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@ Permutation:
o:[1,n —[1,n]

23

@ o(i) =rank of item /
@ Composition

(0102)(i) = o1 (02(7))

@ S, the symmetric group




Learning over the symmetric group

@ Assume your data are permutations and you want to learn
f:Sh—R
@ A solutions: embed S, to a Euclidean or Hilbert space
¢:S,—-H
and learn a linear function
f(o) = 87 (o)
@ The corresponding kernel is
K(o1,02) = ®(o1) " d(02)
@ A right-invariant kernel is invariant by renaming the items:

Voi,00,m €Sp, K(oim,0om) = K(01,02)



Related work

@ Represent a permutation x € S, by the vector of rank ®(x) € R”
@ does not capture higher-order informations

@ Diffusion kernel over the Cayley’s graph (Kondor and Barbosa,
2010)

e but complexity O(n?")






Kendall and Mallows kernels

@ Let ng(o, ") (resp. ny(c, ")) the number of concordant (resp.
discordant) pairs.

@ The (rescaled) Kendall kernel (a.k.a. Kendall’s 7 correlation) is
K-(0,0") = ne(o,0")
@ The Mallows kernel is
VA>0 Kiy(o,0') = e aleo)

Theorem (Jiao and Vert, 2015, 2017)
The Kendall and Mallows kernels are positive definite.

Theorem (Knight, 1966)

These two kernels for permutations can be evaluated in O(nlog n)
time.




Take &-(0) = (Lo(i)<o()) s, € R™"1 and

K.(o,0') = q).,-(O')T(DT(O'/) = Z L,(h<o(j) Lo (i)<o(j) -
1<iZj<n



Weighted Kendall’s 7 correlation

@ How to weight differently pairs based on their ranks?

@ Given a weight function w : [1, n]?> — R, weighted versions of the
Kendall’s 7 have been proposed:

> w(o(i), () Lo(iy<ot) Loty <o) Shieh (1998)
1<i#j<n
: -\ Po(iy = Po' (i) Po(j) — Po'(j 0) g ' ' ‘
Z W(U(I)7 J(])) O'(l) . ( ) O'(j) s (_/) a(l <0'(j)]lo"(l)<a’(j)

1<i#j<n
Kumar and Vassilvitskii (2010)
Z w(i, ) Lo(iy<o() Lot (i)y<o(j) Vigna (2015)
1<i#j<n

@ However, they are either not symmetric (1st and 2nd), or
right-invariant (3rd)
@ How to make a right-invariant, p.d. weighted Kendall correlation?



A right-invariant weighted Kendall kernel

Let W : N x N> — R be a p.d. kernel on N?, then the function

Kw(o,0")= Y W((a(D), o), (o), o' () Lot<otyLor(ih<o(i

1<i#j<n

is a right-invariant p.d. kernel on S,.




A right-invariant weighted Kendall kernel

Theorem

Let W : N2 x N2 — R be a p.d. kernel on N?, then the function

Kw(o,o)= Y W((e(i),ao(), (@ (1), 5'()) Logiy<ot)Lor <o)

1<i#j<n

is a right-invariant p.d. kernel on Sy,

Corollary

If weights take the form W ((a, b), (¢, d)) = Ua pUc o for some matrix
U € R™" then the function

| \

= Y Us(iyot) Yoo ) Lotiy<oty Lo () <o(i)
1<i#j<n

is a right-invariant p.d. kernel on S,.




U, p corresponds to the weight of (items ranked at) positions a and b in
a permutation. Interesting choices include:

@ Top-k. For some k € [1,n],

Uab:

]

{1 ifa<kandb<k,
0 otherwise.
@ Additive. For some u € R”", take
Uj=ui+y
@ Multiplicative. For some u € R", take

U,'j = U,'Uj

Theorem (Kernel trick)

The weighted Kendall kernel can be computed in O(nIn(n)) for the
top-k, additive or multiplicative weights.




Learning the weights U?

@ Ky can be written as
Ku(o,0') = dy(o) @y(o)
with
®y(0) = (Un(iy.o)Loti)<o()) 1<izjep € R
@ The function to be learned is

f(o) = 8T ®y(o)

@ We usually fit 5 by minimizing a (regularized) empirical risk

m|n Zé Toy(0))

@ Can we jointly optimize the weights:

mip 2 (3T 0ul()



Writing ¢4 as a function of U

For any upper triangular matrix U € R™",

dy(o)=nlun, with (Me)j = Li=o())




Optimizing both 5 and U

@ From this lemma we get that
_ u
fB’U(U) - <'8’ ¢ (U)>Frobenius(n><n)

= (g,nIun,
<'8’ UU >Frobenius(n><n)

— <|‘|U ® My, vec(U) ® (vec(ﬁ))T>

Frobenius(n2x n?)
@ This is symmetric in U and 3
@ NotethatN! = (MN,)~" = &__1, hence

fsu(o) = fups(c™)

@ We propose to alternate optimization in U and
e For U fixed, optimize 3 with Ky(o1, 02)
o For 3 fixed, optimize U with Kz(o; ', 05 )



The representation point of view

fs.u(0) = (Mo @ Ny, veo(U) @ (veo(5))" )

Frobenius(n?x n?)

@ A particular rank-1 linear model for the embedding
Yo =M, @M, € ({0,1})*7

@ Y is the direct sum of the second-order and first-order permutation
representations:
X = Tn-21,1) P T(n-11)
@ This generalizes SUQUAN (Le Morvan and Vert, 2017) which
considers the first-order representation 1, only:

hsw(@) = (Mo, w57

Frobenius(nxn)



Conclusion

@ A right-invariant, positive definite weighted version of the Kendall
kernel

@ Weights can be learned

@ This is equivalent to learning a rank-1 tensor on a second-order
representation of S,
@ An intriguing connection between quantile normalization and
Kendall’'s 7
@ Ongoing work:
o Experimental validation
o Computatioinally tractable generalizations to higher orders
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