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Single-cell	RNA-seq	

(Grün	et	al	2015)	



The	data	



Dropout,	overdispersion…	

Kharchenko	et	al.,	2014	



Batch	effects,	
normalizaOon…	

 

 
Figure 3: Illustration with public data10 of how batch effects lead to differences in detection 

rates, which lead to apparent differences between biological groups. (A) Using principal 

components analysis, scRNA-Seq samples cluster by biological group, but the observed 

biological variation across groups is confounded with (B) technical variation from processing the 

cells in different batches. (C) Within one group (Group 5), the cells cluster by batch. (D) 

Furthermore, individual batches of cells have different proportions of detected genes, which may 

be driving the observed biological variation across groups. 
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Some	challenges	

•  Normalize	for	total	count	per	cell?	
•  Remove	unwanted	variaOons?	(batches,	cell	
cycle,	GC	content,	…)	

•  Distances	between	transcripOon	profiles?	
•  Clustering	/	VisualizaOon?	
•  DifferenOal	expression?	
•  Supervised	classificaOon?	
•  …	



Dimension	reducOon	(PCA/SVD)	

E[Y ] = W↵

1

PCA). The matrix V can also accommodate an intercept to account for cell-specific global e�ects, such as size
factors representing di�erences in library sizes (cf. sequencing depth). In addition, V can include gene-level
covariates, such as gene length or GC-content (Fig. 1).
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Figure 1: Schematic view of the ZINB model. Given n cells and J genes, let Yij denote the count of gene
j (j = 1, . . . , J) for cell i (i = 1, . . . , n) and Zij an unobserved indicator variable, equal to one if gene j is
a dropout in cell i and zero otherwise. Then, *** SD: µij = E[Yij |Zij = 0, X, V, W ] and fiij = Pr(Zij =
1|X, V, W ). We model log µ and logitfi with the regression specified in the figure. Note that the model allows
for di�erent covariates to be specified in the two regressions; we have omitted the µ and fi indices for clarity
in the figure (see the Methods for details). *** SD: In figure: I would use the same terminology for both X
and V intercepts: "X intercept acts as gene-specific scaling factor" and "V intercept acts as sample-specific
scaling factor" or use "normalization factor" for both X and V . Replace "unknown factors of interest" by
"unknown sample-level covariates", as W can also include unwanted factors. Use consistent capitalization.

The unobserved matrix W contains unknown sample-level covariates, which could correspond to unwanted
variation as in RUV [32, 33] or could be of interest as in cluster analysis (e.g., cell type). The model extends
the RUV framework to the ZINB distribution (thus far, RUV had only been implemented for linear [32] and
log-linear regression [33]). It di�ers in interpretation from RUV in the W– term which is not necessarily
considered unwanted; this term generally refers to unknown low-dimensional variation, that could be due to
unwanted technical e�ects (as in RUV), such as batch e�ects, or to biological e�ects of interest, such as cell
cycle or cell di�erentiation.

It is important to note that although W is the same, the matrices X and V could di�er in the modeling
of µ and fi, if we assume that some known factors do not a�ect both. When X = 1n and V = 1J , the model
is a factor model akin to principal component analysis (PCA), where W is a factor matrix and –µ and –fi

are loading matrices. However, the model is more general, allowing the inclusion of additional sample and
gene-level covariates that might help to infer the unknown factors.

Simulated Datasets: ZINB Estimators are Asymptotically Unbiased and Robust

First, we evaluated the ZINB estimation procedure on simulated data from a zero-inflated negative binomial
distribution, to assess both accuracy under a correctly specified model and robustness to model misspecifi-
cation. The approach involves computing maximum likelihood estimators (MLE) for the parameters of the
ZINB model of Fig. 1, namely, –, —, “, and W , and hence µ and fi. MLE are well-behaved, in that they are
asymptotically unbiased and e�cient. However, because the likelihood function of our ZINB model is not
convex, our numerical optimization procedure may converge to a local maximum, rather than to the true
MLE (see Methods).

On simulated data, we observed that our estimators are asymptotically unbiased (Fig. S1) and have
decreasing variance as the number of cells n increases (Fig. S1 and S2). This suggests that our estimates are
not far from the true MLE.

3



Including	known	covariates	(RUV)	
E[Y ] = W↵

E[Y ] = X� +W↵

E[Y ] = X� + V � +W↵

1

PCA). The matrix V can also accommodate an intercept to account for cell-specific global e�ects, such as size
factors representing di�erences in library sizes (cf. sequencing depth). In addition, V can include gene-level
covariates, such as gene length or GC-content (Fig. 1).
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Figure 1: Schematic view of the ZINB model. Given n cells and J genes, let Yij denote the count of gene
j (j = 1, . . . , J) for cell i (i = 1, . . . , n) and Zij an unobserved indicator variable, equal to one if gene j is
a dropout in cell i and zero otherwise. Then, *** SD: µij = E[Yij |Zij = 0, X, V, W ] and fiij = Pr(Zij =
1|X, V, W ). We model log µ and logitfi with the regression specified in the figure. Note that the model allows
for di�erent covariates to be specified in the two regressions; we have omitted the µ and fi indices for clarity
in the figure (see the Methods for details). *** SD: In figure: I would use the same terminology for both X
and V intercepts: "X intercept acts as gene-specific scaling factor" and "V intercept acts as sample-specific
scaling factor" or use "normalization factor" for both X and V . Replace "unknown factors of interest" by
"unknown sample-level covariates", as W can also include unwanted factors. Use consistent capitalization.

The unobserved matrix W contains unknown sample-level covariates, which could correspond to unwanted
variation as in RUV [32, 33] or could be of interest as in cluster analysis (e.g., cell type). The model extends
the RUV framework to the ZINB distribution (thus far, RUV had only been implemented for linear [32] and
log-linear regression [33]). It di�ers in interpretation from RUV in the W– term which is not necessarily
considered unwanted; this term generally refers to unknown low-dimensional variation, that could be due to
unwanted technical e�ects (as in RUV), such as batch e�ects, or to biological e�ects of interest, such as cell
cycle or cell di�erentiation.

It is important to note that although W is the same, the matrices X and V could di�er in the modeling
of µ and fi, if we assume that some known factors do not a�ect both. When X = 1n and V = 1J , the model
is a factor model akin to principal component analysis (PCA), where W is a factor matrix and –µ and –fi

are loading matrices. However, the model is more general, allowing the inclusion of additional sample and
gene-level covariates that might help to infer the unknown factors.

Simulated Datasets: ZINB Estimators are Asymptotically Unbiased and Robust

First, we evaluated the ZINB estimation procedure on simulated data from a zero-inflated negative binomial
distribution, to assess both accuracy under a correctly specified model and robustness to model misspecifi-
cation. The approach involves computing maximum likelihood estimators (MLE) for the parameters of the
ZINB model of Fig. 1, namely, –, —, “, and W , and hence µ and fi. MLE are well-behaved, in that they are
asymptotically unbiased and e�cient. However, because the likelihood function of our ZINB model is not
convex, our numerical optimization procedure may converge to a local maximum, rather than to the true
MLE (see Methods).

On simulated data, we observed that our estimators are asymptotically unbiased (Fig. S1) and have
decreasing variance as the number of cells n increases (Fig. S1 and S2). This suggests that our estimates are
not far from the true MLE.
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Jacob	et	al.	(2013),	Gagnon-Bartsch	et	al.	(2013),	Risso	et	al.	(2014)	



How	to	adapt	PCA/SVD/RUV	
to	scRNA-seq	data?	
E[Y ] = W↵

E[Y ] = X� +W↵

E[Y ] = X� + V � +W↵

1

-  discrete,	non-Gaussian	data	
-  dropouts	

ARTICLE

A general and flexible method for signal extraction
from single-cell RNA-seq data
Davide Risso 1, Fanny Perraudeau2, Svetlana Gribkova3, Sandrine Dudoit2,4 & Jean-Philippe Vert 5,6,7,8

Single-cell RNA-sequencing (scRNA-seq) is a powerful high-throughput technique that

enables researchers to measure genome-wide transcription levels at the resolution of single

cells. Because of the low amount of RNA present in a single cell, some genes may fail to be

detected even though they are expressed; these genes are usually referred to as dropouts.

Here, we present a general and flexible zero-inflated negative binomial model (ZINB-WaVE),

which leads to low-dimensional representations of the data that account for zero inflation

(dropouts), over-dispersion, and the count nature of the data. We demonstrate, with simu-

lated and real data, that the model and its associated estimation procedure are able to give a

more stable and accurate low-dimensional representation of the data than principal com-

ponent analysis (PCA) and zero-inflated factor analysis (ZIFA), without the need for a pre-

liminary normalization step.
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ZINB	distribuOon	to	model	a	count	

• We have focused on unsupervised settings / clustering. The model could be used for di�erential expres-
sion as well. Zero-inflated models for di�erential expression have been proposed [13, 28]. Our model
can work in that setting too, either via a Likelihood Ratio Test or Wald Test.

• Alternatives: weighted PCA and imputation. Should we compare to these approaches?

• Future: more cells, less reads: importance of zero-inflation even more; importance of e�cient methods
to deal with large number of cells. Computational cost and memory footprint of our method; how to
improve?

*** DR: TODO: mention other possible covariates (both gene-level and sample-level) perhaps with a
supplementary figure – move from results?.

*** DR: TODO: expand on why ZINB reduces dependence on QC measures: the presence of V (perhaps
show results of ZINB without V to show that the dependence comes back). Mention similar supervised
(MAST) and unsupervised (RUV) approaches in di�erential expression, but not necessarily appropriate for
clustering / visualization.

*** DR: TODO: mention this paper: http://www.pnas.org/content/113/51/14662.short
*** DR: Add discussion on t-SNE and this paper: http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.4207.html.

They may lead to better visualization, but limitations (e.g., wrt to interpretation of the axes and with pseu-
dotime inference.

Methods

Model

For any µ Ø 0 and ◊ > 0, let fNB(· ; µ, ◊) denote the probability mass function (p.m.f.) of the negative
binomial (NB) distribution with mean µ and inverse dispersion parameter ◊, namely:

fNB(y; µ, ◊) = �(y + ◊)
�(y + 1)�(◊)

3
◊

◊ + µ

4◊ 3
µ

µ + ◊

4y

, ’y œ N.

Note that another parametrization of the NB p.m.f. is in terms of the dispersion parameter „ = ◊≠1

(although ◊ is also sometimes called dispersion parameter in the literature). In both cases, the mean of the
NB distribution is µ and its variance is:

‡2 = µ + µ2

◊
= µ + „µ2 .

In particular, the NB distribution boils down to a Poisson distribution when „ = 0 … ◊ = +Œ.
For any fi œ [0, 1], let fZINB(· ; µ, ◊, fi) be the p.m.f. of the zero-inflated negative binomial (ZINB)

distribution given by:

fZINB(y; µ, ◊, fi) = fi”0(y) + (1 ≠ fi)fNB(y; µ, ◊), ’y œ N,

where ”0(·) is the Dirac function. Here, fi can be interpreted as the probability that a 0 is observed instead of
the actual count, resulting in an inflation of zeros compared to the NB distribution, hence the name ZINB.

Given n samples (typically, n single cells) and J features (typically, J genes) that can be counted for
each sample, let Yij denote the count of feature j (for j = 1, . . . , J) for sample i (i = 1, . . . , n). To account
for various technical and biological e�ects frequent, in particular, in single-cell sequencing technologies, we
model Yij as a random variable following a ZINB distribution with parameters µij , ◊ij , and fiij , and consider
the following regression models for the parameters:

ln(µij) =
!
X—µ + (V “µ)€ + W–µ + Oµ

"
ij

, (1)

logit(fiij) =
!
X—fi + (V “fi)€ + W–fi + Ofi

"
ij

, (2)

ln(◊ij) = ’j , (3)

13

• We have focused on unsupervised settings / clustering. The model could be used for di�erential expres-
sion as well. Zero-inflated models for di�erential expression have been proposed [13, 28]. Our model
can work in that setting too, either via a Likelihood Ratio Test or Wald Test.

• Alternatives: weighted PCA and imputation. Should we compare to these approaches?

• Future: more cells, less reads: importance of zero-inflation even more; importance of e�cient methods
to deal with large number of cells. Computational cost and memory footprint of our method; how to
improve?

*** DR: TODO: mention other possible covariates (both gene-level and sample-level) perhaps with a
supplementary figure – move from results?.

*** DR: TODO: expand on why ZINB reduces dependence on QC measures: the presence of V (perhaps
show results of ZINB without V to show that the dependence comes back). Mention similar supervised
(MAST) and unsupervised (RUV) approaches in di�erential expression, but not necessarily appropriate for
clustering / visualization.

*** DR: TODO: mention this paper: http://www.pnas.org/content/113/51/14662.short
*** DR: Add discussion on t-SNE and this paper: http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.4207.html.

They may lead to better visualization, but limitations (e.g., wrt to interpretation of the axes and with pseu-
dotime inference.
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where ”0(·) is the Dirac function. Here, fi can be interpreted as the probability that a 0 is observed instead of
the actual count, resulting in an inflation of zeros compared to the NB distribution, hence the name ZINB.

Given n samples (typically, n single cells) and J features (typically, J genes) that can be counted for
each sample, let Yij denote the count of feature j (for j = 1, . . . , J) for sample i (i = 1, . . . , n). To account
for various technical and biological e�ects frequent, in particular, in single-cell sequencing technologies, we
model Yij as a random variable following a ZINB distribution with parameters µij , ◊ij , and fiij , and consider
the following regression models for the parameters:

ln(µij) =
!
X—µ + (V “µ)€ + W–µ + Oµ

"
ij

, (1)

logit(fiij) =
!
X—fi + (V “fi)€ + W–fi + Ofi

"
ij

, (2)

ln(◊ij) = ’j , (3)

13

«	Zero-Inflated	NegaRve	Binomial	»	



ZINB-WaVE	model	
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Figure 1: Schematic view of the ZINB model. Given n cells and J genes, let Yij denote the count of gene
j (j = 1, . . . , J) for cell i (i = 1, . . . , n) and Zij an unobserved indicator variable, equal to one if gene j is
a dropout in cell i and zero otherwise. Then, *** SD: µij = E[Yij |Zij = 0, X, V, W ] and fiij = Pr(Zij =
1|X, V, W ). We model log µ and logitfi with the regression specified in the figure. Note that the model allows
for di�erent covariates to be specified in the two regressions; we have omitted the µ and fi indices for clarity
in the figure (see the Methods for details). *** SD: In figure: I would use the same terminology for both X
and V intercepts: "X intercept acts as gene-specific scaling factor" and "V intercept acts as sample-specific
scaling factor" or use "normalization factor" for both X and V . Replace "unknown factors of interest" by
"unknown sample-level covariates", as W can also include unwanted factors. Use consistent capitalization.

The unobserved matrix W contains unknown sample-level covariates, which could correspond to unwanted
variation as in RUV [32, 33] or could be of interest as in cluster analysis (e.g., cell type). The model extends
the RUV framework to the ZINB distribution (thus far, RUV had only been implemented for linear [32] and
log-linear regression [33]). It di�ers in interpretation from RUV in the W– term which is not necessarily
considered unwanted; this term generally refers to unknown low-dimensional variation, that could be due to
unwanted technical e�ects (as in RUV), such as batch e�ects, or to biological e�ects of interest, such as cell
cycle or cell di�erentiation.

It is important to note that although W is the same, the matrices X and V could di�er in the modeling
of µ and fi, if we assume that some known factors do not a�ect both. When X = 1n and V = 1J , the model
is a factor model akin to principal component analysis (PCA), where W is a factor matrix and –µ and –fi

are loading matrices. However, the model is more general, allowing the inclusion of additional sample and
gene-level covariates that might help to infer the unknown factors.

Simulated Datasets: ZINB Estimators are Asymptotically Unbiased and Robust

First, we evaluated the ZINB estimation procedure on simulated data from a zero-inflated negative binomial
distribution, to assess both accuracy under a correctly specified model and robustness to model misspecifi-
cation. The approach involves computing maximum likelihood estimators (MLE) for the parameters of the
ZINB model of Fig. 1, namely, –, —, “, and W , and hence µ and fi. MLE are well-behaved, in that they are
asymptotically unbiased and e�cient. However, because the likelihood function of our ZINB model is not
convex, our numerical optimization procedure may converge to a local maximum, rather than to the true
MLE (see Methods).

On simulated data, we observed that our estimators are asymptotically unbiased (Fig. S1) and have
decreasing variance as the number of cells n increases (Fig. S1 and S2). This suggests that our estimates are
not far from the true MLE.

3

• We have focused on unsupervised settings / clustering. The model could be used for di�erential expres-
sion as well. Zero-inflated models for di�erential expression have been proposed [13, 28]. Our model
can work in that setting too, either via a Likelihood Ratio Test or Wald Test.

• Alternatives: weighted PCA and imputation. Should we compare to these approaches?

• Future: more cells, less reads: importance of zero-inflation even more; importance of e�cient methods
to deal with large number of cells. Computational cost and memory footprint of our method; how to
improve?

*** DR: TODO: mention other possible covariates (both gene-level and sample-level) perhaps with a
supplementary figure – move from results?.

*** DR: TODO: expand on why ZINB reduces dependence on QC measures: the presence of V (perhaps
show results of ZINB without V to show that the dependence comes back). Mention similar supervised
(MAST) and unsupervised (RUV) approaches in di�erential expression, but not necessarily appropriate for
clustering / visualization.

*** DR: TODO: mention this paper: http://www.pnas.org/content/113/51/14662.short
*** DR: Add discussion on t-SNE and this paper: http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.4207.html.

They may lead to better visualization, but limitations (e.g., wrt to interpretation of the axes and with pseu-
dotime inference.

Methods

Model

For any µ Ø 0 and ◊ > 0, let fNB(· ; µ, ◊) denote the probability mass function (p.m.f.) of the negative
binomial (NB) distribution with mean µ and inverse dispersion parameter ◊, namely:

fNB(y; µ, ◊) = �(y + ◊)
�(y + 1)�(◊)

3
◊

◊ + µ

4◊ 3
µ

µ + ◊

4y

, ’y œ N.

Note that another parametrization of the NB p.m.f. is in terms of the dispersion parameter „ = ◊≠1

(although ◊ is also sometimes called dispersion parameter in the literature). In both cases, the mean of the
NB distribution is µ and its variance is:

‡2 = µ + µ2

◊
= µ + „µ2 .

In particular, the NB distribution boils down to a Poisson distribution when „ = 0 … ◊ = +Œ.
For any fi œ [0, 1], let fZINB(· ; µ, ◊, fi) be the p.m.f. of the zero-inflated negative binomial (ZINB)

distribution given by:

fZINB(y; µ, ◊, fi) = fi”0(y) + (1 ≠ fi)fNB(y; µ, ◊), ’y œ N,

where ”0(·) is the Dirac function. Here, fi can be interpreted as the probability that a 0 is observed instead of
the actual count, resulting in an inflation of zeros compared to the NB distribution, hence the name ZINB.

Given n samples (typically, n single cells) and J features (typically, J genes) that can be counted for
each sample, let Yij denote the count of feature j (for j = 1, . . . , J) for sample i (i = 1, . . . , n). To account
for various technical and biological e�ects frequent, in particular, in single-cell sequencing technologies, we
model Yij as a random variable following a ZINB distribution with parameters µij , ◊ij , and fiij , and consider
the following regression models for the parameters:

ln(µij) =
!
X—µ + (V “µ)€ + W–µ + Oµ

"
ij

, (1)

logit(fiij) =
!
X—fi + (V “fi)€ + W–fi + Ofi

"
ij

, (2)

ln(◊ij) = ’j , (3)

13



Usage	

•  X:	
–  (1,…,1)	for	gene-specific	offset	
– Batch	effects,	quality	control	
– Experimental	design	

•  V	
–  (1,…,1)	for	cell-specific	offset	(size	factor)	
– GC	content,	...	

•  W,alpha:	cell	cycle,	clusters,	...	(like	PCA)	



Fiang	the	model	
ZINB-WaVE estimation procedure

The input to the model are the matrices X, V , Oµ, and Ofi and the integer K; the parameters to be inferred
are — = (—µ, —fi), “ = (“µ, “fi), W , – = (–µ, –fi), and ’. Given an n◊J matrix of counts Y , the log-likelihood
function is

¸(—, “, W, –, ’) =
nÿ

i=1

Jÿ

j=1
ln fZINB(Yij ; µij , ◊ij , fiij) ,

where µij , ◊ij , and fiij depend on (—, “, W, –, ’) through Equations (4)–(6).
To infer the parameters, we follow a penalized maximum likelihood approach, by trying to solve

max
—,“,W,–,’

{¸(—, “, W, –, ’) ≠ Pen(—, “, W, –, ’)} ,

where Pen(·) is a regularization term to reduce overfitting and improve the numerical stability of the optimiza-
tion problem in the setting of many parameters. For nonnegative regularization parameters (‘— , ‘“ , ‘W , ‘–, ‘’),
we set

Pen(—, “, W, –, ’) = ‘—

2 Î—0Î2 + ‘“

2 Î“0Î2 + ‘W

2 ÎWÎ2 + ‘–

2 Î–Î2 + ‘’

2 Var(’) ,

where —0 and “0 denote the matrices — and “ without the rows corresponding to the intercepts if an unpe-
nalized intercept is included in the model, Î · Î is the Frobenius matrix norm (ÎAÎ =


tr(AúA), where Aú

denotes the conjugate transpose of A), and Var(’) = 1/(J ≠ 1)
qJ

i=1

1
’i ≠ (

qJ
j=1 ’j)/J

22
is the variance of

the elements of ’ (using the unbiased sample variance statistic). The penalty tends to shrink the estimated
parameters to 0, except for the cell and gene-specific intercepts which are not penalized and the dispersion
parameters which are not shrunk towards 0 but instead towards a constant value across genes. Note also
that the likelihood only depends on W and – through their product R = W– and that the penalty ensures
that at the optimum W and – have the structure described in the following result which generalizes standard
results such as [36] (Lemma 1) and [37] (Lemma 6).
Lemma 1. For any matrix R and positive scalars s and t, the following holds:

min
S,T : R=ST

1
2

!
sÎSÎ2 + tÎTÎ2"

=
Ô

stÎRÎú ,

where ÎAÎú = tr

1Ô
AúA

2
. If R = RLR�RR is a singular value decomposition (SVD) of R, then a solution

to this optimization problem is:
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Proof. Let S̃ =
Ô

sS, T̃ =
Ô

tT , and R̃ =
Ô

stR. Then, ÎS̃Î2 = sÎSÎ2, ÎT̃Î2 = tÎTÎ2, and S̃T̃ =
Ô

stST , so
that the optimization problem is equivalent to:

min
S̃,T̃ : S̃T̃ =R̃

1
2

!
ÎS̃Î2 + ÎT̃Î2"

,

which by [37] (Lemma 6) has optimum value ÎR̃Îú =
Ô

stÎRÎú reached at S̃ = R̃LR̃
1
2
� and T̃ = R̃

1
2
�R̃R, where

R̃LR̃�R̃R is a SVD of R̃. Observing that R̃L = RL, R̃R = RR, and R̃� =
Ô

stR�, gives that a solution of
the optimization problem is S = s≠1/2S̃ = s≠1/2RL(st)1/4R1/2

� = (t/s)1/4RLR1/2
� . A similar argument for T

concludes the proof.

This lemma implies in particular that at any local maximum of the penalized log-likelihood, W and –€

have orthogonal columns, which is useful for visualization or interpretation of latent factors.
To balance the penalties applied to the di�erent matrices in spite of their di�erent sizes, a natural choice

is to fix ‘ > 0 and set
‘— = ‘

J
, ‘“ = ‘

n
, ‘W = ‘

n
, ‘– = ‘

J
, ‘’ = ‘ .

In particular, from Lemma 1, we easily deduce the following characterization of the penalty on W and –,
which shows that the entries in the matrices W and – have similar standard deviation after optimization:
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Glioblastoma	data:		
keeps	less	unwanted	signal	
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Figure 5: Low-dimensional representation of the glioblastoma dataset. Upper panels provide two-dimensional
representations of the data: (A) PCA (on TC-normalized counts); (C) ZIFA (on TC-normalized counts);
(E) ZINB (no normalization needed). Lower panels provide barplots of the absolute correlation between the
first two components and a set of QC measures (see Methods): (B) PCA (on TC-normalized counts); (D)
ZIFA (on TC-normalized counts); (F) ZINB (no normalization needed). ZINB leads to a low-dimensional
representation that is less influenced by technical variation and to tighter, biologically meaningful clusters.
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SimulaOon:	robust	cluster	recovery	

It is important to note that the previous results were obtained for data simulated from the ZINB model
underlying our estimation procedure. It is hence not surprising that the ZINB procedure outperformed its
competitors. To provide a fairer comparison, we also assessed the methods on data simulated from the model
proposed by Lun & Marioni [34]. *** DR: Fanny, please check reference *** FP: Ideally, I would refer to the
github repo MarioniLab/PlateE�ects2016 because the main focus of the paper is not simulations whereas
in their github repo they explain how to simulate scRNAseq datasets. But, I don’t know if people refer to
github repositories. I guess this reference is correct too. Although this model is also based on a negative
binomial distribution (see Methods), it randomly adds zeros to the data, rather than using a log-linear
model to link zero fraction and expression. *** DR: Fanny, is this true? *** FP: Zeros are not randomly
added. The way they simulate data is as follow. First, they simulate count data from a negative binomial
distribution where they estimate means and dispersions from a real dataset. Then, they fit a zero-inflated
regression to this same dataset using function zeroinfl from R package pscl to estimate the zero probability
for each gene. Finally, they use a binomial distribution with these estimated zero probabilities to decide if
an actual count is replaced by a zero or not. *** SD: How about this rephrasing: "Although this model is
also based on a negative binomial distribution (see Methods), zero counts are added separately based on an
independent Bernoulli distribution for each count, rather than using a log-linear model linking zero inflation
and expression level."
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Figure 4: Silhouette widths, Lun & Marioni [34] simulation model. Average silhouette widths for true clusters
vs. zero fraction, for n œ {100, 1, 000, 10, 000} cells *** FP: Add 10,000 cells once no more bugs in zinbFit.
For each method, silhouette widths were computed from the between-sample distance matrix based on W
for ZINB, the first two principal components for PCA, and the first two latent variables for ZIFA. Silhouette
widths were averaged over B = 10 simulations and n samples. For PCA and ZIFA, di�erent normalization
methods were used. Colors correspond to the di�erent methods. While ZINB was relatively robust to the
sample size n and zero fraction, the performance of PCA and ZIFA decreased with larger zero fraction. ***
SD: Add values of other parameters, in simulation and in fit.

When the data were simulated to have a moderate fraction of zeros (namely 40%), all methods performed
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DifferenOal	Expression	(DE)	

Dedicated	tools	for	
«	bulk	»	RNA-seq	
-  DESeq2	
-  EdgeR	
-  …	

Need	to	esOmate	
mean	&	variance	per	
gene	



Zero	inflaOon	perturbs	mean-variance	
relaOonship	



Which	0’s	are	dropout?	

Fanny
Perraudeau,
UC Berkeley

Extension of
bulk RNA-seq
tools towards
zero-inflation

High power,
low type I
error rates

Biologically
meaningful
DE genes

Extension of bulk RNA-seq tools towards
zero-inflation

Challenges for scRNA-seq DE analysis

• dropouts

• transcriptional bursting

• high variability

We propose ZINB-WaVE observational weights
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5-  Posterior	probability	that	Y_ij	is	not	a	dropout	
-  Can	be	used	as	an	observaRon	weight	in	methods	for	

«	bulk	»	RNA-seq	
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METHOD Open Access

Observation weights unlock bulk RNA-seq
tools for zero inflation and single-cell
applications
Koen Van den Berge1,2†, Fanny Perraudeau3†, Charlotte Soneson4,5, Michael I. Love6,
Davide Risso7, Jean-Philippe Vert8,9,10,11, Mark D. Robinson4,5, Sandrine Dudoit3,12†

and Lieven Clement1,2†*

Abstract
Dropout events in single-cell RNA sequencing (scRNA-seq) cause many transcripts to go undetected and induce an
excess of zero read counts, leading to power issues in differential expression (DE) analysis. This has triggered the
development of bespoke scRNA-seq DE methods to cope with zero inflation. Recent evaluations, however, have
shown that dedicated scRNA-seq tools provide no advantage compared to traditional bulk RNA-seq tools. We
introduce a weighting strategy, based on a zero-inflated negative binomial model, that identifies excess zero counts
and generates gene- and cell-specific weights to unlock bulk RNA-seq DE pipelines for zero-inflated data, boosting
performance for scRNA-seq.

Keywords: Single-cell RNA sequencing, Differential expression, Zero-inflated negative binomial, Weights

Background
Transcriptomics has become one of the standard tools
in modern biology for unraveling the molecular basis
of biological processes and diseases. One of the most
common applications of transcriptome profiling is the
discovery of differentially expressed (DE) genes, which
exhibit changes in expression levels across conditions
[1–3]. Over the last decade, transcriptome sequencing
(RNA-seq) has become the standard technology for tran-
scriptome profiling, enabling researchers to study average
gene expression over bulks of thousands of cells [4, 5].
The advent of single-cell RNA-seq (scRNA-seq) enables
high-throughput transcriptome profiling at the resolution
of single cells and allows, among other things, research on
cell developmental trajectories, cell-to-cell heterogeneity,
and the discovery of novel cell types [6–11].
In scRNA-seq, individual cells are first captured, their

RNA is then reverse-transcribed into cDNA, which is
greatly amplified from the minute amount of starting

*Correspondence: lieven.clement@ugent.be
†Equal contributors
1Department of Applied Mathematics, Computer Science and Statistics, Ghent
University, Krijgslaan 281, S9, 9000 Ghent, Belgium
2Bioinformatics Institute Ghent, Ghent University, 9000 Ghent, Belgium
Full list of author information is available at the end of the article

material, and the resulting library is finally sequenced
[12]. Transcript abundances are typically estimated by
counts that represent the number of sequencing reads
mapping to an exon, transcript, or gene. Many scRNA-
seq protocols have been published for such core steps
[13–18], but despite these advances, scRNA-seq data
remain inherently noisy. Dropout events cause many
transcripts to go undetected for technical reasons, such
as inefficient cDNA polymerization, amplification bias,
or low sequencing depth, leading to an excess of zero read
counts compared to bulk RNA-seq data [18, 19]. In addi-
tion, excess zeros can also occur for biological reasons,
such as transcriptional bursting [20]. There are, therefore,
two types of zeros in scRNA-seq data: biological zeros,
when a gene is simply not expressed in the cell, and
technical zeros (i.e., dropouts), when a gene is expressed
in the cell but not detected. Zero inflation, i.e., excess
zeros compared to standard count distributions (e.g.,
negative binomial) used in bulk RNA-seq, occurs for both
biological and technical reasons and disentangling the
two sources is not trivial. In addition, scRNA-seq counts
are inherently more variable than bulk RNA-seq counts
because the transcriptional signal is not averaged across
thousands of individual cells (Additional file 1: Figure S1),

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
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Extension of
bulk RNA-seq
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zero-inflation

High power,
low type I
error rates

Biologically
meaningful
DE genes

High power, low type I error rates

High sensitivity and specificity. Data simulated from real data
set [Islam et al., 2011] using simulation framework described in
[Van den Berge et al., 2017].
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Supervised	classificaOon	

•  Given	a	set	of	labeled	scRNA-seq	profiles	(e.g.,	
cell	types),	how	to	learn	a	sparse	classifier?	

•  Popular	soluOon	for	bulk	data:	lasso	/	elasOc	
net	regression	

2 Methods

2.1 Setting and notations

We consider the supervised machine learning setting, where we observe a series of n pairs of the form
(x

i

, y

i

)
i=1,...,n

. For each i 2 [1, n], x
i

2 Rd represents the gene expression levels for d genes measured in
the i-th cell by scRNA-seq, and y

i

2 R or {�1, 1} is a label to represent a discrete category or a real
number associated to the i-th cell, e.g., a phenotype of interest such as normal vs tumour cell, or an index
of progression in the cell cycle. For i 2 [1, n] and j 2 [1, d], we denote by x

i,j

2 R the expression level of
gene j in cell i. From this training set of n annotated cells, the goal of supervised learning is to estimate a
function to predict the label of any new, unseen cell from its transcriptomic profile. We restrict ourselves to
linear models f

w

: Rd ! R, for any w 2 Rd, of the form

8u 2 Rd

, f

w

(u) =
dX

i=1

w

i

u

i

.

To estimate a model on the training set, a popular approach is to follow a penalised maximum likelihood or
empirical risk minimisation principle and to solve an objective function of the form

min
w2Rd

(
1

n

nX

i=1

L(w, x
i

, y

i

) + �⌦(w)

)
, (1)

where L(w, x
i

, y

i

) is a loss function to assess how well f
w

predicts y
i

from x

i

, ⌦ is an (optional) penalty to
control overfitting in high dimensions, and � > 0 is a regularisation parameter to control the balance between
under- and overfitting. Examples of classical loss functions include the square loss:
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and the logistic loss:
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) = log
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@1 + exp(�y
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w

j

x
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,

which are popular losses when y

i

is respectively a continuous (y
i

2 R) or discrete (y
i

2 {�1, 1}) label. As for
the regularisation term ⌦(w) in (1), popular choices include the ridge penalty (Hoerl and Kennard, 1970):

⌦
ridge

(w) = kwk2
2

=
dX

i=1

w

2

i

,

and the lasso penalty (Tibshirani, 1996):

⌦
lasso

(w) = kwk
1

=
dX

i=1

|w
i

| .

The properties, advantages and drawbacks of ridge and lasso penalties have been theoretically studied under
di↵erent assumptions and regimes. The lasso penalty additionally allows feature selection by producing
sparse solutions, i.e., vectors w with many zeros; this is useful to in many bioinformatics applications to
select “molecular signatures”, i.e., predictive models based on the expression of a limited number of genes
only. It is known however that lasso can be unstable in particular when there are several highly correlated
features in the data. It also cannot select more features than the number of observations and its accuracy is
often dominated by that of ridge. For these reasons, another popular penalty is elastic net, which encompasses
the advantages of both penalties Zou and Hastie (2005) :

⌦
ridge

(w) = ↵ kwk2
2

+ (1� ↵)kwk
1

,

where ↵ 2 [0, 1] allows to interpolate between the lasso (↵ = 0) and the ridge (↵ = 1) penalties.
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From	ridge	to	dropout	regularizaOon	

•  Ridge	regularizaOon	is	related	to	addiOve	
Gaussian	noise	in	the	data	

•  We	should	instead	be	robust	to	dropout	noise	
in	the	data,	suggesOng	to	use	instead	dropout	
regulariza0on	(alRtude	training)	

2.2 DropLasso

For scRNA-seq data subject to dropout noise, we propose a new model to train a sparse linear model robust
to the noise by artificially augmenting the training set with new examples corrupted by dropout. Formally,
given a vector u 2 Rd and a dropout mask � 2 {0, 1}d, we consider the corrupted pattern ��u 2 Rd obtained
by entry-wise multiplication (� � u)

i

= �

i

u

i

. In order to consider all possible dropout masks, we make �

a random variable with independent entries following a Bernoulli distribution of parameter p 2 [0, 1], i.e.,
P (�

i

= 1) = p, and consider the following DropLasso regularisation for any � > 0, p 2 [0, 1] and loss function
L:
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In this equation, the expectation over the dropout mask corresponds to an average of 2d terms. The division
by p in the term x
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/p is here to ensure that, on average, the inner product between w and �
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independent of p, because:
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When p = 1 and � > 0, the only mask with positive probability is the constant mask with all entries equal to
1, which performs no dropout corruption. In that case, DropLasso (2) therefore boils down to standard lasso.
When � = 0 and p < 1, on the other hand, DropLasso boils down to the standard dropout regularisation
proposed by Srivastava et al. (2014) and studied, among others, by Wager et al. (2013); Baldi and Sadowski
(2013); van der Maaten et al. (2013). In general, DropLasso interpolates between lasso and dropout. For
� > 0, it inherits from lasso regularisation the ability to select features associated with `1 regularisation (Bach
et al., 2011). We therefore propose DropLasso as a good candidate to select molecular signatures (thanks to
the sparsity-inducing `1 regularisation) for data corrupted with dropout noise, in particular scRNA-seq data
(thanks to the dropout data augmentation).

2.3 Algorithm

For any convex loss function L such as the square or logistic losses, DropLasso (2) is a non-smooth convex
optimisation problem whose global minimum can be found by generic solvers for convex programs. Due to
the dropout corruption, the total number of terms in the sum in (2) is n⇥ 2d. This is usually prohibitive as
soon as d is more than a few, e.g., in practical applications when d is easily of order 104 (number of genes).
Hence the objective function (2) can simply not be computed exactly for a single candidate model w, and
even less optimised by methods like gradient descent.

To solve (2), we instead propose to follow a stochastic gradient approach to exploit the particular structure
of the model, in particular the fact that it is fast and easy to generate a sample randomly corrupted by dropout
noise. A similar approach is used for standard dropout regularisation when L is di↵erentiable Srivastava
et al. (2014), however in our case we additionally need to take care of the non-di↵erentiable `1 norm; this
can be handled by a forward-backward algorithm which, plugged in the stochastic gradient loop, leads to
the proximal stochastic gradient algorithm presented in Algorithm 1. The fact that Algorithm 1 is correct,
i.e., converges to the solution of (2), follows from general results on stochastic approximations (Robbins and
Siegmund, 1971).

2.4 DropLasso and elastic net

As we already mentioned, DropLasso interpolates between lasso (p = 1,� > 0) and dropout (p 2 [0, 1],
� = 0). On the other hand, dropout regularisation is known to be related to ridge regularisation (Wager
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Droplasso	=	Dropout	+	Lasso	
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When p = 1 and � > 0, the only mask with positive probability is the constant mask with all entries equal to
1, which performs no dropout corruption. In that case, DropLasso (2) therefore boils down to standard lasso.
When � = 0 and p < 1, on the other hand, DropLasso boils down to the standard dropout regularisation
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� > 0, it inherits from lasso regularisation the ability to select features associated with `1 regularisation (Bach
et al., 2011). We therefore propose DropLasso as a good candidate to select molecular signatures (thanks to
the sparsity-inducing `1 regularisation) for data corrupted with dropout noise, in particular scRNA-seq data
(thanks to the dropout data augmentation).

2.3 Algorithm

For any convex loss function L such as the square or logistic losses, DropLasso (2) is a non-smooth convex
optimisation problem whose global minimum can be found by generic solvers for convex programs. Due to
the dropout corruption, the total number of terms in the sum in (2) is n⇥ 2d. This is usually prohibitive as
soon as d is more than a few, e.g., in practical applications when d is easily of order 104 (number of genes).
Hence the objective function (2) can simply not be computed exactly for a single candidate model w, and
even less optimised by methods like gradient descent.

To solve (2), we instead propose to follow a stochastic gradient approach to exploit the particular structure
of the model, in particular the fact that it is fast and easy to generate a sample randomly corrupted by dropout
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Dataset	 Problem	 Lasso	 Elas0c	net	 Dropout	 Droplasso	

EMTAB2805	 G1	vs	G2M	 0.72	 0.93	 0.80	 0.95	

GSE74596	 NKT0	vs	NKT17	 0.84	 0.92	 0.94	 0.97	

GSE63818	 Primordial	germ	
cells	vs	somaOc	

0.93	 0.97	 0.98	 0.99	

GSE48968	 1h	vs	4h	LPS	
sOmulaOon	

0.95	 0.96	 0.96	 0.99	

GSE81861	 Tumour	vs	
normal	

0.80	 0.85	 0.84	 0.90	

Preliminary	results	

B.	Khalfaoui	



Much	more	ahead!	
Review
Single-Cell Multiomics:
Multiple Measurements from
Single Cells
Iain C. Macaulay,1,* Chris P. Ponting,2,3,* and Thierry Voet2,4,*

Single-cell sequencing provides information that is not confounded by geno-
typic or phenotypic heterogeneity of bulk samples. Sequencing of one molecu-
lar type (RNA, methylated DNA or open chromatin) in a single cell, furthermore,
provides insights into the cell's phenotype and links to its genotype. Neverthe-
less, only by taking measurements of these phenotypes and genotypes from the
same single cells can such inferences be made unambiguously. In this review,
we survey the first experimental approaches that assay, in parallel, multiple
molecular types from the same single cell, before considering the challenges
and opportunities afforded by these and future technologies.

Multiple Molecular Types in Cells
The cell is a natural unit of biology, whose type and state can vary according to external
influences or to internal processes. In multicellular organisms, all cells are derived from a single
zygote which, through regulated programmes of proliferation and differentiation, generates all of
the diverse cell types that populate the organism. Dysregulation of these programmes in single
‘renegade’ cells can lead to diseases such as cancers [1], neurological disorders [2] and
developmental disorders [3].

Sequencing technologies now permit genome [4], epigenome [5], transcriptome [6], or protein
[7] profiling of single cells sampled from heterogeneous cell types and different cellular states,
thereby enabling normal development and disease processes to be studied and dissected at
cellular resolution. However, the sampling of just one molecular type from individual cells
provides only incomplete information because a cell's state is determined by the complex
interplay of molecules within its genome, epigenome, transcriptome and proteome. To more
comprehensively understand and model cellular processes, new technologies are required to
simultaneously assay different types of molecules, such as DNA and RNA or RNA and protein, to
survey as much of the cellular state as possible.

Such multiomics approaches will enable, amongst other things, the generation of mechanistic
models relating (epi)genomic variation and transcript/protein expression dynamics, which in turn
should allow a more detailed exploration of cellular behaviour in health and disease. In this
review, we discuss the developments, opportunities and challenges of sequencing technolo-
gies, which have enabled single-cell multiomics, and provide an outlook on future research and
technological directions.

Parallel Interrogation of Genomes and Transcriptomes
The ability to survey both the genome and the transcriptome of the same single cell in parallel
will offer a number of unique experimental opportunities. Primarily, it would directly link the
wild-type or modified genotype of a cell to its transcriptomic phenotype, which reflects, in

Trends
Unambiguous inference that a cellular
phenotype is caused by a genotype
can only be achieved by their measure-
ment from the same single cell.

Estimating RNA and DNA copy num-
ber abundance in single cells is now
possible using a variety of experimental
approaches.

Parallel measurement of single-cell epi-
genomes and transcriptomes provides
further insight into the regulation of cel-
lular identity and phenotypes.

Parallel measurement of single-cell
transcriptomes and protein abundance
(by FACS, proximity ligation assays/
PEA or mass cytometry) allows insight
into expression dynamics.

Our understanding of cancer progres-
sion and diversity is likely to be
advanced greatly by the multiomics
investigation of single cells, as is our
understanding of normal developmen-
tal and other disease processes.

Ongoing technological advances will
see improvements in the coverage,
sensitivity of multiomics approaches,
as well the number of analytes that
can be surveyed in parallel.
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