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0 Leverage scores



Classical statistical leverage scores

@ Goal: characterize how points “stick out” and affect the results of a
statistical procedure

@ Linear regression model:
y=XB+c¢
@ Ordinary least squares
y=Hy with H=XX"X)""xT
@ Leverage scores:
¢ = diag(H)

@ Property
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A-ridge leverage scores

@ (Kernel) ridge regression
y=HMN\y with H\) = X(X"X+n\p)'XT = K(K +n\l,) "

@ Leverage scores:
0()) = diag(H()\))



Use of leverage scores

Diagnosis tool for linear regression (Hoaglin and Welsch, 1978;
Velleman and Welsch, 1981; Chatterjee and Hadi, 1986)

Matrix sketching and column sampling (Mahoney and Drineas,
2009; Mahoney, 2011; Drineas et al., 2012; Wang and Zhang,
2013)

Low rank matrix approximation (Clarkson and Woodruff, 2013;
Bach, 2013)

Regression (Alaoui and Mahoney, 2015; Rudi et al., 2015; Ma
et al., 2015)

Random feature learning (Rudi and Rosasco, 2017)

Quadrature (Bach, 2017).



Open questions: Link between leverage score and

density?

A-ridge leverage scores

A-ridge leverage scores

column index
“In this experiment, the data points x; € (0, 1) have been generated with a
distribution symmetric about 1, having a high density on the borders of the
interval (0, 1) and a low density on the center of the interval. [...] We can see
that there are few data points with high leverage, and those correspond to the
region that is underrepresented in the data sample (i.e. the region close to
the center of the interval since it is the one that has the lowest density of
observations).” (Alaoui and Mahoney, 2015)



@ Main result



Main result

@ For a class of translation-invariant kernels K on RY

e E.g., Sobolev space of functions with squared integrable derivatives
of orderupto s > d/2

@ For the population A-ridge leverage score

VZzeRY, Ly(2)= <k(z, ) (T + M) k(z, .)>H

K

@ We have, for any z € RY with p(z) > 0:

N —d/(25) p( /251
Lx(2) tso LA p(2)



N —d/(2s) d/2s—1
LA(2) A—0,A>0 Lok p(2)

@ Explicit relationship between leverage score and density

@ Leverage score can be used for density estimation and outlier
detection

@ May suggest new ways to estimate the leverage score
@ Not valid for all kernels (e.g., Gaussian is too smooth)
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Regularized Christoffel function

@ Christoffel function, for / € N:
MZ) = mi 2 —
1(2) Péan,?x]/(P(X)) p(x)dx suchthat P(z)=1,
@ NEW: Regularized Christoffel function, for A > 0
C\(2) = inf / f(x)%p(x)dx + || f||3, suchthat f(z)=1.
feH Jrd

@ Link with leverage score

VzeRY, Cy\(z)=

Lx(2)



Proof sketch

@ We study the asymptotics of C,
@ We show, under some assumptions on the kernel
K(x,y) = q(x — y), that:

A
0@ g PAO(5)

where

fer
(2m)°

Jre Ai(e‘;&) dw

D()\) = min / F(x)2dx + A||f||2, subject to £(0) = 1
Rd



Conclusion

@ Leverage scores are classical tools in statistics, which gained
importance in ML for sketching, sampling, approximating

@ We propose a variational formulation of leverage scores, that is an
extension of Christoffel functions

@ This allows to prove that, under some assumptions on the kernel,
leverage scores and proportional to a negative power of the
density

@ This can suggest new ways to estimate leverage scores, and
clarifies why they can be used for density estimation and outlier
detection

THANK YOU
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