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Mathematical model

Patients with VS without relapse in 5 years
n (=19) patients >> p (=2) markers
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Real data: n << p

Gene expression

Somatic mutations

n = 102 ∼ 104 (patients)
p = 104 ∼ 107 (genes, mutations, copy number, ...)
Data of various nature (continuous, discrete, structured, ...)
Data of variable quality (technical/batch variations, noise, ...)



Consequence: limited accuracy

Breast cancer prognosis competition, n = 2000 (Bilal et al., 2013)

C: 16 standard clinical data (age, tumor size, ...)
M: 80k molecular features (gene expression, DNA copy number)



Consequence: unstable biomarker selection

70	genes	(Nature,	2002)	 76	genes	(Lancet,	2005)	

3	genes	in	common	

van ’t Veer et al. (2002); Wang et al. (2005)



Some research directions

Regularize and incorporate prior knowledge

Find a better representation



Outline
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Typical problem

n samples (patients), p features (genes)
X ∈ Rn×p gene expression profile of each patient
Y ∈ Yn survival information of each patient
Fit a linear model for a sample x ∈ Rp:

f (x) = β>x =

p∑
i=1

βixi

Standard methods (least squares or logistic regression) won’t
work because n < p



Regularized linear models

In high dimension, estimate β by solving

min
β∈Rp

R(Y ,Xβ) + λJ(β) ,

where
R(Y ,Xβ) is an empirical risk to measures the fit to the training
data
J(β) is a penalty to control the complexity of the model
λ > 0 is a regularization parameter



Standard regularizations

min
β∈Rp

R(Y ,Xβ) + λJ(β)

where
Lasso: J(β) = ‖β‖1 for gene selection.
Ridge: J(β) = ‖β‖22 to address n� m.
Elastic net: J(β) = α‖β‖22 + (1− α)‖β‖1

Estimation returned by lasso (left) vs. ridge (right) Tibshirani (1996).



Which regularization is the best?

Feature selection (lasso, t-tests, ...) is popular, it leads to a limited
set of genes that form a molecular signatures
Ridge is less interpretable but often leads to better performance...
e.g., breast cancer prognosis (n = 286):184 Computational Systems Biology of Cancer
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FIGURE 6.4 Influence of signature size on breast cancer prognosis per-
formance. A regularised LR classifier using a signature of varying size is trained
on the Wang expression dataset to predict relapse within 5 years. The genes in the
signatures are selected either randomly, or by decreasing significance according to
a t-test. The performance is estimated by 5-fold cross-validation, averaged over 10
repeats. In this example, it is better to keep all genes to train the classifier.

notion of genomic grade to quantify tumour di↵erentiation (Sotiriou et al.,
2003; Loi et al., 2007). In addition to tumour di↵erentiation assessment, this
genomic grade was shown to be prognostic. Several prognostic molecular pre-
dictors have also been proposed, including the 76-gene MammaPrint R� sig-
nature developed at the Netherlands Cancer Institute in Amsterdam (van’t
Veer et al., 2002) and the 76-gene Rotterdam signature of Wang et al. (2005).
Investigators from the University of Texas M. D. Anderson Cancer Center
developed DLD30, a 30-gene signature to predict the response of a tumour
to preoperative chemotherapies (Hess et al., 2006). The Oncotype DX R� assay
combines the expression of 21 genes to evaluate the risk of relapse and the
benefits of chemotherapy for patients with early-stage, lymph node-negative,
ER+/HER2- breast cancers (Paik et al., 2006; Paik, 2007). Several of these
molecular predictors have reached the level of clinical trials, and are now being
tested on large cohorts of patients. We can already foresee their routine use
in the clinics within few years.

6.3.6 Pitfalls and challenges in biomarker discovery

Although an attractive strategy to improve the performance of predictive
modelling in high-dimension and simultaneously identify biologically relevant
markers, the automatic data-driven identification of new markers remains
challenging for several reasons.



Adding prior knowledge: network-based
regularizations

G = (V, E) a graph of genes (PPI, metabolic, signaling, regulatory
network...)
Prior knowledge:

β should be "smooth" on the graph?
Selected genes should be connected?



Examples of network-based regularizations

JG(β) =
∑
i∼j

(βi − βj)
2 (Rapaport et al., 2007)

JG(β) = a‖β‖1 + (1− a)
∑
i∼j

(βi − βj)
2 (Li and Li, 2008)

JG(β) = sup
α∈Rp : ∀i∼j α2

i +α
2
j ≤1

α>β (Jacob et al., 2009)

JG(β) = a‖β‖1 + (1− a)
∑
i∼j

|βi − βj | (Hoefling, 2010)



Gene selection with the graph lasso

JG(β) = sup
α∈Rp:∀i∼j,‖α2

i +α
2
j ‖≤1

α>β

Jacob et al. (2009)



BC prognosis: Lasso signature (accuracy 0.61)

Jacob et al. (2009)



BC prognosis: Graph Lasso signature (accuracy 0.64)

Jacob et al. (2009)



Smoothness regularization and Fourier transform

"Connected genes have similar weights" (Rapaport et al., 2007; Li
and Li, 2008)

JG(β) =
∑
i∼j

(βi − βj)
2

No feature selection
Reinterpretation in the Fourier domain (Rapaport et al., 2007):

∑
i∼j

(βi − βj)
2 =

p∑
i=1

λi β̂
2
i

where
β̂i is the i-th Fourier coefficient of β
λi is the i-th frequency

"β has little energy at high frequency" and is therefore smooth on
the graph
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Graph Fourier transform β̂ ?

Eigenvectors U of the graph Laplacian matrix form the Fourier
basis:

β̂ = U>β

Eigenvalues Λ = (0 = λ1 ≤ . . . ≤ λp) represent the "frequencies"
of the Fourier basis
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Graph Fourier transform β̂ ?

Eigenvectors U of the graph Laplacian matrix form the Fourier
basis:

β̂ = U>β
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Graph Fourier transform β̂ ?

Eigenvectors U of the graph Laplacian matrix form the Fourier
basis:

β̂ = U>β

Eigenvalues Λ = (0 = λ1 ≤ . . . ≤ λp) represent the "frequencies"
of the Fourier basis
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Graph Fourier transform β̂ ?

Eigenvectors U of the graph Laplacian matrix form the Fourier
basis:

β̂ = U>β

Eigenvalues Λ = (0 = λ1 ≤ . . . ≤ λp) represent the "frequencies"
of the Fourier basis

●

●

●

●

●

●

●

●

●

2 4 6 8

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

lambda =  3.9

Lambda =  6.3



Smoothness in the Fourier domain: extensions

Rapaport et al. (2007) extends

∑
i∼j

(βi − βj)
2 =

p∑
i=1

λi β̂
2
i

to
p∑

i=1

φ(λi)β̂
2
i

for φ : R+ → R+ non-decreasing.
Example: φ(λ) = exp(−γλ) linked to the diffusion kernel on the
graph.



Classifiers
Rapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8
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Back to the data



From raw data to X

Between-sample variability: batch effect, drift over time, ...
Typical pre-processing: Quantile normalization per sample



Standard QN

Fix a target quantile f ∈ Rn

Transform x ∈ Rp to Φf (x) such that:
The ranking of entries in x and Φf (x) are the same
The distribution of entries in Φf (x) follows f

See also: images (Gonzalez and Woods, 2008), MRI scans
(Shinohara et al., 2014), speech (Hilger and Ney, 2006)



How to choose a "good" target distribution?



From QN to supervised QN (Le Morvan and Vert,
2017)

Standard approaches: learn model after QN preprocessing:
1 Fix f arbitrarily (typically, mean empirical quantile function)
2 QN all samples to get Φf (x1), . . . ,Φf (xn)
3 Learn a model on normalized data, e.g.:

min
w ,b

{
1
n

n∑
i=1

`i

(
w>Φf (xi) + b

)
+ λΩ(w)

}

SUQUAN: jointly learn f and the model:

min
w ,b,f

{
1
n

n∑
i=1

`i

(
w>Φf (xi) + b

)
+ λΩ(w) + γΩ2(f )

}



Computing Φf (x)

For x ∈ Rp let

[Πx ]ij =

{
1 if xj has rank i ,
0 otherwise.

Then
Φf (x) = Πx f



Linear SUQAN as rank-1 matrix regression

Linear SUQUAN therefore solves

min
w ,b,f

{
1
n

n∑
i=1

`i

(
w>Φf (xi) + b

)
+ λΩ(w) + γΩ2(f )

}

= min
w ,b,f

{
1
n

n∑
i=1

`
(

w>Πxi f + b
)

+ λΩ(w) + γΩ2(f )

}

= min
w ,b,f

{
1
n

n∑
i=1

`
(
< wf>,Πxi >Frobenius +b

)
+ λΩ(w) + γΩ2(f )

}

A particular linear model to estimate a rank-1 matrix M = wf>

Each sample x ∈ Rp is represented by the matrix Πx ∈ Rp×p

Non-convex
Alternative optimization of f and w is easy



Results: gene expression data

LOGISTIC REGRESSION SUQUAN
RAW RMA CAUCHY EXP. UNIF. GAUS. MEDIAN SVD BND SPAV

GSE1456 65.94 68.73 59.56 68.86 68.72 69.00 69.06 57.60 71.44 69.60
GSE2034 74.52 75.42 61.91 74.53 75.22 76.45 74.92 52.61 70.50 76.11
GSE2990 57.01 60.43 54.72 61.25 56.25 58.66 59.72 52.51 59.22 59.94
GSE4922 58.52 58.86 55.24 58.81 55.66 60.01 59.18 52.39 61.82 61.41
AVERAGE 64.00 65.86 57.86 65.86 63.96 66.03 65.72 53.78 65.75 66.77
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Estimated quantile function: iteration=0



Estimated quantile function: iteration=1



Estimated quantile function: iteration=2



Remark: embedding Rn to Sn

Remark: each sample x ∈ Rp was represented by the permutation
of genes σ ∈ Sp
Many other possibilities when we decide to embed data to the
symmetric group Sn



Somatic mutations in cancer

Stratton et al. (2009)



Large-scale efforts to collect somatic mutations

3,378 samples with survival information from 8 cancer types

downloaded from the TCGA / cBioPortal portals.

Cancer type Patients Genes
LUAD (Lung adenocarcinoma) 430 20 596

SKCM (Skin cutaneous melanoma) 307 17 463
GBM (Glioblastoma multiforme) 265 14 750

BRCA (Breast invasive carcinoma) 945 16 806
KIRC (Kidney renal clear cell carcinoma) 411 10 609

HNSC (Head and Neck squamous cell carcinoma) 388 17 022
LUSC (Lung squamous cell carcinoma) 169 13 590

OV (Ovarian serous cystadenocarcinoma) 363 10 195



Patient stratification (unsupervised) from raw mutation
profiles

X Non-Negative matrix
factorisation (NMF)

X Desired behaviour:

X Observed behaviour:

Patients share very few mutated genes!



Survival prediction from raw mutation profiles

Each patient is a binary vector: each gene is mutated (1) or not (2)
Silent mutations are removed
Survival model estimated with sparse survival SVM
Results on 5-fold cross-validation repeated 4 times



Approach: change representation?

Can we replace

x ∈ {0,1}p with p very large, very sparse

by a representation with more information shared between samples

Φ(x) ∈ H

that would allow better supervised and unsupervised classification?



NetNorm Overview (Le Morvan et al., 2017)
Take

H =

{
x ∈ {0,1}p :

p∑
i=1

xi = K

}
and use a gene network to transform x to φ(x) ∈ H by
adding/removing mutations

2 Results

2.1 Overview of NetNorM
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Figure 1 – Overview of NetNorM. (a) Using a gene network as background knowledge (lower left), NetNorM
normalises each mutation profile in a collection of somatic mutation profiles (upper left) into a new, binary
representation (right) which encodes additional information relative to patient mutation rates and hubs’
neighbourhood mutational burden. This new representation allows performing patient stratification with
unsupervised clustering techniques, or survival analysis. (b) NetNorM normalises every patient mutation
profile to k mutations. Patients with less than k mutations get ’proxy’ mutations in their genes with the
highest number of mutated neighbours until they reach k mutations. Patients with more than k mutations
have mutations ’removed’ in their genes with lowest degree until they reach k mutations.
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NetNorm detail (k=4)

1 Add mutations for patients with few (less than K ) mutations

2 Results

2.1 Overview of NetNorM
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2 Remove mutations for patients for many (more than K ) mutations

2 Results

2.1 Overview of NetNorM
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In practice, K is a free parameter optimized on the training set, typically a few 100’s.



Related work (Hofree et al., 2013)

ARTICLES
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Many forms of cancer have multiple subtypes with different 
causes and clinical outcomes. Somatic tumor genome sequences 
provide a rich new source of data for uncovering these 
subtypes but have proven difficult to compare, as two tumors 
rarely share the same mutations. Here we introduce network-
based stratification (NBS), a method to integrate somatic 
tumor genomes with gene networks. This approach allows for 
stratification of cancer into informative subtypes by clustering 
together patients with mutations in similar network regions. 
We demonstrate NBS in ovarian, uterine and lung cancer cohorts 
from The Cancer Genome Atlas. For each tissue, NBS identifies 
subtypes that are predictive of clinical outcomes such as 
patient survival, response to therapy or tumor histology. We 
identify network regions characteristic of each subtype and 
show how mutation-derived subtypes can be used to train  
an mRNA expression signature, which provides similar 
information in the absence of DNA sequence.

Cancer is a disease that is not only complex, i.e., driven by a com-
bination of genes, but also wildly heterogeneous, in that gene 
combinations can vary greatly between patients. To gain a bet-
ter understanding of these complexities, researchers involved 
in projects such as The Cancer Genome Atlas (TCGA) and the 
International Cancer Genome Consortium (ICGC) are systemati-
cally profiling thousands of tumors at multiple layers of genome-
scale information, including mRNA and microRNA expression, 
DNA copy number and methylation, and DNA sequence1–3. There 
is now a strong need for informatics methods that can integrate and 
interpret genome-scale molecular information to provide insight 
into the molecular processes driving tumor progression. Such 
methods are also of pressing need in the clinic, where the impact 
of genome-scale tumor profiling has been limited by the inability 
to derive clinically relevant conclusions from the data4,5.

One of the fundamental goals of cancer informatics is tumor 
stratification, whereby a heterogeneous population of tumors is 
divided into clinically and biologically meaningful subtypes as 
determined by similarity of molecular profiles. Most prior attempts 
to stratify tumors with molecular profiles have used mRNA expres-
sion data2,6–9, resulting in the discovery of informative subtypes 
in diseases such as glioblastoma and breast cancer. On the other 
hand, in TCGA cohorts including colorectal adenocarcinoma and 

Network-based stratification of tumor mutations
Matan Hofree1, John P Shen2, Hannah Carter2, Andrew Gross3 & Trey Ideker1–3

small-cell lung cancer, subtypes derived from expression profiles do 
not correlate with any clinical phenotype including patient survival 
and response to chemotherapy2,10. These results might be due to 
limitations of expression-based analysis11 such as issues with RNA 
sample quality, lack of reproducibility between biological replicates 
and ample opportunities for overfitting of data.

A promising new source of data for tumor stratification is the 
somatic mutation profile, in which high-throughput sequencing 
is used to compare the genome or exome of a patient’s tumor 
to that of the germ line to identify mutations that have become 
enriched in the tumor cell population12. As this set of mutations 
is presumed to contain the causal drivers of tumor progression13, 
similarities and differences in mutations across patients could 
provide invaluable information for stratification. Although indi-
vidual mutations in cancer genes have long been used to stratify 
patients14–17, stratification based on the entire mutation profile 
has been more challenging. Somatic mutations are fundamen-
tally unlike other data types such as expression or methylation, in 
which nearly all genes or markers are assigned a quantitative value 
in every patient. Instead, somatic mutation profiles are extremely 
sparse, with typically fewer than 100 mutated bases in an entire 
exome (Supplementary Fig. 1). They are also remarkably het-
erogeneous, such that it is very common for clinically identical 
patients to share no more than a single mutation2,18,19.

Here we report that these problems can be largely overcome 
by integrating somatic mutation profiles with knowledge of 
the molecular network architecture of human cells. It is widely 
appreciated that cancer is a disease not of individual mutations, 
nor of genes, but of combinations of genes acting in molecular 
networks corresponding to hallmark processes such as cell pro-
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original theory of ‘genetic canalization’22). Although current  
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is available in public databases of human protein-protein, func-
tional and pathway interactions. An increasing number of studies 
have successfully integrated these network databases with tumor 
molecular profiles to map the molecular pathways of cancer23–27.  
Here we focus on the orthogonal problem of using network 
knowledge to stratify a cohort into meaningful subsets. Using this  

1Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California, USA. 2Department of Medicine, University of California,  
San Diego, La Jolla, California, USA. 3Department of Bioengineering, University of California, San Diego, La Jolla, California, USA. Correspondence should be addressed 
to T.I. (tideker@ucsd.edu).
RECEIVED 14 FEBRUARY; ACCEPTED 12 AUGUST; PUBLISHED ONLINE 15 SEPTEMBER 2013; DOI:10.1038/NMETH.2651

OPEN

ARTICLES

1108 | VOL.10 NO.11 | NOVEMBER 2013 | NATURE METHODS

Many forms of cancer have multiple subtypes with different 
causes and clinical outcomes. Somatic tumor genome sequences 
provide a rich new source of data for uncovering these 
subtypes but have proven difficult to compare, as two tumors 
rarely share the same mutations. Here we introduce network-
based stratification (NBS), a method to integrate somatic 
tumor genomes with gene networks. This approach allows for 
stratification of cancer into informative subtypes by clustering 
together patients with mutations in similar network regions. 
We demonstrate NBS in ovarian, uterine and lung cancer cohorts 
from The Cancer Genome Atlas. For each tissue, NBS identifies 
subtypes that are predictive of clinical outcomes such as 
patient survival, response to therapy or tumor histology. We 
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an mRNA expression signature, which provides similar 
information in the absence of DNA sequence.
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is now a strong need for informatics methods that can integrate and 
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in diseases such as glioblastoma and breast cancer. On the other 
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small-cell lung cancer, subtypes derived from expression profiles do 
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patients14–17, stratification based on the entire mutation profile 
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sparse, with typically fewer than 100 mutated bases in an entire 
exome (Supplementary Fig. 1). They are also remarkably het-
erogeneous, such that it is very common for clinically identical 
patients to share no more than a single mutation2,18,19.
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liferation and apoptosis20,21. We postulated that, although two 
tumors may not have any mutations in common, they may share 
the networks affected by these mutations (as per Waddington’s 
original theory of ‘genetic canalization’22). Although current  
cancer pathway maps are incomplete, much relevant information 
is available in public databases of human protein-protein, func-
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knowledge, we were able to cluster somatic mutation profiles into 
robust tumor subtypes that are biologically informative and have 
a strong association to clinical outcomes such as patient survival 
time and emergence of drug resistance. As a proof of principle, 
we applied this method to stratify the somatic mutation profiles 
of three major cancers cataloged in TCGA: ovarian, uterine and 
lung adenocarcinoma.

RESULTS
Overview of network-based stratification
NBS combines genome-scale somatic mutation profiles with 
a gene interaction network to produce a robust subdivision of 
patients into subtypes (Fig. 1a). Briefly, somatic mutations for 
each patient are represented as a profile of binary (1, 0) states on 
genes, in which a ‘1’ indicates a gene for which mutation (a single- 
nucleotide base change or the insertion or deletion of bases) has 
occurred in the tumor relative to germ line. For each patient,  
we project the mutation profile onto a human gene interaction 
network obtained from public databases28–30. Next we apply 
network propagation31 to spread the influence of each mutation 
over its network neighborhood (Fig. 1b). The resulting matrix 
of ‘network-smoothed’ patient profiles is clustered into a pre-
defined number of subtypes (k = 2, 3, … 12) via non-negative 
matrix factorization32 (NMF, Fig. 1c), an unsupervised technique. 
Finally, to promote robust cluster assignments, we use consensus 
clustering33, aggregating the results of 1,000 different subsamples 
from the entire data set into a single clustering result (Fig. 1d). 
For further details, see Online Methods. To evaluate the impact 
of different sources of network data, we used three interaction 
databases for this analysis: search tool for the retrieval of inter-
acting genes (STRING)29, HumanNet28 or PathwayCommons30. 
Supplementary Table 1 summarizes the number of genes and 
interactions used in our analysis from each of these three net-
works. Our implementation of NBS is available as Supplementary 

Software; for updated versions, NBS may be downloaded from 
http://idekerlab.ucsd.edu/software/NBS/.

Benchmarking and performance analysis
In an initial exploration of NBS, we simulated a somatic mutation 
data set using the structure of the TCGA ovarian tumor muta-
tion data and the STRING gene interaction network (Fig. 2a).  
Mutation profiles were permuted, and patients were divided 
randomly and uniformly into a predefined number of subtypes  
(k = 4). Next we reassigned a fraction of mutations in each patient 
to fall within genes of a single ‘network module’ characteristic of 
that patient’s subtype (the ‘driver’ mutation frequency f, varied 
from 0% to 15%); the remaining mutations were left to occur 
randomly. We selected the network modules randomly from the 
set of all network modules in STRING, defined as sets of densely 
interacting genes with size range s = 10–250 (see Online Methods 
for details and justification for the ranges of k, f and s). Although 
it is unknown whether these assumptions completely mirror the 
biology of cancer, they provide a reasonable model of a pathway-
based genetic disease that is (i) driven by genetic circuits cor-
responding to a molecular network whose activity can be altered 
by mutations at multiple genes and (ii) characterized by many 
additional mutations that are noncausal ‘passengers’.

Using this simulation framework, we measured the ability of 
NBS to recover the correct subtype assignments in comparison to 
a standard consensus clustering approach not based on network 
knowledge (Online Methods). NBS showed a striking improve-
ment in performance, especially for large network modules, as 
these can be associated with any of numerous different mutations 
across the patient population (Fig. 2b). As module size decreased, 
the chance of observing the same mutated gene in patients of the 
same subtype increased, and the standard clustering algorithm 
performed increasingly well. We found that the high performance 
of NBS depended not only on network smoothing but also on the 

Somatic mutation matrix
(patients × genes)

Draw a sample of genes
and patients

Repeat N times

Aggregate consensus matrix
(patient × patient)

Network smoothing:
for each patient, project mutations
onto a network and propagate

Network clustering:
cluster smoothed (patients × genes)
matrix using network NMF

a

Network smoothing:

Patient
genotype 1

Patient
genotype 2

Co-occurrence of
genotype 1 and 2

Gene

Gene-gene
interaction

b

Patients

k

k

=

Network NMF: min||F – WH|| + ||W tL||F

L  network influence
constraint

W,H>0

Patients

G
en

es

G
en

es

Network-based stratification

Patients

P
atients

F 
(patients  genes)
post-smoothing 
matrix

W
 

 c
lu

st
er

 p
ro

to
ty

pe
s

c

d

H  cluster
assignments

Figure 1 | Overview of network-based stratification (NBS). (a) Flowchart of the approach. (b) Example illustrating smoothing of patient somatic mutation profiles 
over a molecular interaction network. Mutated genes are shown in yellow (patient 1) and blue (patient 2) in the context of a gene interaction network. Following 
smoothing, the mutational activity of a gene is a continuous value reflected in the intensity of yellow or blue; genes with high scores in both patients appear 
in green (dashed oval). (c) Clustering mutation profiles using non-negative matrix factorization (NMF) regularized by a network. The input data matrix (F) is 
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Results: unsupervised classification
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Results: survival prediction
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QN matters...

Both NetNorm and NSQN transforms follow a 2-step a approach:
1 Smooth the raw data onto the gene network (NS)
2 Quantile normalize the smoothed profile (QN)



Conclusion

Learning from genomic data is challenging
Regularization is needed in high dimension
A good representation is worth a thousand learning algorithms
Subtle interplay between biology and math/CS
Impact on the final quality/performance of the model
Recent trend: learn the representation
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1/!PROMOTION!DU!PROGRAMME!

!

• Rencontre!avec!les!directeurs,!directeurs!scientifiques!et!directeurs!

des!études!de!l’ENS,!Mines,!ENSCP,!ESPCI!pour!organiser!la!

promotion!du!programme!auprès!des!étudiants.!

• Ecole!des!Mines!:!présentation!d’ITI!devant!le!conseil!de!

l'enseignement!;!8!représentants!d’élèves!;!relance!

• ENSCP!:!mailing!de!présentation!d’ITI!aux!3A!via!la!direction!des!

études.!
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National!Taiwan!University!à!l’ESPCI:!présentation!d’ITI!

• Contact!en!cours!pour!visite!d‘entreprise!

• Article&les&Echos&

• Création&du&logo&PSL/ITI&et&du&Diplôme&Supérieur&de&Recherche&et&

d’Innovation&de&PSL/ITI&(DSRI),&dépôt&INPI&en&cours.&
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!
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NetNorM and NSQN benefit from biological
information in the gene network

Comparison with 10 randomly permuted networks:

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

C
o
n
co

rd
a
n
ce

 I
n
d
e
x

NetNorM - LUAD

real network

randomized network

C
o
n
co

rd
a
n
ce

 I
n
d
e
x

NSQN - LUAD

real network

randomized network
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

C
o
n
co

rd
a
n
ce

 I
n
d
e
x

NetNorM - SKCM

real network

randomized network

C
o
n
co

rd
a
n
ce

 I
n
d
e
x

NSQN - SKCM

real network

randomized network



Selected genes represent "true" or "proxy" mutations
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Proxy mutations encode both total number of
mutations and local mutational burden

a b

c

Figure 4 – Analysis of predictive genes. (a) Comparison of survival prediction performances according
to patients’ mutation rate for LUAD. Three di↵erent representations of the mutations are used to perform
survival prediction using a ranking SVM: raw (the raw binary mutation data), NSQN (network smoothing
with quantile normalisation) and NetNorM. NSQN and NetNorM are applied with Pathway Commons as
gene-gene interaction network. Performances for half of the patients with fewer (resp. more) mutations are
derived from the predictions made using the whole dataset. (b) Scatter plot of the correlation between the
total number of mutations across patients and the number of mutated neighbours of a gene across patients
(x-axis) against the degree of a gene (y-axis). This plot was generated using the raw mutation data for LUAD
and Pathway Commons. (c) Scatter plot of the total number of mutations in a patient (x-axis) against the
number of mutated neighbours of KHDRBS1 in a patient (y-axis). Only patients with less that kmed = 295
mutations are shown, where kmed is the median value of k learned across cross-validation folds. Red (resp.
blue) indicate patients mutated (resp. non mutated) in KHDRBS1 after processing with NetNorM using
k = kmed. The black line was fit by linear regression and by definition indicates the expected number of
mutated neighbours of KHDRBS1 given the mutation rate of a patient. The plot was generated using the
LUAD dataset with Pathway Commons.
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KHDRBS1: a member of the K homology domain-containing, RNA-binding, signal transduction-associated protein family



Adding good old clinical factors
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Combination by averaging predictions



QN after network smoothing



Another representation

Φi,j(x) =

{
1 if xi ≤ xj ,

0 otherwise.



Geometry of the embedding

For any two permutations σ, σ′ ∈ Sn:
Inner product

Φ(σ)>Φ(σ′) =
∑

1≤i 6=j≤n

1σ(i)<σ(j)1σ′(i)<σ′(j) = nc(σ, σ′)

nc = number of concordant pairs
Distance

‖Φ(σ)− Φ(σ′) ‖2 =
∑

1≤i,j≤n

(1σ(i)<σ(j) − 1σ′(i)<σ′(j))
2 = 2nd (σ, σ′)

nd = number of discordant pairs



Kendall and Mallows kernels (Jiao and Vert, 2017)

The Kendall kernel is

Kτ (σ, σ′) = nc(σ, σ′)

The Mallows kernel is

∀λ ≥ 0 K λ
M(σ, σ′) = e−λnd (σ,σ

′)

Theorem (Jiao and Vert, 2015, 2017)
The Kendall and Mallows kernels are positive definite.

Theorem (Knight, 1966)
These two kernels for permutations can be evaluated in O(n log n)
time.

Kernel trick useful with few samples in large dimensions



Related work

Cayley graph of S4

Kondor and Barbarosa (2010)
proposed the diffusion kernel on the
Cayley graph of the symmetric group
generated by adjacent transpositions.
Computationally intensive (O(n2n))

Mallows kernel is written as

K λ
M(σ, σ′) = e−λnd (σ,σ

′) ,

where nd (σ, σ′) is the shortest path
distance on the Cayley graph.
It can be computed in O(n log n)



Applications
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