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0 Introduction



OS full cohort (n=339, P=0.26, HR=0.87)
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@ Avaglio phase Ill two-arm randomized clinical trial : Bevacizumab
(Avestin) vs. placebo + standard-of-care therapy in newly
diagnosed glioblastoma (Chinot et al., 2014)

@ Improvement in progression-free survival, not in overall survival



Subgroup analysis

OS for Proneural (n=103, P=0.045, HR=0.63)
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@ Post-trial analysis restricted to subgroups based on gene
expression data (Sandmann et al., 2015)

@ Phillips classification: Mesenchymal / Proliferative / Proneural

@ OS benefit in one subgroup (proneural)
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Given the results of a clinical trial, can we automatically learn a
decision function to stratify patients based on whether or not they will
benefit from the treatment?

A.k.a. can we learn a predictive marker to identify the optimal
treatment for each patient?



Predictive vs Prognostic marker

( Predictive factors ) ( Prognostic factors j

Determine which treatment is best Determine who needs treatment

( Therapeutic choices )

1. Avoid under and over treatment
2. Personalised treatment

@ Prognostic: provides information on the likely outcome of the
disease in an untreated individual

@ Predictive: provides information on the likely benefit from
treatment



Predictive vs Prognostic marker

Treatment (+)

Biomarker (+) { ——————— Treatment (-)

Treatment (+)

Biomarker (-) { _______ Treatment {3)

Neither prognostic nor Prognostic Not prognostic prognostic
predictive but not predictive but predictive and predictive



Difficulty

@ For each patient, we only observe the output under one treatment
option

@ Therefore, it is not possible to simply train a model to discriminate
the output with or without treatment.

@ Similar to contextual multi-armed bandit problem in e-marketing
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More formally

For each patient we have:

@ Patient covariates (clinical, transcriptome...): X € RP

@ Treatment given (randomized arm): A€ {—1,1}

@ Response (right-censored survival): R = (Y,d§) € R x {0,1}
We want to infer a model for response/hazard of the form

®(R(X, A)) = f(X) + g(A) + Ah(X)

where

@ f(X) is the main patient effect independently of treatment
(prognostic)

@ g(A) is the main treatment effect, independently of patient (good
old drugs)

@ h(X) is the patient-specific drug effect (predictive)



e Survival regression in high dimension



Survival regression

Survival probability
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@ Patient covariates (clinical, transcriptome...): X € RP
@ Response (right-censored survival): R = (Y,d) e R x {0,1}
@ Goal: "predict R from X"

@ More realistic/useful: predict a score f(X) such as "patient X; has
a higher risk than patient X5 is f(X1) > f(X2)"



Cox proportional hazard model (Cox, 1972)

@ Proportional hazard hypothesis: A\(t| x) = Ao(t) exp(3' x)
@ Model: f(x) = 8"x =17
@ Patient /:

@ X; € RP covariates
e (yi,0;) € R x {0, 1} right-censored survival data
e Ri={j: y; >y} patients at risk at time y;

@ Conditional partial likelihood:

n i o
L(B) = ]1 (Z;; en,)



Cox model estimation

@ Maximum conditional partial likelihood:

3 € arg max L(B)

@ Equivalently;
3 € arg min 0°%(XB)

with
n
9% (y Z 5 {n, + log (Z e”f) ]
JjER;

@ Convex optimization problem
@ Not good if p is large (overfitting)



Cox model estimation when p is large

@ We can regularize the problem, e.g., with a lasso (Tibshirani,
1997) or elastic net penalty (Zou and Hastie, 2005):

1 Cox
min (% (XB5) + APa(5)

with ) ,
1—
Pa(B) =a Y 1B+ —— > 4.
j=1 j=1

@ Regularization allows to learn in high dimension by controlling
overfitting

@ « > 0 shrinks coefficients to 0 and leads to feature selection,
leading to a molecular signature
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Alternatives to Cox regression

@ Extensions of machine learning techniques

e Survival SVM (Van Belle et al., 2007)
o Random survival forests (Ishwaran et al., 2008)

@ Not adapted to learning a molecular signature
@ We derive a new variant next, survival logistic regression



Concordance index

o T;={j: y; > yi} patients with strictly longer survival
@ Number of discordant pairs

n

na(n) => Y 61(n; < ny)

i=1jeT;
@ Total number of comparable pairs
n
Ntotal = Z Z dj
i=1jeT;

@ Concordance index:

Cl(n) = 1 na(n)




Optimizing the concordance index

@ To fit a model 3, one could consider:

~

B = argmax CI(X() = argmin ny(Xp),
B B

but this is computationally intractable (NP-hard).
@ Convex relaxation:

1(u<0)<log,(1+e7Y)

— logistic
=7 -_ 01

loss




Survival logistic regression

; 1 Survlog
min (509X B) + APa(5).

with .
£5Ur09 () =3 " 6jlog, (1+€77™) .

i=1jeT;

@ (Suviog(p) is a convex upper bound of ng(7)

@ Convex optimization problem efficiently solved with the algorithm
used in glmnet

@ (Surviod(1)) does not have an obvious likelihood interpretation, but

also makes no assumption about the data such as proportional
hazard

@ Similar trick used, with the hinge loss, in the survival SVM (Van
Belle et al., 2007)



Implementation

@ C++ implementation in the opt reat package (soon available..)
@ Function survenet solves

1
min ~€(X5) + APa(5)

for ¢ = €% and ¢ = ¢Survieg

@ Syntax similar to glmnet ()

library (optreat)
m = survenet (x, y) # by default, family="cox"

m = survenet(x, y, family="survlog")
m = survenet(x, y, family="survlog", nfolds=5)
plot (m)

predict (m, xtest, s="lambda.min")



Cox vs survival logistic regression

@ Different objective functions
@ Small nlarge p behaviour?

@ Intuitive difference: survenet "uses" more pairs (O(n?)) than Cox
(O(n)), to be formalized

@ Empirical comparison later



e Learning a predictive model



The problem
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For each patient i we now have
@ X; € RP covariates
@ (y,0;) € R x {0, 1} survival data
@ g € {—1,1} treatment given
How to learn a function f(x) to estimate the benefit of treatment?



Some strategies

Assume we have a model for survival regression (Cox or survival
logistic):

@ Learn a survival model for each arm

@ Learn a unigue survival model with interactions

© Learn only the predictive model with the modified covariate trick



Standard model with interaction

@ Model to capture treatment/covariate interactions

n(x,a) = x f+

-
—ax'~y,
> Y

where we add to x a constant covariate to account to drug main
effect.

@ Parameters estimation (e.g., Qian and Murphy, 2011)

1 1
min —((XB + 5AXY) + APa(B) + pPa(7)
By N 2

@ Scoring of a new patient:

is the predicted benefit (in "n" scale) of treating the patient



The "modified covariates" trick

@ Tian et al. (2014) propose to replace
UXB + %AXV) =UAxAXB + %AXW)

by 1
((5AXy) = U(X7)

where X = AX/2 are modified covariates
@ Note that it bypasses the estimation of the main effect 3
@ In practice:

@ Modify covariates by inverting columns corresponding to a = —1
arm

@ Estimate a standard model on the modified covariates



Trick 1 justification

@ Linear regression: if

Yo = argmin E(Y —~vX)?,

%X = E[Y|X],
then
E[Y|X,A=1]—-E[Y|X,A= —1]
= E[Y|X=X/2]—E[Y|X=-X/2]
=7X/2 = (—0X/2)
= 70X

@ Similar justification for logistic and Cox regression.



Trick 2: Augmented model

@ Estimator after covariate modification:
1 .
min —4(Xv) + AP.(v),
¥ n

@ The following augmented model estimator is asymptotically the
same, for any r € R", because E[X] =0

min ~ [4(5(7) T XA £ APL(v),
Yy n

@ Choose r to minimize the variance of the estimator, which is [...]:
r=E[V{0)] X]

@ Two step procedure

o Estimate r
o Optimize the augmented model



Implementation

@ Function optreat estimates the drug effect by combining:
@ A survival model: cox or survlog
o A method: interaction Or modified Or augmented

@ Syntax similar to glmnet ()

library (optreat)
m = optreat(x, vy, a) # by default, family="cox",
# method="interaction"

m = optreat(x, y, a, family="survlog",
method="augmented")

m = optreat(x, y, a, family="survlog", nfolds=5)

plot (m)

predict (m, xtest, s="lambda.min")



e Experiments



Simulations from Tian et al. (2014)

@ Simulate X as a multivariate Gaussian, with or without correlation
@ Simulate time according to

Y = exp ((ﬂTx)2 + A x (fx + XTaX) + Joe)

@ Censoring time samples uniformly to ensure a 25% censoring
proportion
@ Consider 2 x 2 x 2 = 8 scenarios:
o Small (p = 30) or large (p = 1000) dimension
e Small or large main effect (change 5)
o Correlated or independent variables in X
@ Assess performance on an independent test set, by Sperman
correlation between Y and 4(X)



Results from Tian et al. (2014) with Cox regression
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BEATRICE clinical trial (Cameron et al., 2013)

@ Triple-negative operable primary invasive breast cancer.

@ Two treatment arms: chemotherapy alone or with bevacizumab
(Avastin)

@ Gene expression assessed by NanoString (784 genes) in 991 trial
participants

Modified Predictive Full data Outer CV Outer CV

covariates features z-score mean HR p-value
Cox No 0 NA NA NA
Cox Yes 0 NA NA NA
Survival LR No 47 11.5 1.13 6.6 x 10°°
Survival LR Yes 58 13.2 1.16 1.5x10%




Conclusion

@ A new survival regression model for high dimensional data
@ Several tricks to learn predictive markers
@ Limited theoretical analysis so far

@ Quick development of contextual bandit techniques in other fields
that could inspire us to:

o estimate predictive models from randomized trials
e design new trials for that purpose

THANKS
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