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Motivation

Avaglio phase III two-arm randomized clinical trial : Bevacizumab
(Avestin) vs. placebo + standard-of-care therapy in newly
diagnosed glioblastoma (Chinot et al., 2014)
Improvement in progression-free survival, not in overall survival



Subgroup analysis

Post-trial analysis restricted to subgroups based on gene
expression data (Sandmann et al., 2015)
Phillips classification: Mesenchymal / Proliferative / Proneural
OS benefit in one subgroup (proneural)



Question

Given the results of a clinical trial, can we automatically learn a
decision function to stratify patients based on whether or not they will
benefit from the treatment?
A.k.a. can we learn a predictive marker to identify the optimal
treatment for each patient?



Predictive vs Prognostic marker

Therapeutic choices

Predictive factors
Determine which treatment is best

Prognostic factors
Determine who needs treatment

1. Avoid under and over treatment
2. Personalised treatment

Prognostic: provides information on the likely outcome of the
disease in an untreated individual
Predictive: provides information on the likely benefit from
treatment



Predictive vs Prognostic marker



Difficulty

For each patient, we only observe the output under one treatment
option
Therefore, it is not possible to simply train a model to discriminate
the output with or without treatment.
Similar to contextual multi-armed bandit problem in e-marketing



More formally

For each patient we have:
Patient covariates (clinical, transcriptome...): X ∈ Rp

Treatment given (randomized arm): A ∈ {−1,1}
Response (right-censored survival): R = (Y , δ) ∈ R× {0,1}

We want to infer a model for response/hazard of the form

Φ(R(X ,A)) = f (X ) + g(A) + Ah(X )

where
f (X ) is the main patient effect independently of treatment
(prognostic)
g(A) is the main treatment effect, independently of patient (good
old drugs)
h(X ) is the patient-specific drug effect (predictive)
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Survival regression
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Patient covariates (clinical, transcriptome...): X ∈ Rp

Response (right-censored survival): R = (Y , δ) ∈ R× {0,1}
Goal: "predict R from X "
More realistic/useful: predict a score f (X ) such as "patient X1 has
a higher risk than patient X2 is f (X1) > f (X2)"



Cox proportional hazard model (Cox, 1972)

Proportional hazard hypothesis: λ(t | x) = λ0(t) exp(β>x)

Model: f (x) = β>x := η

Patient i :
xi ∈ Rp covariates
(yi , δi ) ∈ R× {0,1} right-censored survival data
Ri = {j : yj ≥ yi} patients at risk at time yi

Conditional partial likelihood:

L(β) =
n∏

i=1

(
eηi∑

j∈Ri
eηi

)δi



Cox model estimation

Maximum conditional partial likelihood:

β̂ ∈ arg max
β

L(β)

Equivalently;
β̂ ∈ arg min

β
`Cox (Xβ)

with

`Cox (η) =
n∑

i=1

δi

−ηi + log

∑
j∈Ri

eηj

 ,
Convex optimization problem
Not good if p is large (overfitting)



Cox model estimation when p is large

We can regularize the problem, e.g., with a lasso (Tibshirani,
1997) or elastic net penalty (Zou and Hastie, 2005):

min
β∈Rp

1
n
`Cox (Xβ) + λPα(β) ,

with

Pα(β) = α

p∑
j=1

|βj |+
1− α

2

p∑
j=1

β2
j .

Regularization allows to learn in high dimension by controlling
overfitting
α > 0 shrinks coefficients to 0 and leads to feature selection,
leading to a molecular signature



Example



Alternatives to Cox regression

Extensions of machine learning techniques
Survival SVM (Van Belle et al., 2007)
Random survival forests (Ishwaran et al., 2008)

Not adapted to learning a molecular signature
We derive a new variant next, survival logistic regression



Concordance index

Ti = {j : yj > yi} patients with strictly longer survival
Number of discordant pairs

nd (η) =
n∑

i=1

∑
j∈Ti

δi1(ηi < ηj)

Total number of comparable pairs

ntotal =
n∑

i=1

∑
j∈Ti

δi

Concordance index:

CI(η) = 1− nd (η)

ntotal



Optimizing the concordance index

To fit a model β, one could consider:

β̂ = argmax
β

CI(Xβ) = argmin
β

nd (Xβ) ,

but this is computationally intractable (NP-hard).
Convex relaxation:

1(u < 0) ≤ log2(1 + e−u)



Survival logistic regression

min
β∈Rp

1
n
`Survlog(Xβ) + λPα(β) ,

with

`Survlog(η) =
n∑

i=1

∑
j∈Ti

δi log2
(
1 + eηj−ηi

)
.

`Survlog(η) is a convex upper bound of nd (η)

Convex optimization problem efficiently solved with the algorithm
used in glmnet

`Survlog(η) does not have an obvious likelihood interpretation, but
also makes no assumption about the data such as proportional
hazard
Similar trick used, with the hinge loss, in the survival SVM (Van
Belle et al., 2007)



Implementation

C++ implementation in the optreat package (soon available..)
Function survenet solves

min
β∈Rp

1
n
`(Xβ) + λPα(β) ,

for ` = `Cox and ` = `Survlog

Syntax similar to glmnet()

library(optreat)
m = survenet(x, y) # by default, family="cox"
m = survenet(x, y, family="survlog")
m = survenet(x, y, family="survlog", nfolds=5)
plot(m)
predict(m, xtest, s="lambda.min")



Cox vs survival logistic regression

Different objective functions
Small n large p behaviour?
Intuitive difference: survenet "uses" more pairs (O(n2)) than Cox
(O(n)), to be formalized
Empirical comparison later
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The problem

For each patient i we now have
xi ∈ Rp covariates
(yi , δi) ∈ R× {0,1} survival data
ai ∈ {−1,1} treatment given

How to learn a function f (x) to estimate the benefit of treatment?



Some strategies

Assume we have a model for survival regression (Cox or survival
logistic):

1 Learn a survival model for each arm
2 Learn a unique survival model with interactions
3 Learn only the predictive model with the modified covariate trick



Standard model with interaction

Model to capture treatment/covariate interactions

η(x ,a) = x>β +
1
2

ax>γ ,

where we add to x a constant covariate to account to drug main
effect.
Parameters estimation (e.g., Qian and Murphy, 2011)

min
β,γ

1
n
`(Xβ +

1
2

AXγ) + λPα(β) + µPα(γ)

Scoring of a new patient:

s(x) = x>γ = η(x ,a = 1)− η(x ,a = −1)

is the predicted benefit (in "η" scale) of treating the patient



The "modified covariates" trick

Tian et al. (2014) propose to replace

`(Xβ +
1
2

AXγ) = `(A ∗ AXβ +
1
2

AXγ)

by

`(
1
2

AXγ) = `(X̃γ)

where X̃ = AX/2 are modified covariates
Note that it bypasses the estimation of the main effect β
In practice:

1 Modify covariates by inverting columns corresponding to a = −1
arm

2 Estimate a standard model on the modified covariates



Trick 1 justification

Linear regression: if

γ0 = argmin E(Y − γX̃ )2 ,

i.e.
γ0X̃ = E [Y | X̃ ] ,

then

E [Y |X ,A = 1]−E [Y |X ,A = −1]

= E [Y | X̃ = X/2]− E [Y | X̃ = −X/2]

= γ0X/2− (−γ0X/2)

= γ0X

Similar justification for logistic and Cox regression.



Trick 2: Augmented model

Estimator after covariate modification:

min
γ

1
n
`(X̃γ) + λPα(γ) ,

The following augmented model estimator is asymptotically the
same, for any r ∈ Rn, because E [X̃ ] = 0

min
γ

1
n

[
`(X̃γ)− r>X̃γ

]
+ λPα(γ) ,

Choose r to minimize the variance of the estimator, which is [...]:

r = E [∇`(0) |X ]

Two step procedure
Estimate r
Optimize the augmented model



Implementation

Function optreat estimates the drug effect by combining:
A survival model: cox or survlog
A method: interaction or modified or augmented

Syntax similar to glmnet()

library(optreat)
m = optreat(x, y, a) # by default, family="cox",

# method="interaction"
m = optreat(x, y, a, family="survlog",

method="augmented")
m = optreat(x, y, a, family="survlog", nfolds=5)
plot(m)
predict(m, xtest, s="lambda.min")
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Simulations from Tian et al. (2014)

Simulate X as a multivariate Gaussian, with or without correlation
Simulate time according to

Y = exp
(

(β>x)2 + A×
(
γ>x + x>αx

)
+ σ0ε

)
Censoring time samples uniformly to ensure a 25% censoring
proportion
Consider 2 ∗ 2 ∗ 2 = 8 scenarios:

Small (p = 30) or large (p = 1000) dimension
Small or large main effect (change β)
Correlated or independent variables in X

Assess performance on an independent test set, by Sperman
correlation between Y and γ̂(X )



Results from Tian et al. (2014) with Cox regression
Tian et al.: A Simple Method for Estimating Interactions Between a Treatment and a Large Number of Covariates 1527
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Figure 5. Boxplots for the correlation coefficients between the estimated score and true treatment effect with three different methods applied
to survival outcomes. The empty and filled boxes represent high- and low-dimensional (p = 1000 and p = 50) cases, respectively. Left upper
panel: moderate main effect and independent covariates; right upper panel: moderate main effect and correlated covariates; left lower panel: big
main effect and independent covariates; right lower panel: big main effect and correlated covariates.

this end, we selected the first 2000 patients in the treatment arm
and placebo arm to form the training set and reserved the rest
3865 patients as an independent validation set. In selecting the
training and validation sets, we used the original order of the ob-
servations in the dataset without additional sorting to ensure the
objectivity.

First we maximized the partial likelihood function with mod-
ified covariates to construct a score aiming for capturing the
individualized treatment effect. The resulting score was a linear
combination of selected covariates and their two-way interac-
tions. Here, a low score favored ACE inhibition treatment. We
then applied the score to classify the patients in the validation set
into the high and low score groups depending on whether the pa-
tient’s score was greater than the median level. In the high score
group, the survival time in the ACE inhibition arm was slightly
shorter than that in the placebo arm with an estimated hazard
ratio of 1.27 for ACE inhibitor versus placebo (p = 0.163). In
the low score group, the survival time in the ACE inhibition
arm was longer than that in the placebo arm with an estimated
hazard ratio of 0.74 (p = 0.061). The estimated survival func-
tions of both treatment arms were plotted in the upper panels
of Figure 7. The interaction between the constructed score and
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Figure 6. Survival functions of the ACE inhibitor and placebo arms
(7865 patients): solid line, the ACE inhibitor arm; dashed line, the
placebo arm; thin line, the point-wise 95% confidence limits.

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f C

al
ifo

rn
ia

, B
er

ke
le

y]
 a

t 1
4:

55
 0

3 
M

ar
ch

 2
01

6 



Cox VS survival logistic regression



BEATRICE clinical trial (Cameron et al., 2013)

Triple-negative operable primary invasive breast cancer.
Two treatment arms: chemotherapy alone or with bevacizumab
(Avastin)
Gene expression assessed by NanoString (784 genes) in 991 trial
participants



Conclusion

A new survival regression model for high dimensional data
Several tricks to learn predictive markers
Limited theoretical analysis so far
Quick development of contextual bandit techniques in other fields
that could inspire us to:

estimate predictive models from randomized trials
design new trials for that purpose

THANKS
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