The 3D Genome

Jean-Philippe Vert

How does genome architecture influence genome function?

 Nuclear compartmentalization

- Nuclear lamina
- Transcription factories
- Chromosome conformation
 - Long-range looping
 - Chromatin domains
 - Chromosome territories

Tools for capturing chromosome conformation

Output of conformation capture is a contact matrix

Chromosome 8

paired-end reads

C(i,j) = How many times locus *i* is linked to locus *j* by a paired-end read?

Interiority contents contents

The many uses of Hi-C

Part 1

3D model of the genome

Reconstructing the 3D structure of the genome from Hi-C data

Two main approaches:

- 1. Consensus methods that infer a unique « average » structure
 [Duan et al. 2010; Tanizawa et al. 2010; Bau et al. 2011; Zhang et al. 2013; Ben-Elazar et al. 2013]
- **2. Ensemble methods** that yield a population of structures

[Rousseau et al. 2011; Khalor et al 2011; Hu et al 2013]

Modelisation

Figure: Beads on a string model Chromosomes are modeled as a series of beads. Nucleus is assumed to be spherical.

- Chromosomes are modeled as a series of beads.
- Each bead is spaced 10kb apart.

From interaction frequency to 3D distance (some physics...)

Fractal globule

Equilibrium

- $c \sim s^{-1}$ $d \sim s^{1/3}$
- Valid for human.

- $c \sim s^{-3/2}$ • $d \sim s^{1/2}$ for $s < s_{\max}^{2/3}$
- Valid for budding yeast, and small organism

Default counts-to-distance transfer function

$$\delta_{ij} = \gamma c_{ij}^{-1/3}, \qquad (6)$$

Metric MDS-based method

- Let $\mathbf{X} \in \mathbb{R}^{n \times 3}$ be the coordinates of each bead.
- Let C ∈ R^{n×n} be the contact count matrix and D the set of non-zeros entries.
- Let Θ the count-to-distance transfer function.

Nonmetric MDS-based method

Idea

If two loci *i* and *j* are observed to be in contact more often than loci *k* and ℓ , then *i* and *j* should be closer in 3D space than *k* and ℓ

$$c_{ij} \geq c_{k\ell} \Leftrightarrow \|x_i - x_j\|_2 \leq \|x_k - x_\ell\|_2$$

$$\min_{\mathbf{x}_1,...,\mathbf{x}_n,\Theta} \quad \sigma(\mathbf{X},\mathbf{C},\Theta))$$

subject to Θ decreasing

some biologically motivated constraints

 $\mathbf{x}_i^T \mathbf{x}_i \leq r_{\max}^2$, (all beads should lie in the nucleus)

(Ben+/Eleazar et al, 2013)

TM3C (Tethered-Multiple 3C)

(4)

Poisson model

The idea

Let's assume that $c \sim Poisson(\beta d^{\alpha})$, where c is the interaction count, d the euclidean distance, and β and α unknown parameter.

Likelihood

$$\ell(\mathbf{X}, \alpha, \beta) = \prod_{i < j \le n} \frac{(\beta d_{ij}^{\alpha})^{c_{ij}}}{c_{ij}!} \exp(-\beta d_j^{\alpha})$$
(5)

Optimization problem

- $\min_{\mathbf{x}_1,...,\mathbf{x}_n,\alpha,\beta} \quad \sigma(\mathbf{X},\mathbf{C},\alpha,\beta) = -\log(\ell(\mathbf{X},\mathbf{C},\alpha,\beta))$
- subject to some biologically motivated constraints

 $\mathbf{x}_i^T \mathbf{x}_i \leq r_{\max}^2$, (all beads should lie in the nucleus)

Data

Generated Datasets

$$c_{ij} = P(\beta d_{ij}^{\alpha}), \qquad (7)$$

where

- $\alpha = -3$ and β varies between 0.01 and 0.7.
- α varies between -4 and -2 and β between 0.4 and 0.7.
- **Publicly available datasets** mouse embryonic stemcells at 100 kb, 200 kb, 500 kb, 1 Mb, normalized using ICE [Imakaev et al., 2012]

Performance as a function of coverage

Robustness to parameter misspecification

Mouse embryonic stem cells

• Stability across enzyme replicates

Resolution	1 Mb		500 kb		200 kb		100 kb	
	RMSD	Corr	RMSD	Corr	RMSD	Corr	RMSD	Corr
MDS1	13.13	0.945	10.00	0.942	5.64	0.940	5.07	0.736
MDS2	5.54	0.964	5.68	0.959	3.74	0.945	2.53	0.676
NMDS	5.80	0.965	5.67	0.959	3.73	0.946	2.52	0.666
PM1	7.28	0.931	7.14	0.913	4.01	0.891	2.51	0.664
PM2	4.92	0.976	4.66	0.968	3.42	0.958	2.76	0.771

• Stability across resolution

	MDS1	MDS2	NMDS	PM1	PM2
RMSD	14.86	12.92	12.98	13.03	11.48
Correlation	0.781	0.754	0.738	0.737	0.807

Try it?

PASTIS Poisson-based Algorithm for STable Inference of DNA Structure

- http://cbio.mines-paristech.fr/pastis
- \$ pip install --user pastis
- N. Varoquaux, F. Ay, W. S. Noble and J.-P. Vert, "A statistical approach for inferring the three-dimensional structure of the genome », Bioinformatics, 30(12):i26-i33, 2014.

Part 2

The spatial organization of the *P.* falciparum genome

How *Plasmodium* regulates gene expression is mysterious

Very few transcription factors.

- 27 ApiAP2 plant-like TFs (Balaji et al. *NAR* 2005)
- 71 hits from homolog protein sequence search using HMMER (Coulson et al. *Genome Research* 2004)

Genome architecture as an alternative mechanism for regulating gene expression?

We assayed genome architecture at 3 time points in the erythrocytic cycle

0 hrs

36 hrs

Schizont

Plasmodium contact frequencies suggest a fractal globule architecture

Scaling parameter for the Trophozoite stage is indicative of more intermingled chromatin

3D modeling recapitulates known organizational principles of *Plasmodium* genome

Centromeres colocalize in 3D

Telomeres colocalize in 3D

Virulence gene clusters colocalize in 3D

- Plasmodium encodes 60 virulence genes.
- Exactly one gene is expressed per cell.
- **Regulatory** mechanism of repression involves H3K36me3.

Jiang et al. Nature 2013.

DNA FISH confirms selected contacts

Clusters of virulence genes exhibit domain-like behavior at all stages

gene clusters Trophozoite Schizont Ring 140 140 140 140 Uno 120 D chr7 coordinate (10kb) 09 001 (10kb) 09 001 (10kb) 150 125 100 75 50 50 50 50 100 100 Normalized contact 20 50 20 20 20 20 25 80 0 40 60 80 100 120 140 40 40 60 80 100 120 140 20 60 80 100 120 140 20 20 chr7 coordinate (10kb) chr7 coordinate (10kb) chr7 coordinate (10kb) Centromere Sub-telomeric virulence gene clusters

Internal virulence

The pattern is consistent across chromosomes

Chromosome 8

Chromosome 12

... and absent in chromosomes with no internal virulence gene clusters

Chromosome 3

Chromosome 14

Genes that are close together exhibit correlated expression profiles

- Only inter-chromosomal gene pairs.
- Correlation between expression vectors:
 - Le Roch et al. Science 2003.
 - Otto et al. Mol. Microbiology 2010.
 - Lopez-B. et al. BMC Genomics 2011.
 - Bunnik et al. *Genome Biology* 2013.

Closer in 3D distance \Leftrightarrow more similar expression profile.

Telomeres have a repressive effect on gene expression

Gene expression variation exhibits a gradient across the structure

Trophozoite

Telomeric

- Antigenic variation
- Sexual stage genes

Non-telomeric

- Translation
- Trophozoite genes

Kernel Canonical Correlation Analysis (kCCA)

Conclusion : The many uses of Hi-C

Lieberman-Aiden, *et. al.* Science, 2009

Organismal Deconvolution

Burton, Liachko, et al. G3, 2014

Genome scaffolding

Burton, *et al*. Nature Biotech, 2013

Promoter

3D model of genome

Duan, *et al*. Nature, 2010 *(S. cerevisae),* Ay, *et al.* Genome Res., 2014a *(P.falciparum)*

Long-range chromatin contacts

Ay, et al. Genome Res., 2014b

(5 models)

Single-cell Hi-C

Stevns et al., Nature 2017

(5 models)

Acknowledgements

University of Washington William Noble Ferhat Ay

University of California Riverside

Karine Le Roch **Evelien Bunnik** Sebastiaan Bol Jacques Prudhomme

MINES ParisTech, France Jean-Philippe Vert Nelle Varoquaux

Josh Burton

Ivan Liachko

