A weighted Kendall kernel

Yunlong Jiao & Jean-Philippe Vert

Learning on Distributions, Functions, Graphs and Groups @ NIPS-2017, Dec. 8, 2017

Joint work with

Yunlong Jiao

Permutations

Permutation:

$$\sigma: [\mathbf{1}, \mathbf{n}] \rightarrow [\mathbf{1}, \mathbf{n}]$$

- $\sigma(i) = \text{rank of item } i$
- Composition

$$(\sigma_1\sigma_2)(i) = \sigma_1(\sigma_2(i))$$

- \mathbb{S}_n the symmetric group
- $|\mathbb{S}_n| = n!$

Learning over the symmetric group

Assume your data are permutations and you want to learn

$$f: \mathbb{S}_n \to \mathbb{R}$$

• A solutions: embed S_n to a Euclidean or Hilbert space

$$\Phi: \mathbb{S}_n \to \mathcal{H}$$

and learn a linear function

$$f(\sigma) = \beta^{\top} \Phi(\sigma)$$

The corresponding kernel is

$$K(\sigma_1, \sigma_2) = \Phi(\sigma_1)^{\top} \Phi(\sigma_2)$$

A right-invariant kernel is invariant by renaming the items:

$$\forall \sigma_1, \sigma_2, \pi \in \mathbb{S}_n, \quad K(\sigma_1 \pi, \sigma_2 \pi) = K(\sigma_1, \sigma_2)$$

Related work

- Represent a permutation $x \in S_n$ by the vector of rank $\Phi(x) \in \mathbb{R}^n$
 - does not capture higher-order informations
- Diffusion kernel over the Cayley's graph (Kondor and Barbosa, 2010)
 - but complexity O(n²ⁿ)

Outline

Kendall and Mallows kernels

- Let $n_c(\sigma, \sigma')$ (resp. $n_d(\sigma, \sigma')$) the number of concordant (resp. discordant) pairs.
- The (rescaled) Kendall kernel (a.k.a. Kendall's τ correlation) is

$$K_{\tau}(\sigma, \sigma') = n_{c}(\sigma, \sigma')$$

The Mallows kernel is

$$\forall \lambda \geq 0 \quad K_M^{\lambda}(\sigma, \sigma') = e^{-\lambda n_d(\sigma, \sigma')}$$

Theorem (Jiao and Vert, 2015, 2017)

The Kendall and Mallows kernels are positive definite.

Theorem (Knight, 1966)

These two kernels for permutations can be evaluated in $O(n \log n)$ time.

Proof

Take
$$\Phi_{\tau}(\sigma) = \left(\mathbb{1}_{\sigma(i) < \sigma(j)}\right)_{1 \le i \ne j \le n} \in \mathbb{R}^{n(n-1)}$$
 and

$$\mathcal{K}_{\tau}(\sigma, \sigma') = \Phi_{\tau}(\sigma)^{\top} \Phi_{\tau}(\sigma') = \sum_{1 \leq i \neq j \leq n} \mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)}.$$

Weighted Kendall's τ correlation

- How to weight differently pairs based on their ranks?
- Given a weight function $w : [1, n]^2 \to \mathbb{R}$, weighted versions of the Kendall's τ have been proposed:

$$\sum_{1 \le i \ne j \le n} w(\sigma(i), \sigma(j)) \mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)}$$
Shieh (1998)

$$\sum_{1 \leq i \neq j \leq n} w(\sigma(i), \sigma(j)) \frac{\rho_{\sigma(i)} - \rho_{\sigma'(i)}}{\sigma(i) - \sigma'(i)} \frac{\rho_{\sigma(j)} - \rho_{\sigma'(j)}}{\sigma(j) - \sigma'(j)} \mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)}$$

Kumar and Vassilvitskii (2010)

$$\sum_{1 \le i \ne j \le n} w(i,j) \mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)}$$
 Vigna (2015)

- However, they are either not symmetric (1st and 2nd), or right-invariant (3rd)
- How to make a right-invariant, p.d. weighted Kendall correlation?

A right-invariant weighted Kendall kernel

Theorem

Let $W : \mathbb{N}^2 \times \mathbb{N}^2 \to \mathbb{R}$ be a p.d. kernel on \mathbb{N}^2 , then the function $K_W : \mathbb{S}_n \times \mathbb{S}_n \to \mathbb{R}$ defined by

$$K_{W}(\sigma, \sigma') = \sum_{1 \leq i \neq j \leq n} W\left((\sigma(i), \sigma(j)), (\sigma'(i), \sigma'(j))\right) \mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)}$$

is a right-invariant p.d. kernel on \mathbb{S}_n .

Corollary

If weights take the form $W((a,b),(c,d))=U_{a,b}U_{c,d}$ for some matrix $U\in\mathbb{R}^{n\times n}$, then the function

$$K_U(\sigma,\sigma') = \sum_{1 \leq i \neq j \leq n} U_{\sigma(i),\sigma(j)} U_{\sigma'(i),\sigma'(j)} \mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)},$$

is a right-invariant p.d. kernel on \mathbb{S}_n .

A right-invariant weighted Kendall kernel

Theorem

Let $W : \mathbb{N}^2 \times \mathbb{N}^2 \to \mathbb{R}$ be a p.d. kernel on \mathbb{N}^2 , then the function $K_W : \mathbb{S}_n \times \mathbb{S}_n \to \mathbb{R}$ defined by

$$K_{W}(\sigma,\sigma') = \sum_{1 \leq i \neq j \leq n} W\left((\sigma(i),\sigma(j)),(\sigma'(i),\sigma'(j))\right) \mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)}$$

is a right-invariant p.d. kernel on \mathbb{S}_n .

Corollary

If weights take the form $W((a,b),(c,d)) = U_{a,b}U_{c,d}$ for some matrix $U \in \mathbb{R}^{n \times n}$, then the function

$$\mathcal{K}_{U}(\sigma,\sigma') = \sum_{1 \leq i \neq j \leq n} U_{\sigma(i),\sigma(j)} U_{\sigma'(i),\sigma'(j)} \mathbb{1}_{\sigma(i) < \sigma(j)} \mathbb{1}_{\sigma'(i) < \sigma'(j)},$$

is a right-invariant p.d. kernel on \mathbb{S}_n .

Examples

 $U_{a,b}$ corresponds to the weight of (items ranked at) positions a and b in a permutation. Interesting choices include:

• *Top-k*. For some $k \in [1, n]$,

$$U_{a,b} = \begin{cases} 1 & \text{if } a \le k \text{ and } b \le k, \\ 0 & \text{otherwise.} \end{cases}$$

• *Additive*. For some $u \in \mathbb{R}^n$, take

$$U_{ij}=u_i+u_j$$

• *Multiplicative*. For some $u \in \mathbb{R}^n$, take

$$U_{ij} = u_i u_j$$

Theorem (Kernel trick)

The weighted Kendall kernel can be computed in $O(n \ln(n))$ for the top-k, additive or multiplicative weights.

Learning the weights *U*?

• K_U can be written as

$$K_U(\sigma, \sigma') = \Phi_U(\sigma)^{\top} \Phi_U(\sigma')$$

with

$$\Phi_{U}(\sigma) = \left(U_{\sigma(i),\sigma(j)}\mathbb{1}_{\sigma(i)<\sigma(j)}\right)_{1\leq i\neq j\leq n} \in \mathbb{R}^{n(n-1)}$$

• The function to be learned is

$$f(\sigma) = \beta^{\top} \Phi_{U}(\sigma)$$

ullet We usually fit eta by minimizing a (regularized) empirical risk

$$\min_{\beta} \sum_{i=1}^{n} \ell_i(\beta^{\top} \Phi_U(\sigma))$$

• Can we jointly optimize the weights:

$$\min_{\beta, \mathbf{U}} \sum_{i=1}^{n} \ell_{i}(\beta^{\top} \Phi_{U}(\sigma))$$

Writing Φ_U as a function of U

Lemma

For any upper triangular matrix $U \in \mathbb{R}^{n \times n}$,

$$\Phi_U(\sigma) = \Pi_{\sigma}^{\top} U \Pi_{\sigma}$$
 with $(\Pi_{\sigma})_{ij} = \mathbb{1}_{i=\sigma(j)}$

Optimizing both β and U

From this lemma we get that

$$\begin{split} f_{\beta,U}(\sigma) &= \left\langle \beta, \Phi^U(\sigma) \right\rangle_{\mathsf{Frobenius}(n \times n)} \\ &= \left\langle \beta, \Pi_\sigma^\top U \Pi_\sigma \right\rangle_{\mathsf{Frobenius}(n \times n)} \\ &= \left\langle \Pi_\sigma \otimes \Pi_\sigma, \mathsf{vec}(U) \otimes \left(\mathsf{vec}(\beta)\right)^\top \right\rangle_{\mathsf{Frobenius}(n^2 \times n^2)} \end{split}$$

- This is symmetric in U and β
- Note that $\Pi_{\sigma}^{\top} = (\Pi_{\sigma})^{-1} = \Phi_{\sigma^{-1}}$, hence

$$f_{\beta,U}(\sigma) = f_{U,\beta}(\sigma^{-1})$$

- We propose to alternate optimization in U and β
 - For *U* fixed, optimize β with $K_U(\sigma_1, \sigma_2)$
 - For β fixed, optimize U with $K_{\beta}(\sigma_1^{-1}, \sigma_2^{-1})$

The representation point of view

$$f_{\beta,\mathcal{U}}(\sigma) = \left\langle \Pi_{\sigma} \otimes \Pi_{\sigma}, \mathsf{vec}(\mathcal{U}) \otimes \left(\mathsf{vec}(\beta)\right)^{\top} \right\rangle_{\mathsf{Frobenius}(\mathit{n}^2 \times \mathit{n}^2)}$$

A particular rank-1 linear model for the embedding

$$\Sigma_{\sigma} = \Pi_{\sigma} \otimes \Pi_{\sigma} \in (\{0,1\})^{n^2 \times n^2}$$

 Σ is the direct sum of the second-order and first-order permutation representations:

$$\Sigma \cong \tau_{(n-2,1,1)} \oplus \tau_{(n-1,1)}$$

• This generalizes SUQUAN (Le Morvan and Vert, 2017) which considers the first-order representation Π_{σ} only:

$$h_{\beta, \mathbf{w}}(\sigma) = \left\langle \Pi_{\sigma}, \mathbf{w} \otimes \beta^{\top} \right\rangle_{\mathsf{Frobenius}(n \times n)}$$

Conclusion

- A right-invariant, positive definite weighted version of the Kendall kernel
- Weights can be learned
- This is equivalent to learning a rank-1 tensor on a second-order representation of \mathbb{S}_n
- \bullet An intriguing connection between quantile normalization and Kendall's τ
- Ongoing work:
 - Experimental validation
 - Computatioinally tractable generalizations to higher orders

THANKS

References

- Y. Jiao and J.-P. Vert. The Kendall and Mallows kernels for permutations. In *Proceedings of The 32nd International Conference on Machine Learning*, volume 37 of *JMLR:W&CP*, pages 1935–1944, 2015. URL http://jmlr.org/proceedings/papers/v37/jiao15.html.
- Y. Jiao and J.-P. Vert. The Kendall and Mallows kernels for permutations. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2017. doi: 10.1109/TPAMI.2017.2719680. URL http://dx.doi.org/10.1109/TPAMI.2017.2719680.
- W. R. Knight. A computer method for calculating Kendall's tau with ungrouped data. J. Am. Stat. Assoc., 61(314):436–439, 1966. URL http://www.jstor.org/stable/2282833.
- R. I. Kondor and M. S. Barbosa. Ranking with kernels in fourier space. In A. T. Kalai and M. Mohri, editors, COLT 2010 - The 23rd Conference on Learning Theory, Haifa, Israel, June 27-29, 2010, pages 451–463. Omnipress, 2010.
- R. Kumar and S. Vassilvitskii. Generalized distances between rankings. In *Proceedings of the* 19th International Conference on World Wide Web (WWW-10), pages 571–580. ACM, 2010. doi: 10.1145/1772690.1772749.
- M. Le Morvan and J.-P. Vert. Supervised quantile normalisation. Technical Report 1706.00244, arXiv, 2017.
- G. S. Shieh. A weighted Kendall's tau statistic. Statistics & Probability Letters, 39(1):17–24, 1998. doi: 10.1016/s0167-7152(98)00006-6. URL http://dx.doi.org/10.1016/s0167-7152(98)00006-6.
- S. Vigna. A weighted correlation index for rankings with ties. In *Proceedings of the 24th International Conference on World Wide Web (WWW-15)*, pages 1166–1176. ACM, 2015. doi: 10.1145/2736277.2741088.