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Health data



The sequencing revolution



The sequencing revolution



Sequencing is a swiss army knife for "omics"

(Frese et al., 2013)



Cancer

http://rise.duke.edu/seek/pages/page.html?0205

http://rise.duke.edu/seek/pages/page.html?0205


A cancer cell (1900)



A cancer cell (1960)



A cancer cell (2010)



All cancers are different

All happy families are alike; each unhappy family is unhappy in its own
way.
- Leon Tolstoy, Anna Karenina.



The future of medicine
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Modern ML works well!



Ingredients

1 Collect big, labeled data (eg, 10M images)
2 Use a model well adapted to the data (eg, CNN)

(from https://www.youtube.com/watch?v=gjK70r0Rqzs)

3 Large computational power + know-how ("alchemy"?)

Many applications: object/face recognition in images, machine
translation, speech recognition, go, self-driving cars, trading,
recommender systems, chemistry, material science...

https://www.youtube.com/watch?v=gjK70r0Rqzs


Promising applications in health: images, texts, ..?

(Mobadersany et al., 2018)

Also: high-content screening, digital pathology, radiomics, skin
diagnosis, EHR, ...



Ex: breast cancer metastasis detection (LYNA)

https://ai.googleblog.com/2018/10/applying-deep-learning-to-metastatic.html

Trained on 270 (large) images, 99% accuracy
halves average slide review time for expert pathologists

https://ai.googleblog.com/2018/10/applying-deep-learning-to-metastatic.html


Ex: Diabetic retinopathy (DR) detection

https://ai.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html

Fastest growing cause of blindness, with nearly 415 million
diabetic patients at risk worldwide
Lack of medical expertise for good diagnosis in many parts of the
world
System trained on 128k annotated images.

https://ai.googleblog.com/2016/11/deep-learning-for-detection-of-diabetic.html


Ex: Clinical predictions from electronic health records

https://www.nature.com/articles/s41746-018-0029-1/figures/3

https://www.nature.com/articles/s41746-018-0029-1/figures/3


More challenging data

Gene expression

Somatic mutations

n = 102 ∼ 104 (patients)
p = 104 ∼ 107 (genes, mutations, copy number, ...)
Data of various nature (continuous, discrete, structured, ...)
Data of variable quality (technical/batch variations, noise, ...)



Consequence: limited accuracy

Breast cancer prognosis competition, n = 2000, Bilal et al (2013)

C: 16 standard clinical data (age, tumor size, ...)
M: 80k molecular features (gene expression, DNA copy number)
P: incorporate prior knowledge



Consequence: unstable biomarker selection

70	genes	(Nature,	2002)	 76	genes	(Lancet,	2005)	

3	genes	in	common	

van ’t Veer et al. (2002); Wang et al. (2005)



What to do?

Get more data
with labels
sharing data (or models) is crucial
of good quality

Improve the models
include prior knowledge (biology, structure of noise, invariants...)
balance model complexity vs data available



More data helps

...but performance increases slowly. How much can be afford?

Method mAP@0.5 mAP@[0.5,0.95]
He et al. [16] 53.3 32.2
ImageNet 53.6 34.3
300M 56.9 36.7
ImageNet+300M 58.0 37.4
Inception ResNet [38] 56.3 35.5

Table 2. Object detection performance comparisons with baseline
methods on the COCO test-dev split. The first four Faster RCNN
detectors are all based on ResNet-101 architecture, the last one is
based on the InceptionResNet-v2 architecture. During inference, a
single image scale and crop, and a single detection model are used
for all experiments. Vanilla Faster RCNN implementations are
used for all systems except for He et al. [16], which also includes
box refinement and context.

ing inference, we use 300 RPN proposals. Our vanilla
FasterRCNN implementation does not use the multi-scale
inference, context or box-refinement as described in [33].

Comparison with ImageNet Models

We first present the performance comparison with Ima-
geNet checkpoints. Table 2 shows the detection perfor-
mance on COCO ‘test-dev’ split. To show that our Faster
RCNN baseline is competitive, we also report results from
the Faster RCNN paper [16], which uses both box refine-
ment and context information. We can see that our Ima-
geNet baseline performs competitively.

We evaluate JFT-300M trained from scratch (‘300M’)
and from ImageNet initialization (’ImageNet+300M’).
Both models outperforms the ImageNet baseline by large
margins, with 3.3% and 4.4% boost in mAP@.5, 2.4% and
3.1% in mAP@[.5,.95] respectively. As a reference, we also
show the performance of ImageNet trained InceptionRes-
Netv2 in Table 2. We would like to point out that the gain
is even more significant than recently achieved by doubling
the number of layers on Inception ResNet [18]. This clearly
indicates that while there are indications of a plateauing ef-
fect on model representation capacity; in terms of data there
is still a lot that can be easily gained.

Table 3 shows the performance on the PASCAL VOC
2007 ‘test’ set. Again, both JFT-300M checkpoints out-
performs the ImageNet baseline significantly, by 5.1% and
5.0% mAP@.5 respectively.

Impact of Epochs

We study how the number of training epochs affects the
object detection performance. For this experiment we re-
port results on COCO minival⇤ set. Table 4 shows the per-
formance comparison when the JFT-300M model has been
trained for 1.3, 2.6 and 4 epochs respectively. We can see
that as the number of training steps increases, the perfor-
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Figure 4. Object detection performance when initial checkpoints
are pre-trained on different subsets of JFT-300M from scratch.
x-axis is the data size in log-scale, y-axis is the detection per-
formance in mAP@[.5,.95] on COCO minival⇤ (left), and in
mAP@.5 on PASCAL VOC 2007 test (right).

mance also improves. As a comparison, in Table 5 we show
the ImageNet counterpart when trained for 3, 6, 12 and
150 epochs, we can see that the performance of ImageNet
checkpoints improves faster than JFT-300M with respect to
the number of epochs.

We would also like to point out that our learning sched-
ules have been developed using the experience from smaller
datasets. One can envision better learning schedules which
provide more improvement as more epochs are used.

Impact of Data Size

For this experiment, we randomly sample a subset of 10M,
30M and 100M images from the JFT-300M training data.
We use the same training schedule as the JFT-300M model
training. We pick the checkpoints corresponding to the 4th
epoch for each subset. To study the impact of learned visual
representations, we also conduct an experiments to freeze
the model weights for all layers before the conv5 block. For
this set of experiments we change the learning rate decay to
happen at 900K steps, and the total number of training steps
to 1.5M, as we find they tend to converge earlier.

In Figure 4, we show the mAP@[.5,.95] with check-
points trained on different JFT-300M subsets, the blue curve
corresponds to the regular faster RCNN training (with fine-
tuning), while the red curve corresponds to freezing feature
extractors. Not surprisingly, fine-tuning offers significantly
better performance on all data sizes. Most interestingly, we
can see that the performance grows logarithmically as pre-
training data expands, this is particularly true when feature
extraction layers are frozen.

Impact of Classes

JFT-300M has 18K labels in total. To understand what the
large number of classes brings us, we select a subset of 941
labels which have direct correspondence to the 1000 Ima-
geNet labels, and sample JFT-300M images which contain

Object detection performance on two benchmarks (COCO minimal, left, and PASCAL VOC 2007, right) as a function of the
number of labeled images used to train the model (Sun et al., 2017).



Some research directions

Regularize and incorporate prior knowledge

Find a better representation



Ex: somatic mutations in cancer

Stratton et al. (2009)



Large-scale efforts to collect somatic mutations

3,378 samples with survival information from 8 cancer types

downloaded from the TCGA / cBioPortal portals.

Cancer type Patients Genes
LUAD (Lung adenocarcinoma) 430 20 596

SKCM (Skin cutaneous melanoma) 307 17 463
GBM (Glioblastoma multiforme) 265 14 750

BRCA (Breast invasive carcinoma) 945 16 806
KIRC (Kidney renal clear cell carcinoma) 411 10 609

HNSC (Head and Neck squamous cell carcinoma) 388 17 022
LUSC (Lung squamous cell carcinoma) 169 13 590

OV (Ovarian serous cystadenocarcinoma) 363 10 195



Survival prediction from raw mutation profiles

Each patient is a binary vector: each gene is mutated (1) or not (2)
Silent mutations are removed
Survival model estimated with sparse survival SVM
Results on 5-fold cross-validation repeated 4 times



Approach: change representation?

Can we replace

x ∈ {0,1}p with p very large, very sparse

by a representation with more information shared between samples

Φ(x) ∈ H

that would allow better supervised and unsupervised classification?



NetNorm (Le Morvan et al., 2017)

1 Add mutations for patients with few (less than K ) mutations

2 Results

2.1 Overview of NetNorM
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Figure 1 – Overview of NetNorM. (a) Using a gene network as background knowledge (lower left), NetNorM
normalises each mutation profile in a collection of somatic mutation profiles (upper left) into a new, binary
representation (right) which encodes additional information relative to patient mutation rates and hubs’
neighbourhood mutational burden. This new representation allows performing patient stratification with
unsupervised clustering techniques, or survival analysis. (b) NetNorM normalises every patient mutation
profile to k mutations. Patients with less than k mutations get ’proxy’ mutations in their genes with the
highest number of mutated neighbours until they reach k mutations. Patients with more than k mutations
have mutations ’removed’ in their genes with lowest degree until they reach k mutations.
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2 Remove mutations for patients for many (more than K ) mutations
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In practice, K is a free parameter optimized on the training set, typically a few 100’s.



Results
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Use Pathway Commons as gene network.
NSQN = Network Smoothing / Quantile Normalization (Hofree et al., 2013)



Conclusion

Lots of data, increasing role of ML (particularly with images, texts)
Omics data is more challenging
Getting more data is important, but unlikely to allow ML-based
methods to reach their best
Active research

allowing data sharing (federated learning, differential privacy, ...)
new representations and learning algorithms for complex data
new experimental design strategies, causality inference
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