Learning from ranks, learning to rank

Jean-Philippe Vert
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https://codeburst.io/machine-learning-243cc92247al


https://codeburst.io/machine-learning-243cc92247a1

Supervised learning beyond binary classification

input

Pixels:

Audio:

“Hello, how are you?”

Pixels:

Slide from Jeff Dean

output

“lion”

“How cold is it outside?”

“Bonjour, comment allez-vous?”

“A blue and yellow train
travelling down the tracks”



Beyond supervised learning
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Reinforcement learning

':’\:' Google DeepMind
Challenge Match



Beyond images and strings

Graph
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Input

Regularization, Graph

e.g., dropout

Activation
function

convolutions

Output: Drugs C, D
lead to a side effect r,

http://snap.stanford.edu/decagon


http://snap.stanford.edu/decagon

What if inputs or outputs are permutations?

3421/4321\4312 . . .
/ i @ Permutation: a bijection
o [1,N] = [1,N]

@ o(f) =rank of item i
@ Composition

(0102)(i) = o1 (02(7))

@ Sy the symmetric group
(] |SN| = NI
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@ Ranking data

(histogram equalization, quantile normalization...)



Goals

@ Permutations as input:
o €Sy fy(o) €RP
How to define / optimize fy : Sy — RP?

o SUQUAN (Le Morvan and Vert, 2017), Kendall (Jiao and Vert,
2015, 2017, 2018)

© Permutations as intermediate / output:
x € RN = o(x) € Sy — fy(o(x)) e RP

How to differentiate the ranking operator o : RN — Sy?
e Sinkhorn CDF (Cuturi et al., 2019)



Permutations as inputs

@ Assume your data are permutations and you want to learn
f:Sy - R
@ A solutions: embed Sy to a Euclidean (or Hilbert) space
®:Sy — RP
and learn a linear function:
fo(o) = 67 (o)
@ The corresponding kernel is

K(oy,02) = d(ay) " (o2)



How to define the embedding ® : Sy — RP ?

@ Should encode interesting features
@ Should lead to efficient algorithms

@ Should be invariant to renaming of the items, i.e., the kernel
should be right-invariant

Voy,00,m €Sy, K(oym,oom) = K(o1,02)



Some attempts

Kendall SUQUAN

-l -

(Jiao and Vert, 2015, 2017, 2018; Le Morvan and Vert, 2017)



SUQUAN embedding (Le Morvan and Vert, 2017)

@ Let ®(o) = I, the permutation representation (Serres, 1977):
1 ifo(j)=1,
[no']ij = ( ) .
0 otherwise.

@ Right invariant:

< 0(0),0(c") >=Tr (N,NL) = Tr (ngn;) =T (MyMy1) = Tr (Myp)



Link with quantile normalization (QN)

@ Take o(x) = rank(x) with x € RN
@ Fix a target quantile f € R"
@ "Keep the order of x, change the values to 1"

W) = ooy € Vi(X) =Moo f



How to choose a "good" target distribution?

gaussian distribution (mean=0, sd=1) uniform distribution bigaussian distribution
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Supervised QN (SUQUAN)

Standard QN:
@ Fix f arbitrarily
@ QN all samples to get W(xq),..., Vi(xn)
© Learn a model on normalized data, e.g.:

N
mein {I1\I Z l; (fe(Wf(Xi)))}
i1

SUQUAN: jointly learn f and the model:

N
ngvifn {11\1 >t (fa(‘Vf(Xi)))}

i=1



Experiments: CIFAR-10

@ Image classification into 10 classes (45 binary problems)
@ N = 5,000 per class, p = 1,024 pixels
@ Linear logistic regression on raw pixels
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Experiments: CIFAR-10

@ Example: horse vs. plane
@ Different methods learn different quantile functions

original median SUQUAN BND
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Limits of the SUQUAN embedding

@ Linear model on ®(c) = M, € RV*N

@ Captures first-order information of the form "i-th feature ranked at
the j-th position"

@ What about higher-order information such as "feature i larger than
feature j"?



The Kendall embedding (Jiao and Vert, 2015, 2017)

(o
"/( ) 0 otherwise.

{1 if (i) < o)),



Geometry of the embedding

For any two permutations o, ¢’ € Sy:
@ Inner product

O(0) Do) = D Lo(iy<o(Loiy<ory) = Nelo, o)
1<i#j<n

ne = number of concordant pairs
@ Distance

[(c) = Do) [P= D (Logh<o) — Loi<o())? = 2Na(0, ")

1<ij<n

ng = number of discordant pairs



Kendall and Mallows kernels

@ The Kendall kernel is
K. (o,0") = ne(o,0’)
@ The Mallows kernel is

VA>0 Kjij(o,0') = e aleo’)

Theorem (Jiao and Vert, 2015, 2017)

The Kendall and Mallows kernels are positive definite right-invariant
kernels and can be evaluated in O(N log N) time

Kernel trick useful with few samples in large dimensions
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Cayley graph of S4

@ Kondor and Barbarosa (2010)
proposed the diffusion kernel on the
Cayley graph of the symmetric group
generated by adjacent transpositions.

e Computationally intensive (O(N2V))
@ Mallows kernel is written as

Kif(o,o') = o),

where ngy(o, o’) is the shortest path
distance on the Cayley graph.

@ It can be computed in O(Nlog N)

@ Extension to weighted Kendall kernel
(Jiao and Vert, 2018)
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Average performance on 10 microarray classification problems (Jiao

and Vert, 2017).



Permutation as intermediate / output?

@ Ranking operator:
rank(—15,2.3,20,-2) = (4,2,1,3)
@ Main problem:

x € RN — rank(x) € Sy is not differentiable



Permutation as intermediate / output?

@ Ranking operator:
rank(—15,2.3,20,-2) = (4,2,1,3)
@ Main problem:

x € RN rank(x) € Sy is not differentiable

Differentiable Sorting using Optimal Transport:
The Sinkhorn CDF and Quantile Operator

Marco Cuturi  Olivier Teboul Jean-Philippe Vert

Google Research, Brain team



From optimal transport (OT) to rank?
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OT.(¢,v) & . rgi(nb)<P, Cxy ), where U(a,b) & {P € R"™*™|P1,, = a, PT1, = b}
eU(a

M

@ Solving OT in 1D is done in O(nln n) with the rank function
@ If v is ordered, then the solution P is the permutation matrix of £

@ We propose instead to solve (a differentiable variant of) OT in
order to recover (a differentiable variant of) rank

A U"Oi



Differentiable OT
&yl Y2

UF%

P. = argmin < P,C > —eH(P)
PeU(a,b)

Algorithm 1: Sinkhorn

Inputs: a,b,x,y,e,/

K+ e O/ uy=1,;

fort < O0to/—1do
Vipl < b/KTut

Uy < a/Kviy
end
Result: uy, K, vy

@ P = diag(us)Kdiag(v,) is the differentiable approximate
permutation matrix of the input vector x



Application

S-top-k-loss(fo(wo), lo) = Jk (1 - <ﬁp (%’fo(w); %w}’>> >
lo
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Figure 4: Error bars for test accuracy curves

on CIFAR-100 and CIFAR-10 using the same

network (averages over 12 runs).
https://github.com/google-research/google-research/tree/master/
soft_sort


https://github.com/google-research/google-research/tree/master/soft_sort
https://github.com/google-research/google-research/tree/master/soft_sort

Conclusion

SUQUAN

@ Machine learning beyond vectors, strings and graphs
@ Different embeddings of the symmetric group
@ Differentiable sorting and ranking
@ Scalability? Robustness to adversarial attacks? Theoretical
properties?
MERCI!
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Harmonic analysis on Sy

@ A representation of Sy is a matrix-valued function p : Sy — C%*%
such that

Voi,02 € Sy, p(o102) = p(o1)p(o2)
@ A representation is irreductible (irrep) if it is not equivalent to the
direct sum of two other representations

@ Sy has a finite number of irreps {p» : A € A} where A = {\ - N}!
is the set of partitions of N

@ Forany f: Sy — R, the Fourier transform of f is

VAEN, T(pa) = f(o)pa(o)

oESN

AENfA= (N, ) with > ...> XN and YL, A =N



Right-invariant kernels

Bochner’s theorem

An embedding ¢ : Sy — RRP defines a right-invariant kernel
K(o1,02) = ®(01) T &(02) if and only there exists ¢ : Sy — R such that

VYoi,00 € SN, K(U1702):¢(05101)

and )
YAENA, d(pr) =0




