Ranks and Sorting
using Optimal Transport

Marco Cuturi  Olivier Teboul Jean-Philippe Vert
Google Research, Brain Team
{cuturi,oliviert, jpvert}@google.com



From optimal transport (OT) to rank
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@ For¢ =31, adyand v =31", by, where x;,y; € R:

def. . def. nxm
OT.(§v) = Penl}l(ralb)<P’ Cxy ), Where U(a,b) = {P € R?*™|P1,, = a, PT1, = b}

@ For a cost C(x;, y;) with C € C?(R?) and 92C/dxdy > 0, solving
OT is done in O(nlIn n) with the rank function by sorting x and y

@ If v is ordered, then the solution P is the permutation matrix of £

g: Y1 Y2

UKO%



Differentiable OT
Q?h Y2
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P. = argmin < P,C > —eH(P)
PeU(a,b)

Algorithm 1: Sinkhorn

Inputs: a,b,x,y,¢,/

K+ e /e uy=1,;

fort < O0to/ — 1do
Vipl < b/KTut

U1 ¢ a/Kvig
end
Result: uy, K, vy

@ P =diag(us)Kdiag(v,) is the differentiable approximate
permutation matrix of the input vector x

@ Complexity O(nm¢), GPU-friendly



Soft ranks and sort sort
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Algorithm 2: Sinkhorn Ranks/Sorts

Inputs: (a, x,), € (E,, x R™)5 (b,y) € X Qpny hye,1, G-
Vs, Xs = g(Xs) = [h(y] xs)l)]lj7 a; =0, ,8 =04
repeat

Vs, B, < elog by +m1nE(CT71ma - B,1 )+B5

Vs, as + eloga, + min, (CS — a1l — n,G'Z) + o
until max, A (exp (CL, — 1nal — B,17) 1,,b) <n;
Vs, }N%E(xs) «—a;loexp (Cqu a1l — ln,GT) b,

Vs, §s(x5) — b;1 o exp (CISy —1,af - BSIZ) Xg.
Result: (1725 (xs5), §E(xs)) K




Soft quantization and soft quantiles

@ Take m=3,y=(0,05,1),b= (7 —t/2,t,7+ t/2)
@ Overall complexity O(n¢)

T = 30%
{/r\Q S ‘@.}
1/2 1
0.25 t=20.1 0.65

https://github.com/google-research/google-research/tree/master/
soft_sort


https://github.com/google-research/google-research/tree/master/soft_sort
https://github.com/google-research/google-research/tree/master/soft_sort

Application: soft top-k loss
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Figure 4: Error bars for test accuracy curves
on CIFAR-100 and CIFAR-10 using the same
network (averages over 12 runs).



Application: learning to sort

@ Task: Sort 5 numbers between 0000 and 9999 (concatenation of
MNIST digits) (Grover et al, 2019)

all correct, n=5
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Conclusion

Kendall SUQUAN

-— -

P oty

@ Machine learning beyond vectors, strings and graphs
@ Different embeddings of the symmetric group
@ Differentiable sorting and ranking
@ Scalability? Robustness to adversarial attacks? Theoretical
properties?
MERCI!
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Harmonic analysis on Sy

@ A representation of Sy is a matrix-valued function p : Sy — C%*%
such that

Voy,00 € Sy,  p(o102) = p(o1)p(o2)
@ A representation is irreductible (irrep) if it is not equivalent to the
direct sum of two other representations

@ Sy has a finite number of irreps {py : A\ € A} where A = {\ - N}
is the set of partitions of N

@ Forany f: Sy — R, the Fourier transform of f is

VAEA, F(pa)= ) f(o)palo)

gESN

AENfA= (N, ) with > ...> XN and YL, A =N



Right-invariant kernels

Bochner’s theorem

An embedding ¢ : Sy — RRP defines a right-invariant kernel
K(o1,02) = ®(01) T &(02) if and only there exists ¢ : Sy — R such that

VYoi,00 € SN, K(U1702):¢(05101)

and )
YAENA, d(pr) =0
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