Learning on the symmetric group

Jean-Philippe Vert

Google Zürich, Septembre 29, 2017

Motivation

Personalized CancerTherapy

Molecular Profiling

Markers predictive of drug sensitivity/resistance
Markers predictive of adverse events
https://pct.mdanderson.org

Data

- X gene expression profile of each patient
- Y survival information of each patient
- $n=10^{2} \sim 10^{4}$
- $p=2 \times 10^{4}$
- Goal: learn to predict Y from X
- But... where does X come from?

From raw data to X

- Between-sample variability: batch effect, drift over time, ...
- Typical pre-processing: Quantile normalization per sample
- Only the relative ordering of features within each sample is used
- See also: pictures (Gonzalez and Woods, 2008), MRI scans (Shinohara et al., 2014), speech (Hilger and Ney, 2006)

Learning on the symmetric group

- The symmetric group S_{p} is the set of permutations of $\{1, \ldots, p\}$
- How to estimate $Y=f(X)$ where $X \in S_{p}$?

Related work

- Represent a permutation $x \in S_{p}$ by the vector of rank $\Phi(x) \in \mathbb{R}^{p}$
- this is a particular quantile normalization
- Diffusion kernel over the Cayley's graph (Kondor and Barbosa, 2010)
- but complexity $O\left(p^{2 p}\right)$
- Many other data come as permutations (votes, preferences, ...)

Outline

(1) Supervised quantile normalization
(2) The Kendall and Mallows kernels
(3) Conclusion

Outline

(1) Supervised quantile normalization

2 The Kendall and Mallows kernels

(3) Conclusion

Joint work with

Marine Le Morvan
https://arxiv.org/abs/1706.00244

Standard full quantile normalization

Typically followed by a predictive model $f(X)$ on the normalized data

How to choose a "good" target distribution?

bigaussian distribution

quantile function (-> uniform)

quantile function (->bigaussian)

Notations

- $x_{1}, \ldots, x_{n} \in \mathbb{R}^{p}$ a set of p-dimensional samples

- $f \in \mathbb{R}^{p}$ a non-decreasing target distribution (CDF)

- For $x \in \mathbb{R}^{p}$, let $\Phi_{f}(x) \in \mathbb{R}^{p}$ be the data after QN with target distribution f

From QN to supervised QN (SUQUAN)

Standard approaches: learn model after QN preprocessing:
(1) Fix f arbitrarily
(2) QN all samples to get $\Phi_{f}\left(x_{1}\right), \ldots, \Phi_{f}\left(x_{n}\right)$
(c) Learn a generalized linear model (w, b) on normalized data:

$$
\min _{w, b}\left\{\frac{1}{n} \sum_{i=1}^{n} \ell_{i}\left(w^{\top} \phi_{f}\left(x_{i}\right)+b\right)+\lambda \Omega(w)\right\}
$$

SUQUAN: jointly learn f and (w, b) :

$$
\min _{w, b, f}\left\{\frac{1}{n} \sum_{i=1}^{n} \ell_{i}\left(w^{\top} \Phi_{f}\left(x_{i}\right)+b\right)+\lambda \Omega(w)+\gamma \Omega_{2}(f)\right\}
$$

SUQAN as matrix regression (1/2)

- For $x \in \mathbb{R}^{p}$, let $\Pi_{x} \in \mathbb{R}^{p \times p}$ the permutation matrix of x 's entries:

$$
\left[\Pi_{x}\right]_{i j}=\mathbf{1}\left(x_{j} \text { is the } i \text {-th smallest feature }\right)
$$

- Quantile normalized x with target distribution f is:

$$
\Phi_{f}(x)=\Pi_{x} f
$$

- Example:

$$
\begin{gathered}
x=\left(\begin{array}{c}
4.5 \\
1.2 \\
10.1 \\
8.9
\end{array}\right) \quad \Pi_{x}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad f=\left(\begin{array}{l}
0 \\
1 \\
3 \\
4
\end{array}\right) \\
\Phi_{f}(x)=\Pi_{x} f=\left(\begin{array}{l}
1 \\
0 \\
4 \\
3
\end{array}\right)
\end{gathered}
$$

SUQAN as matrix regression (2/2)

- SUQUAN solves

$$
\begin{aligned}
& \min _{w, b, f}\left\{\frac{1}{n} \sum_{i=1}^{n} \ell_{i}\left(w^{\top} \Phi_{f}\left(x_{i}\right)+b\right)+\lambda \Omega(w)+\gamma \Omega_{2}(f)\right\} \\
& =\min _{w, b, f}\left\{\frac{1}{n} \sum_{i=1}^{n} \ell\left(w^{\top} \Pi_{x_{i}} f+b\right)+\lambda \Omega(w)+\gamma \Omega_{2}(f)\right\} \\
& =\min _{w, b, f}\left\{\frac{1}{n} \sum_{i=1}^{n} \ell\left(<w f^{\top}, \Pi_{x_{i}}>_{F}+b\right)+\lambda \Omega(w)+\gamma \Omega_{2}(f)\right\}
\end{aligned}
$$

- A particular rank-1 matrix optimization, x is replaced by Π_{x}
- Non-convex
- Local optimum found by alternatively optimizing f and w

Constraints on f

- Ridge

$$
\mathcal{F}_{0}=\left\{f \in \mathbb{R}^{p}: \frac{1}{p} \sum_{i=1}^{p} f_{i}^{2} \leq 1\right\}
$$

- Non-decreasing

$$
\mathcal{F}_{\mathrm{BND}}=\mathcal{F}_{0} \cap \mathcal{I}_{0}, \quad \text { where } \quad \mathcal{I}_{0}=\left\{f \in \mathbb{R}^{p}: f_{1} \leq f_{2} \leq \ldots \leq f_{p}\right\}
$$

- Non-decreasing and smooth

$$
\mathcal{F}_{\mathrm{SPAV}}=\left\{f \in \mathcal{I}_{0}: \sum_{j=1}^{p-1}\left(f_{j+1}-f_{j}\right)^{2} \leq 1\right\}
$$

SUQUAN-BND and SUQUAN-PAVA

```
Algorithm 2: SUQUAN-BND and SUQUAN-SPAV
    Input: \(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right), f_{\text {init }} \in \mathcal{I}_{0}, \lambda \in \mathbb{R}\)
    Output: \(f \in \mathcal{I}_{0}\) target quantile
        1: for \(i=1\) to \(n\) do
        2: \(\quad \operatorname{rank}_{i}\), order \(_{i} \leftarrow \operatorname{sort}\left(x_{i}\right)\)
        3: end for
        4: \(w, b \leftarrow \underset{w, b}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell_{i}\left(w^{\top} f_{\text {init }}\left[r a n k_{i}\right]+b\right)+\lambda\|w\|^{2}\)
            (standard linear model optimisation)
        5: \(f \leftarrow \underset{f \in \mathcal{F}_{B N D}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell_{i}\left(f^{\top} w\left[\right.\right.\) order \(\left.\left._{i}\right]+b\right)\)
            (isotonic optimisation problem using PAVA as prox)
            OR
```



```
            (smoothed isotonic optimisation problem using SPAV as prox)
```

- Alternate optimization in w and f, monotonicity constraint on f
- Accelerated proximal gradient optimization for f, using the Pool Adjacent Violators Algorithm (PAVA, Barlow et al. (1972)) or the Smoothed Pool Adjacent Violators algorithm (SPAV, Sysoev and Burdakov (2016)) as proximal operator.

A variant: SUQUAN-SVD

```
Algorithm 1: SUQUAN-SVD
    Input:
        \(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \in \mathbb{R}^{p} \times\{-1,1\}\)
    Output: \(f \in \mathcal{F}_{0}\) target quantile
        1: \(M_{L D A} \leftarrow 0 \in \mathbb{R}^{p \times p}\)
        2: \(n_{+1} \leftarrow\left|\left\{i: y_{i}=+1\right\}\right|\)
        3: \(n_{-1} \leftarrow\left|\left\{i: y_{i}=-1\right\}\right|\)
        4: for \(i=1\) to \(n\) do
        5: \(\quad\) Compute \(\Pi_{x_{i}}\) (by sorting \(x_{i}\) )
        6: \(\quad M_{L D A} \leftarrow M_{L D A}+\frac{y_{i}}{n_{y_{i}}} \Pi_{x_{i}}\)
    7: end for
    8: \((\sigma, w, f) \leftarrow S V D\left(M_{L D A}, 1\right)\)
```

- Ridge penalty (no monotonicity constraint), equivalent to rank-1 regression problem
- SVD finds the closest rank-1 matrix to the LDA solution:

$$
M_{L D A}=\frac{1}{n_{+}} \sum_{i: y_{i}=+1} \Pi_{x_{i}}-\frac{1}{n_{-}} \sum_{i: y_{i}=+1} \Pi_{x_{i}}
$$

- Complexity $O(n p \ln (p))$ (same as QN only)

Experiments: Simulations

- True distribution of X entries is normal
- Corrupt data with a cauchy, exponential, uniform or bimodal gaussian distributions.
- $p=1000, n$ varies, logistic regression.

Experiments: CIFAR-10

- Example: horse vs. plane
- Different methods learn different quantile distributions

Experiments: CIFAR-10

- Image classification into 10 classes (45 binary problems)
- $n=5,000$ per class, $p=1,024$ pixels

Experiments: gene expression data

- Breast cancer prognosis from gene expression data.
- $X=$ expression levels of 22,283 genes of the tumour at diagnosis
- $Y=1$ if cancer relapse within 6 years of diagnosis, 0 otherwise
- 4 datasets:

DATASET NAME	\# PATIENTS	\# POSITIVES	\% POSITIVES
GSE1456	141	37	0.26
GSE2034	271	104	0.38
GSE2990	106	32	0.30
GSE4922	225	73	0.32

Results: gene expression data

	LOGISTIC REGRESSION									
	RAW	RMA	CAUCHY	EXP.	UNIF.	GAUS.	MEDIAN	SVD	SUQUAN	
GSE1456	65.94	68.73	59.56	68.86	68.72	69.00	69.06	57.60	71.44	69.60
GSE2034	74.52	75.42	61.91	74.53	75.22	76.45	74.92	52.61	70.50	76.11
GSE2990	57.01	60.43	54.72	61.25	56.25	58.66	59.72	52.51	59.22	59.94
GSE4922	58.52	58.86	55.24	58.81	55.66	60.01	59.18	52.39	61.82	61.41
AVERAGE	64.00	65.86	57.86	65.86	63.96	66.03	65.72	53.78	65.75	66.77

Estimated distribution: iteration=0

Estimated distribution: iteration=1

Estimated distribution: iteration=2

Outline

(9) Supervised quantile normalization

(2) The Kendall and Mallows kernels
(3) Conclusion

Joint work with

Yunlong Jiao
https://hal.archives-ouvertes.fr/hal-01279273

An idea: all pairwise comparisons

Replace $x \in \mathbb{R}^{p}$ by $\Phi(x) \in\{0,1\}^{p(p-1) / 2}$:

$$
\Phi_{i, j}(x)= \begin{cases}1 & \text { if } x_{i} \leq x_{j}, \\ 0 & \text { otherwise } .\end{cases}
$$

One sample x p features

Mapping $f(x)$
$p(p-1) / 2$ bits

Related work: Top scoring pairs (TSP)

$$
\text { IF SPTAN1 => CD33* THEN ALL, ELSE AML. } \quad \Delta=0.9787
$$

(b) $k-\mathrm{TSP}$

IF SPTAN1 => CD33* THEN ALL, ELSE AML.
IF HA-1 => ZYX* THEN ALL, ELSE AML.
IF TCF3* > APLP2 THEN ALL, ELSE AML.
IF ATP2A3* => CST3* THEN ALL, ELSE AML.
IF DGKD > MGST1 THEN ALL, ELSE AML.
IF CCND3* $=>$ NPC2 THEN ALL, ELSE AML.
IF TOP2B* > PLCB2 THEN ALL, ELSE AML.
IF Macmarcks => CTSD* THEN ALL, ELSE AML.
IF PSMB8 => DF* THEN ALL, ELSE AML.
$\Delta=0.9787$
$\Delta=0.9787$
$\Delta=0.9574$
$\Delta=0.9387$
$\Delta=0.9387$
$\Delta=0.9387$
$\Delta=0.9387$
$\Delta=0.9362$
$\Delta=0.9200$

Practical challenge

- Need to store $O\left(p^{2}\right)$ bits per sample
- Need to train a model in $O\left(p^{2}\right)$ dimensions

Kernel trick

Theorem (Wahba, Schölkopf, ...)

Training a linear model over a representation $\Phi(x) \in \mathbb{R}^{Q}$ of the form:

$$
\min _{w \in \mathbb{R}^{Q}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(w^{\top} \Phi\left(x_{i}\right), y_{i}\right)+\lambda\|w\|^{2}
$$

can be done efficiently, independently of Q, if the kernel

$$
K\left(x, x^{\prime}\right)=\Phi(x)^{\top} \Phi\left(x^{\prime}\right)
$$

can be computed efficiently.
Ex: ridge regression, $O\left(Q^{3}+n Q^{2}\right)$ becomes $O\left(n^{3}+n^{2} T\right)$ Other: SVM, logistic regression, Cox model, survival SVM, ...

Kernel trick for us: Kendall's τ

$$
\Phi(x)^{\top} \Phi\left(x^{\prime}\right)=\tau\left(x, x^{\prime}\right) \quad \text { (up to a scaling) }
$$

$$
\mathrm{O}\left(\mathrm{p}^{\wedge} 2\right)
$$

Good news for SVM and kernel methods!

More formally

- For two permutations σ, σ^{\prime} let $n_{c}\left(\sigma, \sigma^{\prime}\right)$ (resp. $\left.n_{d}\left(\sigma, \sigma^{\prime}\right)\right)$ the number of concordant (resp. discordant) pairs.
- The Kendall kernel (a.k.a. Kendall tau coefficient) is defined as

$$
K_{\tau}\left(\sigma, \sigma^{\prime}\right)=\frac{n_{c}\left(\sigma, \sigma^{\prime}\right)-n_{d}\left(\sigma, \sigma^{\prime}\right)}{\binom{p}{2}}
$$

- The Mallows kernel is defined for any $\lambda \geq 0$ by

$$
K_{M}^{\lambda}\left(\sigma, \sigma^{\prime}\right)=e^{-\lambda n_{d}\left(\sigma, \sigma^{\prime}\right)}
$$

Theorem (Jiao and V., 2015)

The Kendall and Mallows kernels are positive definite.

Theorem (Knight, 1966)

These two kernels for permutations can be evaluated in $O(p \log p)$ time.

Related work

Cayley graph of \mathbb{S}_{4}

- Kondor and Barbarosa (2010) proposed the diffusion kernel on the Cayley graph of the symmetric group generated by adjacent transpositions.
- Computationally intensive $\left(O\left(p^{2 p}\right)\right)$
- Mallows kernel is written as

$$
K_{M}^{\lambda}\left(\sigma, \sigma^{\prime}\right)=e^{-\lambda n_{d}\left(\sigma, \sigma^{\prime}\right)}
$$

where $n_{d}\left(\sigma, \sigma^{\prime}\right)$ is the shortest path distance on the Cayley graph.

- It can be computed in $O(p \log p)$

Application: supervised classification

Datasets

Dataset	No. of features	No. of samples (training/test) C_{1}	
Breast Cancer 1	23624	$44 / 7$ (Non-relapse)	$32 / 12$ (Relapse)
Breast Cancer 2	22283	142 (Non-relapse)	56 (Relapse)
Breast Cancer 3	22283	71 (Poor Prognosis)	138 (Good Prognosis)
Colon Tumor	2000	40 (Tumor)	22 (Normal)
Lung Cancer 1	7129	24 (Poor Prognosis)	62 (Good Prognosis)
Lung Cancer 2	12533	$16 / 134$ (ADCA)	$16 / 15$ (MPM)
Medulloblastoma	7129	39 (Failure)	21 (Survivor)
Ovarian Cancer	15154	162 (Cancer)	91 (Normal)
Prostate Cancer 1	12600	$50 / 9$ (Normal)	$52 / 25$ (Tumor)
Prostate Cancer 2	12600	13 (Non-relapse)	8 (Relapse)

Methods

- Kernel machines Support Vector Machines (SVM) and Kernel Fisher Discriminant (KFD) with Kendall kernel, linear kernel, Gaussian RBF kernel, polynomial kernel.
- Top Scoring Pairs (TSP) classifiers Tan et al. (2005).
- Hybrid scheme of SVM + TSP feature selection algorithm.

Results

Kendall kernel SVM

- Competitive accuracy!
- Less sensitive to
regularization parameter!
- No need for feature selection!

Results

Kendall kernel SVM

- Competitive accuracy!
- Less sensitive to regularization parameter!
- No need for feature selection!

Results

Kendall kernel SVM

- Competitive accuracy!
- Less sensitive to regularization parameter!
- No need for feature selection!

Application: clustering

- APA data (full rankings)
- $n=5738, p=5$
- (new) Kernel k-means vs (standard)
k-means in \mathbb{S}_{5}
- Show silhouette as a function of number of clusters (higher better)

Extension to partial rankings

- Two interesting types of partial rankings are interleaving partial ranking

$$
x_{i_{1}} \succ x_{i_{2}} \succ \cdots \succ x_{i_{k}}, \quad k \leq n .
$$

and top- k partial ranking

$$
x_{i_{1}} \succ x_{i_{2}} \succ \cdots \succ x_{i_{k}} \succ X_{\text {rest }}, \quad k \leq n .
$$

- Partial rankings can be uniquely represented by a set of permutations compatible with all the observed partial orders.

Theorem

For these two particular types of partial rankings, the convolution kernel (Haussler, 1999) induced by Kendall kernel

Extension to partial rankings

- Two interesting types of partial rankings are interleaving partial ranking

$$
x_{i_{1}} \succ x_{i_{2}} \succ \cdots \succ x_{i_{k}}, \quad k \leq n .
$$

and top- k partial ranking

$$
x_{i_{1}} \succ x_{i_{2}} \succ \cdots \succ x_{i_{k}} \succ X_{\text {rest }}, \quad k \leq n .
$$

- Partial rankings can be uniquely represented by a set of permutations compatible with all the observed partial orders.

Theorem

For these two particular types of partial rankings, the convolution kernel (Haussler, 1999) induced by Kendall kernel

$$
K_{\tau}^{\star}\left(R, R^{\prime}\right)=\frac{1}{|R|\left|R^{\prime}\right|} \sum_{\sigma \in R} \sum_{\sigma^{\prime} \in R^{\prime}} K_{\tau}\left(\sigma, \sigma^{\prime}\right)
$$

can be evaluated in $O(k \log k)$ time.

Extension to smoother, continuous representations

One sample x p features

Mapping $f(x)$ $p(p-1) / 2$ bits

- Instead of $\Phi: \mathbb{R}^{p} \rightarrow\{0,1\}^{p(p-1) / 2}$, consider the continuous mapping $\Psi_{a}: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p(p-1) / 2}$:

$$
\Psi_{a}(x)=\mathbb{E} \Phi(x+\epsilon) \quad \text { with } \quad \epsilon \sim\left(\mathcal{U}\left[-\frac{a}{2}, \frac{a}{2}\right]\right)^{n}
$$

- Corresponding kernel $G_{a}\left(x, x^{\prime}\right)=\Psi_{a}(x)^{\top} \Psi_{a}\left(x^{\prime}\right)$

Computation of $G\left(x, x^{\prime}\right)$

- $G_{a}\left(x, x^{\prime}\right)$ can be computed exactly in $O\left(p^{2}\right)$ by explicit computation of $\Psi_{a}(x)$ in $\mathbb{R}^{p(p-1) / 2}$
- $G_{a}\left(x, x^{\prime}\right)$ can be computed approximately in $O\left(D^{2} p \log p\right)$ by Monte-Carlo approximation:

$$
\tilde{G}_{a}\left(x, x^{\prime}\right)=\frac{1}{D^{2}} \sum_{i, j=1}^{D} K\left(x+\epsilon_{i}, x^{\prime}+\epsilon_{j}^{\prime}\right)
$$

- Theorem: for supervised learning, Monte-Carlo approximation is better ${ }^{1}$ than exact computation when $n=o\left(p^{1 / 3}\right)$

[^0]
Performance of $G_{a}(x, x)$

MB

Outline

(9) Supervised quantile normalization
(2) The Kendall and Mallows kernels
(3) Conclusion

Conclusion

- Representing omics data as permutations has some potential
- Kendall and Mallows kernel in $O(p \ln (p))$
- SUQUAN supervised quantile normalization as matrix regression
- Ongoing work:
- Extension of SUQUAN to nonlinear models (neural nets..)
- Extention of SUQUAN to Kendall representation (weighted Kendall correlation...)

Thanks

References

R. E. Barlow, D. Bartholomew, J. M. Bremner, and H. D. Brunk. Statistical inference under order restrictions; the theory and application of isotonic regression. Wiley, New-York, 1972.
R. C. Gonzalez and R. E. Woods. Digital Image Processing (3rd Edition). Prentice Hall, 2008.
F. Hilger and H. Ney. Quantile based histogram equalization for noise robust large vocabulary speech recognition. IEEE Trans. Audio, Speech, Language Process., 14(3):845-854, 2006. doi: 10.1109/TSA.2005.857792. URL http://dx.doi.org/10.1109/TSA.2005.857792.
Y. Jiao and J.-P. Vert. The Kendall and Mallows kernels for permutations. In Proceedings of The 32nd International Conference on Machine Learning, volume 37 of JMLR:W\&CP, pages 1935-1944, 2015. URL http://jmlr.org/proceedings/papers/v37/jiao15.html.
R. I. Kondor and M. S. Barbosa. Ranking with kernels in fourier space. In A. T. Kalai and M. Mohri, editors, COLT 2010-The 23rd Conference on Learning Theory, Haifa, Israel, June 27-29, 2010, pages 451-463. Omnipress, 2010.
M. Le Morvan and J.-P. Vert. Supervised quantile normalisation. Technical Report 1706.00244, arXiv, 2017.
R. T. Shinohara, E. M. Sweeney, J. Goldsmith, N. Shiee, F. J. Mateen, P. A. Calabresi, S. Jarso, D. L. Pham, D. S. Reich, C. M. Crainiceanu, A. I. B. L. F. S. o. A. , and A. D. N. I. . Statistical normalization techniques for magnetic resonance imaging. Neuroimage Clin, 6:9-19, 2014. doi: 10.1016/j.nicl.2014.08.008. URL
http://dx.doi.org/10.1016/j.nicl.2014.08.008.

References (cont.)

O. Sysoev and O. Burdakov. A smoothed monotonic regression via I 2 regularization. Technical Report LiTH-MAT-R-2016/01-SE, Department of mathematics, Linköping University, 2016. URL http://liu.diva-portal.org/smash/get/diva2:905380/FULLTEXT01.pdf.
A. C. Tan, D. Q. Naiman, L. Xu, R. L. Winslow, and D. Geman. Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics, 21(20):3896-3904, Oct 2005. doi: 10.1093/bioinformatics/bti631. URL http://dx.doi.org/10.1093/bioinformatics/bti631.

[^0]: ${ }^{1}$ faster for the same accuracy

