Learning from ranks, learning to rank

Jean-Philippe Vert

Supervised learning beyond binary classification

input

Pixels:

Audio:

"Hello, how are you?"

Pixels:

output

"lion"

"How cold is it outside?"

"Bonjour, comment allez-vous?"

"A blue and yellow train travelling down the tracks"

Slide from Jeff Dean

Beyond supervised learning

Un- and Self-supervised learning

Generative models

Beyond images and strings

http://snap.stanford.edu/decagon

What if inputs or outputs are permutations?

Permutation: a bijection

$$\sigma: [\mathbf{1}, \mathbf{N}] \rightarrow [\mathbf{1}, \mathbf{N}]$$

- $\sigma(i)$ = rank of item i
- Composition

$$(\sigma_1\sigma_2)(i) = \sigma_1(\sigma_2(i))$$

- S_N the symmetric group
- $|\mathbb{S}_N| = N!$

Examples

Ranking data

Ranks extracted from data

(histogram equalization, quantile normalization...)

Goals

Permutations as input:

$$\sigma \in \mathbb{S}_{N} \mapsto f_{\theta}(\sigma) \in \mathbb{R}^{p}$$

How to define / optimize $f_{\theta}: \mathbb{S}_{N} \to \mathbb{R}^{p}$?

 SUQUAN (Le Morvan and Vert, 2017), Kendall (Jiao and Vert, 2015, 2017, 2018)

Permutations as intermediate / output:

$$\mathbf{X} \in \mathbb{R}^{N} \mapsto \sigma(\mathbf{X}) \in \mathbb{S}_{N} \mapsto f_{\theta}(\sigma(\mathbf{X})) \in \mathbb{R}^{p}$$

How to differentiate the ranking operator $\sigma : \mathbb{R}^N \to \mathbb{S}_N$?

• Sinkhorn CDF (Cuturi et al., 2019)

Permutations as inputs

Assume your data are permutations and you want to learn

$$f: \mathbb{S}_{N} \to \mathbb{R}$$

• A solutions: embed S_N to a Euclidean (or Hilbert) space

$$\Phi: \mathbb{S}_N \to \mathbb{R}^p$$

and learn a linear function:

$$f_{\beta}(\sigma) = \beta^{\top} \Phi(\sigma)$$

• The corresponding kernel is

$$K(\sigma_1, \sigma_2) = \Phi(\sigma_1)^{\top} \Phi(\sigma_2)$$

How to define the embedding $\Phi : \mathbb{S}_N \to \mathbb{R}^p$?

- Should encode interesting features
- Should lead to efficient algorithms

 Should be invariant to renaming of the items, i.e., the kernel should be right-invariant

$$\forall \sigma_1, \sigma_2, \pi \in \mathbb{S}_N, \quad K(\sigma_1 \pi, \sigma_2 \pi) = K(\sigma_1, \sigma_2)$$

Some attempts

(Jiao and Vert, 2015, 2017, 2018; Le Morvan and Vert, 2017)

SUQUAN embedding (Le Morvan and Vert, 2017)

• Let $\Phi(\sigma) = \Pi_{\sigma}$ the permutation representation (Serres, 1977):

$$[\Pi_{\sigma}]_{ij} = \begin{cases} 1 & \text{if } \sigma(j) = i, \\ 0 & \text{otherwise.} \end{cases}$$

Right invariant:

$$<\Phi(\sigma),\Phi(\sigma')>=\text{Tr}\left(\Pi_{\sigma}\Pi_{\sigma'}^{\top}\right)=\text{Tr}\left(\Pi_{\sigma}\Pi_{\sigma'}^{-1}\right)=\text{Tr}\left(\Pi_{\sigma}\Pi_{\sigma'^{-1}}\right)=\text{Tr}\left(\Pi_{\sigma\sigma'^{-1}}\right)$$

Link with quantile normalization (QN)

- Take $\sigma(x) = \operatorname{rank}(x)$ with $x \in \mathbb{R}^N$
- Fix a target quantile $f \in \mathbb{R}^n$
- "Keep the order of x, change the values to f"

$$[\Psi_f(x)]_i = f_{\sigma(x)(i)} \quad \Leftrightarrow \quad \Psi_f(x) = \prod_{\sigma(x)} f$$

How to choose a "good" target distribution?

Supervised QN (SUQUAN)

Standard QN:

- Fix f arbitrarily
- **2** QN all samples to get $\Psi_f(x_1), \dots, \Psi_f(x_N)$
- Learn a model on normalized data, e.g.:

$$\min_{\theta} \left\{ \frac{1}{N} \sum_{i=1}^{N} \ell_i \left(f_{\theta}(\Psi_f(x_i)) \right) \right\}$$

SUQUAN: jointly learn *f* and the model:

$$\min_{\theta,f} \left\{ \frac{1}{N} \sum_{i=1}^{N} \ell_i \left(f_{\theta}(\Psi_f(x_i)) \right) \right\}$$

Experiments: CIFAR-10

- Image classification into 10 classes (45 binary problems)
- N = 5,000 per class, p = 1,024 pixels
- Linear logistic regression on raw pixels

Experiments: CIFAR-10

- Example: horse vs. plane
- Different methods learn different quantile functions

Limits of the SUQUAN embedding

- Linear model on $\Phi(\sigma) = \Pi_{\sigma} \in \mathbb{R}^{N \times N}$
- Captures first-order information of the form "i-th feature ranked at the j-th position"
- What about higher-order information such as "feature i larger than feature j"?

The Kendall embedding (Jiao and Vert, 2015, 2017)

$$\Phi_{i,j}(\sigma) = \begin{cases} 1 & \text{if } \sigma(i) < \sigma(j), \\ 0 & \text{otherwise.} \end{cases}$$

Geometry of the embedding

For any two permutations $\sigma, \sigma' \in \mathbb{S}_N$:

Inner product

$$\Phi(\sigma)^{\top}\Phi(\sigma') = \sum_{1 \leq i \neq j \leq n} \mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)} = n_c(\sigma, \sigma')$$

 n_c = number of concordant pairs

Distance

$$\|\Phi(\sigma) - \Phi(\sigma')\|^2 = \sum_{1 < i,j < n} (\mathbb{1}_{\sigma(i) < \sigma(j)} - \mathbb{1}_{\sigma'(i) < \sigma'(j)})^2 = 2n_d(\sigma,\sigma')$$

 n_d = number of discordant pairs

Kendall and Mallows kernels

The Kendall kernel is

$$K_{\tau}(\sigma, \sigma') = n_{c}(\sigma, \sigma')$$

The Mallows kernel is

$$\forall \lambda \geq 0 \quad K_M^{\lambda}(\sigma, \sigma') = e^{-\lambda n_d(\sigma, \sigma')}$$

Theorem (Jiao and Vert, 2015, 2017)

The Kendall and Mallows kernels are positive definite right-invariant kernels and can be evaluated in $O(N \log N)$ time

Kernel trick useful with few samples in large dimensions

Remark

Cayley graph of \mathbb{S}_4

- Kondor and Barbarosa (2010) proposed the diffusion kernel on the Cayley graph of the symmetric group generated by adjacent transpositions.
- Computationally intensive $(O(N^{2N}))$
- Mallows kernel is written as

$$K_{M}^{\lambda}(\sigma,\sigma')=e^{-\lambda n_{d}(\sigma,\sigma')}$$
,

where $n_d(\sigma, \sigma')$ is the shortest path distance on the Cayley graph.

- It can be computed in $O(N \log N)$
- Extension to weighted Kendall kernel (Jiao and Vert, 2018)

Applications

Average performance on 10 microarray classification problems (Jiao and Vert, 2017).

Permutation as intermediate / output?

Ranking operator:

$${\tt rank}(-15,2.3,20,-2)=(4,2,1,3)$$

• Main problem:

$$x \in \mathbb{R}^N \mapsto \operatorname{rank}(x) \in \mathbb{S}_N$$
 is not differentiable

Permutation as intermediate / output?

Ranking operator:

$$rank(-15, 2.3, 20, -2) = (4, 2, 1, 3)$$

• Main problem:

$$x \in \mathbb{R}^N \mapsto \operatorname{rank}(x) \in \mathbb{S}_N$$
 is not differentiable

Differentiable Sorting using Optimal Transport: The Sinkhorn CDF and Quantile Operator

From optimal transport (OT) to rank?

- Solving OT in 1D is done in O(n ln n) with the rank function
- ullet If u is ordered, then the solution ${\it P}$ is the permutation matrix of ξ
- We propose instead to solve (a differentiable variant of) OT in order to recover (a differentiable variant of) rank

Differentiable OT

• $P = \text{diag}(u_{\ell})K\text{diag}(v_{\ell})$ is the differentiable approximate permutation matrix of the input vector x

Application

Figure 4: Error bars for test accuracy curves on CIFAR-100 and CIFAR-10 using the same network (averages over 12 runs).

https://github.com/google-research/google-research/tree/master/soft_sort

Conclusion

- Machine learning beyond vectors, strings and graphs
- Different embeddings of the symmetric group
- Differentiable sorting and ranking
- Scalability? Robustness to adversarial attacks? Theoretical properties?

MERCI!

References

- M. Cuturi, O. Teboul, and J.-P. Vert. Differentiable sorting using optimal transport: the Sinkhorn CDF and quantile operator. In *Adv. Neural. Inform. Process Syst. 31*, 2019.
- Y. Jiao and J.-P. Vert. The Kendall and Mallows kernels for permutations. In *Proceedings of The 32nd International Conference on Machine Learning*, volume 37 of *JMLR:W&CP*, pages 1935–1944, 2015. URL http://jmlr.org/proceedings/papers/v37/jiao15.html.
- Y. Jiao and J.-P. Vert. The Kendall and Mallows kernels for permutations. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2017. doi: 10.1109/TPAMI.2017.2719680. URL http://dx.doi.org/10.1109/TPAMI.2017.2719680.
- Y. Jiao and J.-P. Vert. The weighted kendall and high-order kernels for permutations. Technical Report 1802.08526, arXiv, 2018.
- M. Le Morvan and J.-P. Vert. Supervised quantile normalisation. Technical Report 1706.00244, arXiv, 2017.
- J.-P. Serres. *Linear Representations of Finite Groups*. Graduate Texts in Mathematics. Springer-Verlag New York, 1977. doi: 10.1007/978-1-4684-9458-7. URL http://dx.doi.org/10.1007/978-1-4684-9458-7.

Harmonic analysis on \mathbb{S}_N

• A representation of \mathbb{S}_N is a matrix-valued function $\rho: \mathbb{S}_N \to \mathbb{C}^{d_\rho \times d_\rho}$ such that

$$\forall \sigma_1, \sigma_2 \in \mathbb{S}_N, \quad \rho(\sigma_1 \sigma_2) = \rho(\sigma_1)\rho(\sigma_2)$$

- A representation is irreductible (irrep) if it is not equivalent to the direct sum of two other representations
- \mathbb{S}_N has a finite number of irreps $\{\rho_\lambda : \lambda \in \Lambda\}$ where $\Lambda = \{\lambda \vdash N\}^1$ is the set of partitions of N
- For any $f: \mathbb{S}_N \to \mathbb{R}$, the Fourier transform of f is

$$\forall \lambda \in \Lambda, \quad \hat{f}(\rho_{\lambda}) = \sum_{\sigma \in \mathbb{S}_{N}} f(\sigma) \rho_{\lambda}(\sigma)$$

 $^{^{1}\}lambda \vdash N \text{ iff } \lambda = (\lambda_{1}, \dots, \lambda_{r}) \text{ with } \lambda_{1} \geq \dots \geq \lambda_{r} \text{ and } \sum_{i=1}^{r} \lambda_{i} = N$

Right-invariant kernels

Bochner's theorem

An embedding $\Phi: \mathbb{S}_N \to \mathbb{R}^p$ defines a right-invariant kernel $K(\sigma_1, \sigma_2) = \Phi(\sigma_1)^T \Phi(\sigma_2)$ if and only there exists $\phi: \mathbb{S}_N \to \mathbb{R}$ such that

$$\forall \sigma_1, \sigma_2 \in \mathbb{S}_N, \quad K(\sigma_1, \sigma_2) = \phi(\sigma_2^{-1}\sigma_1)$$

and

$$\forall \lambda \in \Lambda, \quad \hat{\phi}(\rho_{\lambda}) \succeq 0$$