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Machine learning 

Overview	

Precision	medicine	
Pa9ent	stra9fica9on	
Prognos9c	/	Predic9ve	
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Gene	regula9on	
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Cellular	level	
High-content	screening	
Chemo/Toxicogenomics	
Tumour	heterogeneity	

	



Machine	Learning?	



Example:	Pa?ent	stra?fica?on	



Problem	:	n	<<	p	

n	=	1E2	~	1E4	
(pa?ents)	
	
p	=	1E4	~	1E7	
(genes,	muta?ons,	
copy	numbers,	…)	



Learning	is	hard	when	n<<p	

70	genes	(Nature,	2002)	 76	genes	(Lancet,	2005)	
Only	3	genes	in	common	

•  Lack	of	robust	biomarkers	

	

•  Poor	accuracy	
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Abstract

Breast cancer is the most common malignancy in women and is responsible for hundreds of thousands of deaths annually.
As with most cancers, it is a heterogeneous disease and different breast cancer subtypes are treated differently.
Understanding the difference in prognosis for breast cancer based on its molecular and phenotypic features is one avenue
for improving treatment by matching the proper treatment with molecular subtypes of the disease. In this work, we
employed a competition-based approach to modeling breast cancer prognosis using large datasets containing genomic
and clinical information and an online real-time leaderboard program used to speed feedback to the modeling team and to
encourage each modeler to work towards achieving a higher ranked submission. We find that machine learning methods
combined with molecular features selected based on expert prior knowledge can improve survival predictions compared to
current best-in-class methodologies and that ensemble models trained across multiple user submissions systematically
outperform individual models within the ensemble. We also find that model scores are highly consistent across multiple
independent evaluations. This study serves as the pilot phase of a much larger competition open to the whole research
community, with the goal of understanding general strategies for model optimization using clinical and molecular profiling
data and providing an objective, transparent system for assessing prognostic models.
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experiment (Table S4), plus 20 models using ensemble strategies.
This controlled experimental design allowed us to assess the effect
of different modeling choices while holding other factors constant.

Following an approach suggested in the MAQC-II study [24],
we designed negative and positive control experiments to infer
bounds on model performance in prediction problems for which
models should perform poorly and well, respectively. As a negative
control, we randomly permuted the sample labels of the survival
data, for both the training and test datasets, and computed the
concordance index of each model trained and tested on the
permuted data. To evaluate how the models would perform on a
relatively easy prediction task, we conducted a positive control
experiment in which all models were used to predict the ER status
of the patients based on selected molecular features (excluding the
ER expression measurement). We found that all negative control
models scored within a relatively tight range of concordance
indices centered around 0.5 (minimum: 0.468, maximum: 0.551),

significantly lower than the lowest concordance index (0.575) of
any model trained on the real data in this experiment. Conversely,
all ER-prediction models scored highly (minimum: 0.79, maxi-
mum: 0.969), suggesting that the scores achieved by our survival
models (maximum: 0.6707) are not due to a general limitation of
the selected modeling strategies but rather the difficulty of
modeling breast cancer survival.

Overall, we found that the predictive performance of the
controlled experiment models (Figure 3A) was significantly
dependent on the individual feature sets (P = 1.02e-09, F-test),
and less dependent on the choice of the statistical learning
algorithm (P = 0.23, F-test). All model categories using clinical
covariates outperformed all model categories trained excluding
clinical covariates, based on the average score across the 4 learning
algorithms. The best-performing model category selected features
based on marginal correlation with survival, further highlighting
the difficulty in purely data-driven approaches, and the need to

Table 3. Feature sets used in the controlled experiment.

Feature Category Description

Clinical The set of 14 clinical features from [29].

Marginal Association 1000 molecular features (gene expression and/or copy number) most predictive of survival in a
univariate Cox regression analysis on the training set.

Top-Varying 1000 molecular features (gene expression and/or copy number) with the greatest variance in the
training set.

Cancer Census 1526 gene expression and copy number features corresponding to 487 genes from the Cancer
Gene Census database [60].

Higgins 1000 gene expression and copy-number features with the greatest variance among oncogenes
identified by Higgins et al. [61].

Metabric Clustering 754 gene expression and copy number features used to define the clusters in the study by Curtis
et al. [29].

MASP: Marginal Association with Subsampling and
Prior Knowledge

Gene expression of 50 known oncogenes and transcription factors selected by computing
univariate Cox regression models on random subsets of the training set and aggregating the
resulting p-values (see Methods).

GII: Genomic Instability Index Number of amplified/deleted sites as calculated from the segmented copy number data (see
Methods).

doi:10.1371/journal.pcbi.1003047.t003

Figure 2. Distribution of concordance index scores of models submitted in the pilot competition. (A) Models are categorized by the type
of features they use. Boxes indicate the 25th (lower end), 50th (middle red line) and 75th (upper end) of the scores in each category, while the whiskers
indicate the 10th and 90th percentiles of the scores. The scores for the baseline and best performer are highlighted. (B) Model performance by
submission date. In the initial phase of the competition, slight improvements over the baseline model were achieved by applying machine learning
approaches to only the clinical data (red circles), whereas initial attempts to incorporate molecular data significantly decreased performance (green,
purple, and black circles). In the intermediate phase of the competition, models combining molecular and clinical data (green circles) predominated
and achieved slightly improved performance over clinical only models. Towards the end of the competition, models combining clinical information
with molecular features selected based on prior information (purple circles) predominated.
doi:10.1371/journal.pcbi.1003047.g002

Breast Cancer Survival Modeling
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Clinical	 Molecular	



Why?	

•  Wrong	data?	
•  Wrong	method?	
•  Not	enough	data?	
•  …?	



ERC SMAC (2012-2017) 
Statistical Machine Learning for Complex Biological Data 

Challenges 
- High dimension 
- Structured, complex data 
- Often, few examples 
- Need for efficient algorithms 
- Prior knowledge 
- Interpretability 

Class of models 
Data fitting term Penalty 

General framework for learning: 

-  Prior knowledge 
-  Efficient algorithms 
-  Heterogeneous data integration 



Structured	feature	selec?on	
•  Use	a	gene	network	as	«	prior	knowledge	»	

•  Increases	stability	and	accuracy	

(a	convex	body	
	in	p	dimensions)	

(convex	op9miza9on)	

Lasso	 Graph	Lasso	

0.61	%	 0.64	%	 Breast	cancer	prognosis,	accuracy	



Change	data	representa?on	
Another representation: ranking
Replace x 2 Rp by �(x) 2 {0, 1}p(p�1)/2:

�i,j(x) =

(
1 if xi  xj ,

0 otherwise.
Yunlong Jiao

Application
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Dataset No. of features No. of samples (training/test)
Breast Cancer 1 23624 44/7 (Non-relapse) 32/12 (Relapse)
Breast Cancer 2 22283 142 (Non-relapse) 56 (Relapse)
Breast Cancer 3 22283 71 (Poor Prognosis) 138 (Good Prognosis)

Colon Tumor 2000 40 (Tumor) 22 (Normal)
Lung Cancer 1 7129 24 (Poor Prognosis) 62 (Good Prognosis)
Lung Cancer 2 12533 16/134 (ADCA) 16/15 (MPM)

Medulloblastoma 7129 39 (Failure) 21 (Survivor)
Ovarian Cancer 15154 162 (Cancer) 91 (Normal)

Prostate Cancer 1 12600 50/9 (Normal) 52/25 (Tumor)
Prostate Cancer 2 12600 13 (Non-relapse) 8 (Relapse)



Survival	predic?on	from		
Whole-exome	soma?c	muta?ons	

Gene	
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NetNorm detail (k=4)

1 Add mutations for patients with few (less than k ) mutations

2 Results

2.1 Overview of NetNorM
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Figure 1 – Overview of NetNorM. (a) Using a gene network as background knowledge (lower left), NetNorM
normalises each mutation profile in a collection of somatic mutation profiles (upper left) into a new, binary
representation (right) which encodes additional information relative to patient mutation rates and hubs’
neighbourhood mutational burden. This new representation allows performing patient stratification with
unsupervised clustering techniques, or survival analysis. (b) NetNorM normalises every patient mutation
profile to k mutations. Patients with less than k mutations get ’proxy’ mutations in their genes with the
highest number of mutated neighbours until they reach k mutations. Patients with more than k mutations
have mutations ’removed’ in their genes with lowest degree until they reach k mutations.
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2 Remove mutations for patients for many (more than k ) mutations

2 Results

2.1 Overview of NetNorM
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Figure 1 – Overview of NetNorM. (a) Using a gene network as background knowledge (lower left), NetNorM
normalises each mutation profile in a collection of somatic mutation profiles (upper left) into a new, binary
representation (right) which encodes additional information relative to patient mutation rates and hubs’
neighbourhood mutational burden. This new representation allows performing patient stratification with
unsupervised clustering techniques, or survival analysis. (b) NetNorM normalises every patient mutation
profile to k mutations. Patients with less than k mutations get ’proxy’ mutations in their genes with the
highest number of mutated neighbours until they reach k mutations. Patients with more than k mutations
have mutations ’removed’ in their genes with lowest degree until they reach k mutations.
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NetNorm	



Survival	predic?on	from		
Whole-exome	soma?c	muta?ons	Performance on survival prediction

Use Pathway Commons as gene network.
NSQN = Network Smoothing / Quantile Normalization (Hofree et al., 2013)



Machine learning 

Precision	medicine	
Pa9ent	stra9fica9on	
Prognos9c	/	Predic9ve	
Side	effect	predic9on	

Molecular	level	
Gene	regula9on	
Epigene9cs	

Structure/Func9on	predic9on	
	

Cellular	level	
High-content	screening	
Chemo/Toxicogenomics	
Tumour	heterogeneity	

	

Challenges	

Complex	predic?on	tasks:	
Combinatorial	therapeu?c	strategies	

New	data:	
Single-cell,	Hi-C,	medical	records,	images…	

Models	/	Algorithms:	
large-scale	ML	algorithms	

Causality	VS	Associa?on:	
Predic?ve	markers,	gene	regula?on	
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Point&d’étape&ITI&/&20&FEVRIER&–&1er&JUILLET&2014&!
C.SURIAM!–!F.LEQUEUX!

! ! !

!
POINT&D’ETAPE&20&FEVRIER&–&1er&JUILLET&2014&

!

1/!PROMOTION!DU!PROGRAMME!

!

• Rencontre!avec!les!directeurs,!directeurs!scientifiques!et!directeurs!

des!études!de!l’ENS,!Mines,!ENSCP,!ESPCI!pour!organiser!la!

promotion!du!programme!auprès!des!étudiants.!

• Ecole!des!Mines!:!présentation!d’ITI!devant!le!conseil!de!

l'enseignement!;!8!représentants!d’élèves!;!relance!

• ENSCP!:!mailing!de!présentation!d’ITI!aux!3A!via!la!direction!des!

études.!

• ENS!:!mailing;!présentation!directe!auprès!des!étudiants!(2!élèves!

présents)!;!diffusion!des!plaquettes!et!du!syllabus!;!relance!!

• ESPCI!:!mailing!aux!3A!+!présentation!d’ITI/rencontre!avec!les!

étudiants!en!présence!des!directrice!de!la!scolarité!et!directrice!des!

relations!entreprises!;!8!élèves!présents!

• Contacts!en!cours!avec!les!Ponts!et!l’ENS!Lyon!(en!attente!de!

réponse)!

• Rencontre!à!l’ANRT!avec!le!délégué!général!et!la!chef!du!service!

CIFRE:!accord&de&communication&sur&le&programme&ITI&via&le&site&

internet&de&l’ANRT!(rubrique!"zoom!sur")!

• Promotion!aux!Rencontres!Universités!Entreprises!(RUE)!

• Echange!avec!Stéphane!Mallat!et!réflexion!sur!la!pertinence!du!

programme!tronc!commun!

• Rencontre!avec!le!responsable!des!relations!internationales!de!la!

National!Taiwan!University!à!l’ESPCI:!présentation!d’ITI!

• Contact!en!cours!pour!visite!d‘entreprise!

• Article&les&Echos&

• Création&du&logo&PSL/ITI&et&du&Diplôme&Supérieur&de&Recherche&et&

d’Innovation&de&PSL/ITI&(DSRI),&dépôt&INPI&en&cours.&

!

!

2/!MISE!EN!ŒUVRE!OPERATIONNELLE!DU!PROGRAMME!


