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Motivation
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@ Nonlinear feature selection to identify genes
@ Followed by valid statistical inference (P-value, confidence interval for
association...)



Challenge: file drawer effect (aka publication bias)

Typical lab experiment :

@ Measurement of n different variables of interest (Y;)j=1,..,. Each
variable is normally distributed, Y; ~ N (i, o?).

@ Since we are interested in large effects, we only select such ones, e.g.:
7= {i e{l,---,n}s.t.]Y;| > 1}

@ Hypothesis testing for Hy : u;j =0, Vi € 7
o Reject Hy, if |Yi| > 1.96 (confidence interval for a = 0.05) ?



Challenge: file drawer effect (aka publication bias)

Typical lab experiment :

@ Measurement of n different variables of interest (Y;)j=1,..,. Each
variable is normally distributed, Y; ~ N (i, o?).

@ Since we are interested in large effects, we only select such ones, e.g.:
7= {i e{l,---,n}s.t.]Y;| > 1}

@ Hypothesis testing for Hy : u;j =0, Vi € 7
o Reject Hy, if |Y;] > 1.96 (confidence interval for « = 0.05) ? Wrong !
More than 5% of hypothesis will be rejected under Hy
e Proper way: condition on the selection event,

P(IYi| > Lo | |Yi] > 1) =0.05= L, = 2.41 > 1.96



Post-selection inference (PSI)

@ Observe data Y
o Select model M which depends on Y
e e.g., a subset of features for sparse regression
o Derive the distribution of a statistics of interest S, (Y') conditionally
on M(Y)=M
o e.g., weight of a given feature / € M in a linear regression model
restricted to M



Example: PSI for lasso regression (Lee et al., 2016)

B e arg minly — XBIZ+NBIl, M={i: B #0}

e For any M,

{y : M(y) = M} = Us{y : A(M,s)y < b(M,s)}
@ Statistics of the form nTMy
e Polyhedral lemma: if Y =y + 02/, then for any vector 7,

[v=.vi]

1Tzt n(m Y){AY < b} ~ Unif (0, 1),
bl

where F[ .2 is the c.d.f of a truncated Gaussian distribution, and
V- VJr are constants that are functions of 1, A, b.
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Extend PSI to nonlinear feature selection. For that:

@ Define nonlinear association scores s(i, y) between feature(s) i and
outcome y

@ Define a procedure to select a group of features M
O Characterize {y : M = M}
@ Deduce PSI distribution of a statistics of interest



Kernels

Instead of "features”, we assume a collection of kernels K1, ... Ks

Includes linear setting when K; is the linear kernel on the i-th feature

Generalize to nonlinear feature selection when K; is a nonlinear kernel
on the j-th features

Generalization to non-numeric features

Generalization to group selection



Association based on prototypes

S(K. Y) = [V,

where \A/K = H(K)Y is called a prototype for a "hat” function
H:R™" — R"™" (Reid et al., 2017).

e Kernel principal component regression (KPCR)

Horoj(K) = KK = Zu, ul,

where u1, ..., u, are the eigenvectors of K W|th nonzero eigenvalues

(Loftus and Taylor, 2015).

e Kernel principal component regression (KPCR) for some R < r:

R
Hipcr(K) =Y uiu]

i=1
o Kernel ridge regression (KRR) for some A > 0

Hikrr(K) = K(K + XI)™1



Association based on HSIC

Take s(K,Y) = @(K, YY) with one empirical estimator of HSIC
(Gretton et al., 2005):

— 1

ST Copaa (K. L) = (33 race(KTIo L),
— ]_
HSICunbiased(K7 L) = m trace(ﬁ L)

1K1, 1701, 2 T
(n—1)(n—-2) n-=-2"

where M, = lpxn — 11,1], K = K — diag(K) and L = L — diag(L).

KLln:|7
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Quadratic association

Theorem

All aforementioned assocation scores are quadratic kernel association
score, i.e., functions s : R™" x R" s R of the form

s(K,Y)=YTQ(K)Y,

for a Gram matrix K and some function @ : R™" — R™",

Q(K) is positive semidefinite for all but H/SI\Cunbiased
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Stepwise kernel selection: selection strategies

For a fixed number of selected kernels S’, we can deploy the following
kernel selection strategies
o Filtering: we compute the scores s(K, Y) for all candidate kernels
K € K, and select among them the top S’ with the highest scores.
e Forward stepwise selection (Song et al., 2007): we start from an
empty list of kernels, and iteratively add new kernels one by one in
the list by picking the one that leads to the largest increase in
association score when combined with the kernels already in the list.
@ Backward stepwise selection (Song et al., 2007): we start from the
full list of kernels, and iteratively remove the one that leads to the
smallest decrease in association score.

For the adaptive equivalents, S’ is automatically selected in a data-driven
fashion. We maximize over S’ the association score at each step.
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Stepwise kernel selection: selection event

Theorem

Given a set of kernels I = {Ki,...,Ks}, a quadratic kernel association
score s, and a method for kernel selection discussed above (i fi/iering,
forward or backward stepwise selection, adaptive or not), let M(Y) C I
be the subset of kernels selected given a vector of outcomes Y € R". For
any M C IC, there exists iyy € N, and

(QMJ, bM,1)7 ce (QM,iM7 bM,iM) € R™" x R such that

{Y : M(Y)=M}=({Y : Y Qu,Y + by, > 0}.
i=1
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Statistical inference

e Model Y = i+ 02¢ and test:
o s(K,u)=0for KeMor K=73,,.5 K (Yamada et al., 2018)
o s(MCemK ) =s <ZK,€M7K,¢K K’,u) (Loftus and Taylor, 2015;
Yang et al., 2016)
o Model Y = 114 0Y + 02¢ and test # = 0 (Reid et al., 2017)

Besides a few cases, we need to computed empirical p-values,
@ by approximating the distribution of the test statistic,

@ by generating replicates of Y within the acceptance region
{Y : M(Y) = M}.
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Constrained sampling

@ A simple rejection sampling algorithm is cumbersome for small
acceptance regions in high-dimensional spaces

@ The Hamiltonian Monte-Carlo algorithm from Pakman and Paninski
(2014) is difficult to scale

@ Closest thing in the literature: the Hypersphere Direction (Berbee
et al., 1987): truncated uniform distributions on bounded space
regions

To make it work, a smart trick is to use the c.d.f F of Y (see paper for
details)
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Experiments: statistical validity

X an 100 x 50 design matrix

The features are partitioned in
S = 10 disjoint and
mutually-independent subgroups
of p’ =5 features.

Within each group, we sample
from normal distribution centered
at 0 and with a covariance matrix
Vi = pli!

Y = 0Ky.3U; + €, where

K1z = K1 + Ko + K3, U is the
eigenvector corresponding to the
largest eigenvalue of Ki.3

6 € {0.0,0.1,0.2,0.3,0.4,0.5}

X is fixed, but Y is resampled
1000 times to create 1000
simulations.

—KRR (S'=1) —KRR (S'=5)
— KPCR (S'=1)— KPCR (S'=5)
- - HSIC (§'=1) - - HSIC (§'=5)

—KRR (S=3) — KRR adaptive
= KPCR (S'= 3)= KPCR adaptive
- - HSIC (§'=3) - - HSIC adaptive

0.75-

0.25-

0.00 0.25 Emp\riczb\s(;)uamﬂes 0.75 1.00
Figure: Q-Q plot comparing the
empirical kernelPSI p-values
distributions under the null hypothesis
(6 = 0.0) to the uniform distribution.
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Experiments: benchmarking

We benchmark against the following
methods
@ protolasso: the original, linear
prototype method for PSI with
L1-penalized regression Reid
et al. (2017);
@ protoOLS: a selection-free OLS
prototype
@ protof: a classical
goodness-of-fit F-test for the
OLS prototype
@ KPCR, KRR, and HSIC: the
non-selective alternatives to
our kernelPSI procedure.
o SKAT (Wu et al., 2011): a
non-selective quadratic kernel
association score.

—KRR (S=1) — KPCR adaptive
— KPCR (S'= 1)+ * HSIC adaptive
+ + HSIC (' =1) — protoLASSO

—KRR (§=3) — protoOLS
~ KPCR (S'=3)" - protoF

- - HSIC (S'=3) —KRR V#
~—KRR (S'=5) KPCR
— KPCR (§'=5)- - HSIC
< - HSIC (§' =5) — SKAT
— KRR adaptive

Statistical power
o °
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g a

o
N
o

0.00

Figure: Statistical power of kernelPSI
variants and benchmark methods, using
Gaussian kernels for simulated Gaussian
data.
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Conclusion

@ Nonlinear feature selection with valid PSI.

@ Open questions: better association measures for nonlinear variable
selection, constrained sampling, PSI beyond linear models, large-scale
kernel methods, MKL.

@ https://github.com/EpiSlim/kernelPSI
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https://github.com/EpiSlim/kernelPSI
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