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Supervised learning beyond binary classification

input

Pixels:

Audio:

“Hello, how are you?”

Pixels:

output

“lion”

“How cold is it outside?”

“Bonjour, comment allez-vous?”

“A blue and yellow train 
travelling down the tracks”

Functions a Deep Neural Network Can Learn

Slide from Jeff Dean



Beyond supervised learning

Un-	and	Self-supervised	learning	
Genera3ve	models	

Reinforcement	learning	



Beyond images and strings

http://snap.stanford.edu/decagon

http://snap.stanford.edu/decagon


What if inputs or outputs are permutations?

Permutation: a bijection

σ : [1,N]→ [1,N]

σ(i) = rank of item i
Composition

(σ1σ2)(i) = σ1(σ2(i))

SN the symmetric group
|SN | = N!



Examples

Ranking data

Ranks extracted from data

(histogram equalization, quantile normalization...)



Goals

1 Permutations as input:

σ ∈ SN 7→ fθ(σ) ∈ Rp

How to define / optimize fθ : SN → Rp?
SUQUAN (Le Morvan and Vert, 2017), Kendall (Jiao and Vert,
2015, 2017, 2018)

2 Permutations as intermediate / output:

x ∈ RN 7→ σ(x) ∈ SN 7→ fθ(σ(x)) ∈ Rp

How to differentiate the ranking operator σ : RN → SN?
Sinkhorn CDF (Cuturi et al., 2019)



Permutations as inputs

Assume your data are permutations and you want to learn

f : SN → R

A solutions: embed SN to a Euclidean (or Hilbert) space

Φ : SN → Rp

and learn a linear function:

fβ(σ) = β>Φ(σ)

The corresponding kernel is

K (σ1, σ2) = Φ(σ1)>Φ(σ2)



How to define the embedding Φ : SN → Rp ?

Should encode interesting features
Should lead to efficient algorithms

Should be invariant to renaming of the items, i.e., the kernel
should be right-invariant

∀σ1, σ2, π ∈ SN , K (σ1π, σ2π) = K (σ1, σ2)



Some attempts

SUQUAN	Kendall	

(Jiao and Vert, 2015, 2017, 2018; Le Morvan and Vert, 2017)



SUQUAN embedding (Le Morvan and Vert, 2017)

Let Φ(σ) = Πσ the permutation representation (Serres, 1977):

[Πσ]ij =

{
1 if σ(j) = i ,
0 otherwise.

Right invariant:

< Φ(σ),Φ(σ′) >= Tr
(
ΠσΠ>σ′

)
= Tr

(
ΠσΠ−1

σ′

)
= Tr (ΠσΠσ′−1 ) = Tr (Πσσ′−1 )



Link with quantile normalization (QN)

Take σ(x) = rank(x) with x ∈ RN

Fix a target quantile f ∈ Rn

"Keep the order of x , change the values to f "

[Ψf (x)]i = fσ(x)(i) ⇔ Ψf (x) = Πσ(x)f



How to choose a "good" target distribution?



Supervised QN (SUQUAN)

Standard QN:
1 Fix f arbitrarily
2 QN all samples to get Ψf (x1), . . . ,Ψf (xN)

3 Learn a model on normalized data, e.g.:

min
θ

{
1
N

N∑

i=1

`i (fθ(Ψf (xi)))

}

SUQUAN: jointly learn f and the model:

min
θ,f

{
1
N

N∑

i=1

`i (fθ(Ψf (xi)))

}



Experiments: CIFAR-10

Image classification into 10 classes (45 binary problems)
N = 5,000 per class, p = 1,024 pixels
Linear logistic regression on raw pixels
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Experiments: CIFAR-10

Example: horse vs. plane
Different methods learn different quantile functions

original median SVD SUQUAN BND

Index
0 400 800

Index
0 400 800

Index
0 400 800



Limits of the SUQUAN embedding

Linear model on Φ(σ) = Πσ ∈ RN×N

Captures first-order information of the form "i -th feature ranked at
the j-th position"
What about higher-order information such as "feature i larger than
feature j"?



The Kendall embedding (Jiao and Vert, 2015, 2017)

Φi,j(σ) =

{
1 if σ(i) < σ(j) ,
0 otherwise.



Geometry of the embedding

For any two permutations σ, σ′ ∈ SN :
Inner product

Φ(σ)>Φ(σ′) =
∑

1≤i 6=j≤n

1σ(i)<σ(j)1σ′(i)<σ′(j) = nc(σ, σ′)

nc = number of concordant pairs
Distance

‖Φ(σ)− Φ(σ′) ‖2 =
∑

1≤i,j≤n

(1σ(i)<σ(j) − 1σ′(i)<σ′(j))
2 = 2nd (σ, σ′)

nd = number of discordant pairs



Kendall and Mallows kernels

The Kendall kernel is

Kτ (σ, σ′) = nc(σ, σ′)

The Mallows kernel is

∀λ ≥ 0 K λ
M(σ, σ′) = e−λnd (σ,σ

′)

Theorem (Jiao and Vert, 2015, 2017)
The Kendall and Mallows kernels are positive definite right-invariant
kernels and can be evaluated in O(N log N) time

Kernel trick useful with few samples in large dimensions



Remark

Cayley graph of S4

Kondor and Barbarosa (2010)
proposed the diffusion kernel on the
Cayley graph of the symmetric group
generated by adjacent transpositions.
Computationally intensive (O(N2N))

Mallows kernel is written as

K λ
M(σ, σ′) = e−λnd (σ,σ

′) ,

where nd (σ, σ′) is the shortest path
distance on the Cayley graph.
It can be computed in O(N log N)

Extension to weighted Kendall kernel
(Jiao and Vert, 2018)



Applications
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Permutation as intermediate / output?

Ranking operator:

rank(−15,2.3,20,−2) = (4,2,1,3)

Main problem:

x ∈ RN 7→ rank(x) ∈ SN is not differentiable



Permutation as intermediate / output?

Ranking operator:

rank(−15,2.3,20,−2) = (4,2,1,3)

Main problem:

x ∈ RN 7→ rank(x) ∈ SN is not differentiable

Differentiable Sorting using Optimal Transport:
The Sinkhorn CDF and Quantile Operator
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Abstract

Sorting an array is a fundamental routine in machine learning, one that is used to
compute rank-based statistics, cumulative distribution functions (CDFs), quantiles,
or to select closest neighbors and labels. The sorting function is however piece-
wise constant (the permutation of a vector does not change if the entries of that
vector are infinitesimally perturbed) and therefore has no gradient information to
backpropagate. We propose a framework to sort elements that is algorithmically
differentiable. We leverage the fact that sorting can be seen as a particular instance
of the optimal transport (OT) problem on R, from input values to a predefined
array of sorted values (e.g. 1, 2, . . . , n if the input array has n elements). Building
upon this link , we propose generalized CDFs and quantile operators by varying
the size and weights of the target presorted array. Because this amounts to using
the so-called Kantorovich formulation of OT, we call these quantities K-sorts,
K-CDFs and K-quantiles. We recover differentiable algorithms by adding to the
OT problem an entropic regularization, and approximate it using a few Sinkhorn
iterations. We call these operators S-sorts, S-CDFs and S-quantiles, and use them
in various learning settings: we benchmark them against the recently proposed neu-
ralsort [11], propose applications to quantile regression and introduce differentiable
formulations of the top-k accuracy that deliver state-of-the art performance.

1 Introduction

Sorting n real values in an array x := (x1, . . . , xn) 2 Rn requires finding a permutation � 2 Sn such
that x� := (x�1

, . . . , x�n
) is increasing. Most descriptive statistics used to quantify the distribution

of values in x, such as CDFs, quantiles or rank statistics are byproducts of a sorting procedure.
Sorting also appears at a higher level in learning algorithms, notably to select neighbors that are
relevant in k-NN rules, or to produce responses as in multi-class classification.

If we write s for the sorting function, which takes a vector in Rn to output a permutation Sn, we
find that it is piecewise constant: indeed, except for particular cases where some of the entries of Rn

overlap, the optimal permutation s(x) is almost surely the same as s(x+ ✏) for a small enough vector
✏. As a result, the “Jacobian” @s/@x is almost everywhere zero, making all sorting algorithms useless
in a backpropagation framework, as recently highlighted in [11]. We propose a new algorithmically
differentiable framework for sorting, and beyond for CDFs and quantiles, whose cost is linear in n.

Generalized Sorting Using Optimal Transport (OT). A first contribution of our work is to extend
sorting using OT. Perhaps the simplest way to establish the link between both is to notice that sorting
(x1, . . . , xn) implicitly minimizes the sum between the distance of two consecutive permuted terms,P

i |x�i+1 � x�i |. Indeed, a non-optimal permutation would imply needless back-and-forths, while

Preprint. Under review.
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From optimal transport (OT) to rank?

the optimal sort s(x) yields for that objective the maximal minus the minimal element of x. This
reformulation can be relaxed and generalized as an OT problem, where permutations � are extremal
matrices in the Birkhoff [5] polytope of bistochastic matrices and the cost is any convex function of
|x�i+1

� x�i
|. Sorting x is therefore, from an OT perspective, a particular OT problem between two

uniform measures supported on n points on the real line: the first “input” measure is supported on
values x (given, of course, in no particular order), and the second “target” measure is supported on
any family y = (y1 < · · · < yn) of sorted values (e.g. y can be chosen as 1, . . . , n). Build on this,
we introduce a “split” sort operator by considering target measures supported on m points, where
m can be possibly much smaller than n. The transportation matrices arising from this OT problem
define sorting estimates that we call Kantorovich-sorts (K-sorts), K-CDFs and K-quantiles.

Generalized Sort + Regularized OT = Sinkhorn Operators. Going back to the non-
differentiability of sorting [11], our approach proposes to build further on this OT generalization to
leverage regularized optimal transport formulations, and more specifically the Sinkhorn algorithm [8].
While [11] proposed to relax the set of permutation matrices using the set of unimodal row-stochastic
matrices, and derived an elegant O(n2) procedure to propose a differentiable approximation of sorting,
ours has linear complexity O(nm`) w.r.t the input size n, where m is the number of points in y (the
target measure, which is now a parameter) and `, the number of Sinkhorn iterations that guarantee
convergence to the original regularized OT problem. For some applications that we highlight (as in
quantile regression) m can be as small as m = 3 while ` depends on the regularization strength used
in the Sinkhorn algorithm, and never exceeds 200 in our computations. Let us clarify that the use of
the Sinkhorn algorithm in this paper is exclusively carried out on distributions of real values, and
more specifically to a fixed target measure. This is different from its recent applications to define
sorting losses between high-dimensional outputs as done by [1] and more recently by [16, 15, 11].

Outline. We recall first the link between sorting and computing OT between univariate measures.
We define next Kantorovich operators, which are smoothed to yield Sinkhorn operators. We discuss
numerical implementation issues and proceed with experimental validations that test our differentiable
sorting/cdf/quantile operators on various tasks, such as those considered in [11], in addition to the
training of neural networks with a differentiable top-k loss and quantile regression.

Notations. We write On ⇢ Rn for the set of sorted vectors of dimension n. 1n is the n-vector of
ones. Given c = (c1, . . . , cn), we write c for the cumulative sum of c, namely vector (c1 + · · ·+ ci)i.
For a probability measure ⇠ 2 P(R), we write F⇠ for its CDF and Q⇠ for its generalized quantile
function. Functions are usually applied element-wise on vectors or matrices.

2 Sorting, CDF and Quantiles as Optimal Transport

The fact that solving the OT problem between two discrete univariate measures boils down to sorting
points is well known [23, §2]. The usual narrative states that the Wasserstein distance between two
univariate measures boils down to comparing their quantile functions, which can be obtained by
inverting empirical CDFs, which are themselves computed by considering the sorted values of the
supports of these measures. This downstream connection from OT to quantiles, CDFs and finally
sorting has been exploited in several works, because sorting is cheap. This is evidenced by the surge
of interest for the sliced Wasserstein distance [21, 6, 14]. We take in this section the opposite route,
and define sorting as a byproduct of the optimal assignment problem between reals. From there, we
generalize sorting, CDFs and quantiles using the Kantorovich formulation of OT.

Solving the OT problem between 1D measures using sorting. Let ⇠, ⌫ be two discrete probability
measures on R, defined respectively by their supports x,y and probability weight vectors a,b as
⇠ =

Pn
i=1 ai�xi

and ⌫ =
Pm

j=1 bj�yj . Given cost function c : R2 ! R, the OT problem between

them reduces to the following linear program, writing Cxy
def.
= [c(xi, yj)]ij ,

OTc(⇠, ⌫)
def.
= min

P2U(ab)
hP, Cxy i, where U(a,b)

def.
= {P 2 Rn⇥m

+ |P1m = a, PT 1n = b} . (1)

A fundamental result [23, Theorem 2.9] states that, assuming c is translation invariant c(x, y) =
h(|x� y|) with h convex, then (1) admits a much simpler form (see also [9] for the more involved

2

Solving OT in 1D is done in O(n ln n) with the rank function
If ν is ordered, then the solution P is the permutation matrix of ξ
We propose instead to solve (a differentiable variant of) OT in
order to recover (a differentiable variant of) rank

density ⇢ and apply it pointwise to the K-CDFs, or consider empirical quantiles f = (f1, . . . , fm)
at levels b and mix them using the optimal transport plan. The K-sort operator operates convex
combinations of CDF values (stored in b) while the K-quantile operator mixes quantiles and values
contained in x directly. Because these quantities are only defined pointwise (we output vectors and
not functions) and depend on the ordering of a,x,b,y, f we drop our reference to measure ⇠ in
notations.
Definition 1. Suppose P? 2 U(a,b) is optimal for (1). By analogy to the formulas provided in
Proposition 2, we call the two first vectors below the K-CDF and K-quantiles of a,x evaluated using
b,y. We define next the K-quantile normalizations of a,x using ⇢ or and respectively b, as:

eF (a,x;b,y)
def.
= a�1 � (P?b) 2 [0, 1]n, eQ (a,x;b,y)

def.
= b�1 � (PT

? x) 2 Om,

eT⇢ (a,x,b,y)
def.
= Q⇢( eF (a,x;b,y)) 2 Rn, eTf (a,x,b,y)

def.
= a�1 � (P?f) 2 Rn.
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Figure 1: (a) sorting seen as transporting optimally
x to y. (b) Kantorovich sorting generalizes the latter
by considering target measures y of different num-
ber of points m = 3 6= n = 5 as well as non-
uniform weights (here .48, .16 and .36). K-CDF and
K-Quantiles are a direct generalization of the original
quantities and operate by mixing CDF values from b

to create eF or mixing original values x to form a set
of m quantiles w.r.t. the cumulative sum of b. (c) En-
tropy regularized OT generalizes further K-operations
by solving OT with the Sinkhorn algorithm which
results in dense yet peaked transport plans.

The K-CDF vector eF is a vector of size n con-
taining an approximate CDF for each entry
for x in that order. eQ is a split-quantile op-
erator outputting m increasing values which
are each, respectively, averages of some of
the entries in x. The fact that these values
are increasing can be obtained by a simple
argument in which ⇠ and ⌫ are cast again
as uniform measures of the same size using
duplicated supports xi and yj , and then use
the monotonicity given by the third identity
of Proposition 2. Finally, two soft-quantile
operators are proposed, using either the quan-
tiles of a reference density ⇢ evaluated at
the soft-CDF levels, or directly averaging
the quantiles of distribution f through P?.
Note that when f and y coincide, the vector
eTy (a,x,b,y) is also known as the barycen-
tric projection of x[20, Remark 4.4].

Equivalence between sort and CDF. A sort-
ing locates n elements within the set of in-
dices in {1, . . . , n}. the empirical CDF does
the same within {1/n, . . . , (n�1)/n, 1}. Up
to a constant they are therefore the same
thing. One could equivalently define a K-
sort e� (a,x;b,y) that would be simply equal
to m eF (a,x;b,y). Because these quantities
are redundant we only keep the CDF opera-
tor which is more versatile since it is always
valued in [0, 1].

Non-differentiability These notations
hardly make sense, but notice that @P?/@x
is, very much like the sorting operation s
as argued above, a null Jacobian almost
everywhere. This is evident from Figure 2 as
one can see that an infinitesimal change in x does not change P? (notice that an infinitesimal change
in a would, and that Jacobian would involve North-west corner type mass transfers). We solve this
issue next using regularized OT.

3 Sinkhorn, Sorting CDF and Quantile Operators

All of the Kantorovich operators are expressed as functions of an optimal solutions P? of the
OT linear program. Because of this, these quantities are not differentiable w.r.t any of the inputs

4



Differentiable OT
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to create eF or mixing original values x to form a set
of m quantiles w.r.t. the cumulative sum of b. (c) En-
tropy regularized OT generalizes further K-operations
by solving OT with the Sinkhorn algorithm which
results in dense yet peaked transport plans.

The K-CDF vector eF is a vector of size n con-
taining an approximate CDF for each entry
for x in that order. eQ is a split-quantile op-
erator outputting m increasing values which
are each, respectively, averages of some of
the entries in x. The fact that these values
are increasing can be obtained by a simple
argument in which ⇠ and ⌫ are cast again
as uniform measures of the same size using
duplicated supports xi and yj , and then use
the monotonicity given by the third identity
of Proposition 2. Finally, two soft-quantile
operators are proposed, using either the quan-
tiles of a reference density ⇢ evaluated at
the soft-CDF levels, or directly averaging
the quantiles of distribution f through P?.
Note that when f and y coincide, the vector
eTy (a,x,b,y) is also known as the barycen-
tric projection of x[20, Remark 4.4].

Equivalence between sort and CDF. A sort-
ing locates n elements within the set of in-
dices in {1, . . . , n}. the empirical CDF does
the same within {1/n, . . . , (n�1)/n, 1}. Up
to a constant they are therefore the same
thing. One could equivalently define a K-
sort e� (a,x;b,y) that would be simply equal
to m eF (a,x;b,y). Because these quantities
are redundant we only keep the CDF opera-
tor which is more versatile since it is always
valued in [0, 1].

Non-differentiability These notations
hardly make sense, but notice that @P?/@x
is, very much like the sorting operation s
as argued above, a null Jacobian almost
everywhere. This is evident from Figure 2 as
one can see that an infinitesimal change in x does not change P? (notice that an infinitesimal change
in a would, and that Jacobian would involve North-west corner type mass transfers). We solve this
issue next using regularized OT.

3 Sinkhorn, Sorting CDF and Quantile Operators

All of the Kantorovich operators are expressed as functions of an optimal solutions P? of the
OT linear program. Because of this, these quantities are not differentiable w.r.t any of the inputs
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Pε = argmin
P∈U(a,b)

< P,C > −εH(P)

Figure 2: Behaviour of the S-CDF eF ` (a,x;b,y) and S-Quantile operators eQ` (a,x;b,y) with
varying parameters. y = (0, . . . , m�1)/(m�1) is the regular grid in [0, 1]. Top-left: m = n means
that x is sorted against a sequence of its size. Both operators yield CDF and quantile functions that
are indistinguishable from the real ones (not plotted). Top-middle: stronger regularization strength "
implies that both curves are compressed vertically (transportation increasingly looks like a simple
averaging and therefore by taking convex combinations tends to erase extreme values). Top-right:
smaller ` means that the marginals of b are no longer fitted, resulting in quantile values that are
wrong, typically in the upper and lower quantiles. Bottom-left: smaller m = 5 values with uniform
b. Bottom-middle: randomized b. Bottom-right: b designed to highlight a particular quantile value,
as explained in Figure 3

a,x,b,y, f nor even ⇢ [4, §5]. To obtain differentiability, we consider a differentiable variant of the
Kantorovich quantities outlined in §2. More specifically, we consider the entropic regularization of
OT problems [8] as detailed in [20, §4]. Such a regularization renders the optimal transport unique,
therefore ensuring the existence of a gradient. Additionally, the solution to a regularized OT problem
is a dense matrix, which can therefore carry out gradient information (i.e. more arrows in plot (c) of
Figure (2)). We define a regularization strength " > 0

P "
?

def.
= argmin

P2U(a,b)

hP, Cxy i � "H(P ).

Algorithm 1: Sinkhorn
Inputs: a,b,x,y, ", `
K  e�Cxy/",u0 = 1n;
for t 0 to `� 1 do

vt+1  b/KT ut

ut+1  a/Kvt+1

end
Result: u`, K,v`

The optimal solution P "
? is the fixed point of the Sinkhorn iteration,

which consists in computing recursively updates outlined in Alg. 1.
We will consider the result outputted by the Sinkhorn algorithm after
a fixed budget of iteration, typically ` = 100 in our experiments.
The number of iterations required to converge to the solution will
depend typically on "[10], namely the smaller " the more iterations `
are required to obtain that P`

def.
= diag(u`)K diag(v`) has the desired

marginals. By appending an ` superscript to all quantities presented
in Definition 1 we obtain Sinkhorn definitions for sorting, CDFs and
quantile functions, i.e., S-sort, S-CDF, S-quantiles and S-quantile
normalization operators. Note that all of the operations are recovered
by replacing P? by a smooth solutions P` in Definition 1. However,
we write them as outputs of the Sinkhorn algorithm for clarity.
Definition 2 (Sinkhorn-quantiles). Given a regularization strength " > 0 and a number of iterations
` � 0, the S-sort, S-CDF, S-quantiles, and S-quantile normalization operators of (a,x) read

eF ` (a,x;b,y)
def.
= (a�1 � u`)K(v` � b) 2 [0, 1]n, eQ` (a,x;b,y)

def.
= (b�1 � u`)K(v` � x) 2 Rm,

eT `
⇢ (a,x,b,y)

def.
= Q⇢( eF ` (a,x;b,y)) 2 Rn, eT `

f (a,x,b,y)
def.
= (a�1 � u`)K(v` � f) 2 Rn

Sensitivity to " and `. Sinkhorn operators depend explicitly on regularization strength " and number
of iterations `. While we did not pay much attention to ` in our experimental validations (setting ` to
100 typically ensures that the Sinkhorn algorithm converges in all cases, which is easy to monitor), "
is a crucial “temperature” parameter comparable to that used by [11]. While it might be tempting to
believe to choose small values ", one must remember that in that case the gradients typically vanish,
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P = diag(u`)K diag(v`) is the differentiable approximate
permutation matrix of the input vector x



Application

4 Learning with Sinkhorn-CDFs and Sinkhorn-Quantiles

Differentiable Approximation to the top-k Loss. We consider, given a set L = {1, . . . , L} of
labels, an input points taken in a space ⌦. A parameterized multiclass classifier on ⌦ is a function
f✓ : ⌦! RL. The function decides the class attributed to ! by evaluating l? 2 argmaxl f✓(!)l. To
train the classifier through a training set {(!i, li)} 2 (⌦ ⇥ L)N , one typically resorts to using the
cross-entropy loss, which results in the minimization of min✓

P
i(�f✓(!i)li +

P
j log f✓(!i)j).

We propose a differentiable variant of the 0/1 loss that is avoid combinatorial approaches [19, 24]
and is closer to the quantile approach of in [7]. Given a query !, looking for the index of the selected
output l? is equivalent to finding the index in the empirical CDF of the vector f✓(!) that is equal to 1.
Given a pair (!0, l0), the 0/1 loss of the classifier is therefore, using an exact sort as in Definition 1:

top-1 loss(f✓(!0), l0) = H
⇣
1� ( eF

�
1L

L , f✓(!); 1m

m ,y
�
)l0

⌘
,

Figure 4: Error bars for test accuracy curves
on CIFAR-100 and CIFAR-10 using the same
network (averages over 12 runs).

where H is the heaviside function: H(u) = 1 if u >
0 and H(u) = 0 for u  0. More generally, if the
CDF of the correct label is bigger than 1� k/L, then
that label is sure to be caught in the tok-k accuracy.
The top-k accuracy is therefore the same quantity as
above, where 1� F̃ is replaced by 1� F̃ � k/L.

Naturally, these 0/1 losses are particularly unstable
since they very quickly switch from assigning a 0 or
a 1 loss depending on the index of f✓(!)l0 within its
pairs. That standing within the vector f✓(!) itself
is also particularly unstable. The differentiable loss
that we propose, as a replacement for cross-entropy
(or more generalized top-k cross entropy losses[3]),
leverages therefore both the S-CDF operator and a
function H . Moreover, since we will use S-CDFs
which are always within the boundaries of [0, 1], we
propose to modify this loss by considering a smooth
increasing function J from [0, 1] to R:

S-top-k-loss(f✓(!0), l0) = Jk

 
1�

✓
eF `

✓
1L

L
, f✓(!);

1m

m
,y

◆◆

l0

!
,

We have considered functions Jk(u) = |u� k
L |+ and mostly tested k = 1 (higher k’s gave comparable

results). We train a vanilla CNN (4 Conv2D with 2 max-pooling layers, ReLU activation, 2 fully
connected layers, batchnorm on each) on CIFAR-10 and CIFAR-100. Although we do not expect
to beat cross-entropy on these benchmarks using a new loss (most of the training architectures
and optimization strategies have been considered under the light of the cross entropy), we recover
comparable results. Here " = 0.01, ` = 100 and we use the squared Euclidean metric h(u) = u2.

Quantile Regression. The goal of quantile regression [12] is to minimize, given a vector of response
variables z1, . . . , zN 2 R and regressor variables W = [w1, . . . ,wN ] 2 Rd⇥N , the ⌧ -th quantile
of the loss between response and predicted value, namely writing x = (zi � f✓wi)i and setting
a = 1N/N and ⇠ the measure with weights a and support x, to minimize w.r.t. ✓ the ⌧ -th quantile of
⇠. This operation is usually carried out by minimizing a polyhedral function that uses the so called
pinball loss [2] at level ⌧ , loss⌧ (y, ypred) = ⌧ |y � ypred|+ + (1� ⌧)|y � ypred|� .

While the computational challenges associated with the optimization of such polyhedral functions [13]
have hindered large scale usage of quantile regression for many years, recent implementations directly
do away with these considerations to use instead stochastic gradient descent [22]. We try instead to
minimize directly the ⌧ -S-quantile operator (4). We recover code from [22] and use the databases
they shared, and consider the same regressor architecture, namely a 2 hidden layer NN with hidden
layer size 64, ADAM optimizer and steplength 1e� 4. Results are summarized in the table below.
For each quantile/dataset, we display the pinball loss evaluated on a held-out test set. Smaller is
better. Our results show that we are usually equivalent but sometimes worse than the direct approach,
highlighting issues which we believe are related to the handling of outliers in the Sinkhorn algorithm.
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Conclusion

SUQUAN	Kendall	

density ⇢ and apply it pointwise to the K-CDFs, or consider empirical quantiles f = (f1, . . . , fm)
at levels b and mix them using the optimal transport plan. The K-sort operator operates convex
combinations of CDF values (stored in b) while the K-quantile operator mixes quantiles and values
contained in x directly. Because these quantities are only defined pointwise (we output vectors and
not functions) and depend on the ordering of a,x,b,y, f we drop our reference to measure ⇠ in
notations.
Definition 1. Suppose P? 2 U(a,b) is optimal for (1). By analogy to the formulas provided in
Proposition 2, we call the two first vectors below the K-CDF and K-quantiles of a,x evaluated using
b,y. We define next the K-quantile normalizations of a,x using ⇢ or and respectively b, as:

eF (a,x;b,y)
def.
= a�1 � (P?b) 2 [0, 1]n, eQ (a,x;b,y)

def.
= b�1 � (PT

? x) 2 Om,

eT⇢ (a,x,b,y)
def.
= Q⇢( eF (a,x;b,y)) 2 Rn, eTf (a,x,b,y)

def.
= a�1 � (P?f) 2 Rn.
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Figure 1: (a) sorting seen as transporting optimally
x to y. (b) Kantorovich sorting generalizes the latter
by considering target measures y of different num-
ber of points m = 3 6= n = 5 as well as non-
uniform weights (here .48, .16 and .36). K-CDF and
K-Quantiles are a direct generalization of the original
quantities and operate by mixing CDF values from b

to create eF or mixing original values x to form a set
of m quantiles w.r.t. the cumulative sum of b. (c) En-
tropy regularized OT generalizes further K-operations
by solving OT with the Sinkhorn algorithm which
results in dense yet peaked transport plans.

The K-CDF vector eF is a vector of size n con-
taining an approximate CDF for each entry
for x in that order. eQ is a split-quantile op-
erator outputting m increasing values which
are each, respectively, averages of some of
the entries in x. The fact that these values
are increasing can be obtained by a simple
argument in which ⇠ and ⌫ are cast again
as uniform measures of the same size using
duplicated supports xi and yj , and then use
the monotonicity given by the third identity
of Proposition 2. Finally, two soft-quantile
operators are proposed, using either the quan-
tiles of a reference density ⇢ evaluated at
the soft-CDF levels, or directly averaging
the quantiles of distribution f through P?.
Note that when f and y coincide, the vector
eTy (a,x,b,y) is also known as the barycen-
tric projection of x[20, Remark 4.4].

Equivalence between sort and CDF. A sort-
ing locates n elements within the set of in-
dices in {1, . . . , n}. the empirical CDF does
the same within {1/n, . . . , (n�1)/n, 1}. Up
to a constant they are therefore the same
thing. One could equivalently define a K-
sort e� (a,x;b,y) that would be simply equal
to m eF (a,x;b,y). Because these quantities
are redundant we only keep the CDF opera-
tor which is more versatile since it is always
valued in [0, 1].

Non-differentiability These notations
hardly make sense, but notice that @P?/@x
is, very much like the sorting operation s
as argued above, a null Jacobian almost
everywhere. This is evident from Figure 2 as
one can see that an infinitesimal change in x does not change P? (notice that an infinitesimal change
in a would, and that Jacobian would involve North-west corner type mass transfers). We solve this
issue next using regularized OT.

3 Sinkhorn, Sorting CDF and Quantile Operators

All of the Kantorovich operators are expressed as functions of an optimal solutions P? of the
OT linear program. Because of this, these quantities are not differentiable w.r.t any of the inputs
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Harmonic analysis on SN

A representation of SN is a matrix-valued function ρ : SN → Cdρ×dρ

such that
∀σ1, σ2 ∈ SN , ρ(σ1σ2) = ρ(σ1)ρ(σ2)

A representation is irreductible (irrep) if it is not equivalent to the
direct sum of two other representations
SN has a finite number of irreps {ρλ : λ ∈ Λ} where Λ = {λ ` N}1
is the set of partitions of N
For any f : SN → R, the Fourier transform of f is

∀λ ∈ Λ , f̂ (ρλ) =
∑

σ∈SN

f (σ)ρλ(σ)

1λ ` N iff λ = (λ1, . . . , λr ) with λ1 ≥ . . . ≥ λr and
∑r

i=1 λi = N



Right-invariant kernels

Bochner’s theorem
An embedding Φ : SN → Rp defines a right-invariant kernel
K (σ1, σ2) = Φ(σ1)>Φ(σ2) if and only there exists φ : SN → R such that

∀σ1, σ2 ∈ SN , K (σ1, σ2) = φ(σ−1
2 σ1)

and
∀λ ∈ Λ , φ̂(ρλ) � 0


