ZINB-WaVE: a general and flexible method for signal extraction from single-cell RNA-seq data

Davide Risso¹, Svetlana Gribkova², Fanny Perraudeau³, Sandrine Dudoit^{3,4}, and Jean-Philippe Vert^{5,6,7,8}

²Laboratoire de Probabilités et Modèles Aléatoires, Université Paris Diderot, Paris, France

³Division of Biostatistics, School of Public Health, University of California, Berkeley, USA

⁴Department of Statistics, University of California, Berkeley, USA

⁵MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris, France

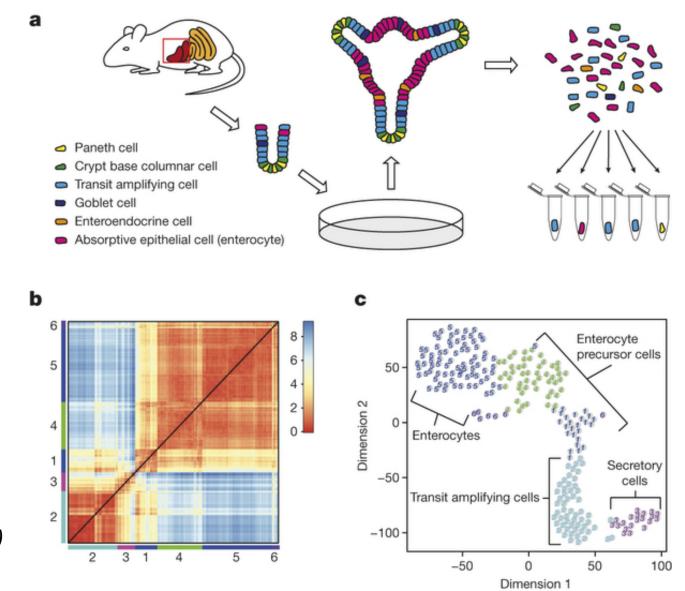
⁶Institut Curie, Paris, France

⁷INSERM U900, Paris, France

⁸Ecole Normale Supérieure, Department of Mathematics and Applications, Paris, France

¹Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY, USA.

Single-cell RNA-seq

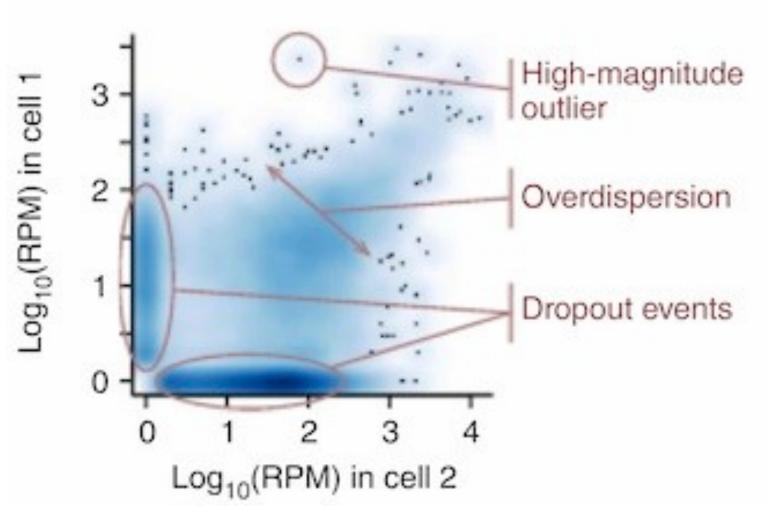


(Grün et al 2015)

The data

	SRR1275356	SRR1274090	SRR1275251	SRR1275287	SRR1275364	SRR1275269	SRR1275263	SRR1275242
A1BG	0	0	0	0	0	0	0	0
A1BG-AS1	0	0	0	0	0	0	0	0
A1CF	0	0	0	0	0	0	0	0
A2M	0	0	0	31	0	46	0	0
A2M-AS1	0	0	0	0	0	0	0	0
A2ML1	0	0	0	0	0	0	0	0
A2MP1	0	0	8	0	0	0	1	0
A3GALT2	0	0	0	0	0	0	0	0
A4GALT	0	0	0	0	0	0	0	0
A4GNT	0	0	0	0	0	0	0	0
AA06	0	0	0	0	0	0	0	0
AAAS	0	0	35	0	0	0	0	0
AACS	1	0	1	312	0	0	1	0
AACSP1	0	0	0	0	0	0	0	0
AADAC	0	0	0	0	0	0	0	0

Dropout, overdispersion...



Challenges

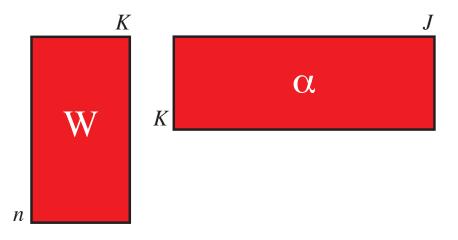
- Normalize for sequencing depth?
- Remove unwanted variations? (batches, cell cycle, GC content, ...)
- Distances between transcription profiles?
- Clustering / Visualization?
- Differential expression?

Standard approach

- Massage the matrix
 - Y_ij = log(count_ij + 1) * size factor
 - Sometimes full quantile normalization
- Dimension reduction
 - PCA on Y
 - Keep around 50 dimensions
- Nonlinear embedding (t-SNE), clustering, ...

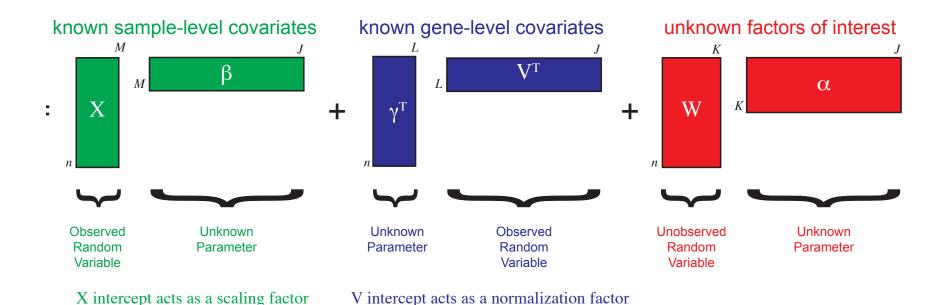
Dimension reduction (PCA/SVD)

$$E[Y] = W\alpha$$



Including known covariates (RUV)

$$E[Y] = X\beta + V\gamma + W\alpha$$



Jacob et al. (2013), Gagnon-Bartsch et al. (2013), Risso et al. (2014)

How to adapt PCA/SVD/RUV to scRNA-seq data?

$$E[Y] = X\beta + V\gamma + W\alpha$$

- discrete, non-Gaussian data
- dropouts

HOME |

Search

New Results

Missing Data and Technical Variability in Single-Cell RNA- Sequencing Experiments

Α

Principal Component 2 (2%)

C

Principal Component 2 (3%)

0.2

-0.1

-0.2

-0.3

-0.2

-O.1

Only Biological Group 5

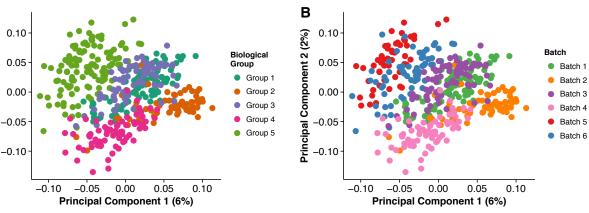
0.0

Principal Component 1 (4%)

0.1

© Stephanie C Hicks, © F. William Townes, © Mingxiang Teng, © Rafael A Irizarry doi: https://doi.org/10.1101/025528

Some worrying results

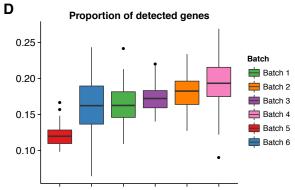


Batch

0.2

Batch 5

Batch 6



SOFTWARE

Open Access

ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis

Emma Pierson¹ and Christopher Yau^{1,2*}

Interesting model

$$Z = W\alpha + \epsilon$$

$$Y_{ij} = \begin{cases} 0 & \text{with probability } \exp(-\lambda Z_{ij}^2) \\ Z_{ij} & \text{otherwise} \end{cases}$$

But:

- Models continuous data (log(count+1))
- Dropout probability as a fixed function of expression level

ZINB distribution to model a count

« Zero-Inflated Negative Binomial »

$$f_{NB}(y;\mu,\theta) = \frac{\Gamma(y+\theta)}{\Gamma(y+1)\Gamma(\theta)} \left(\frac{\theta}{\theta+\mu}\right)^{\theta} \left(\frac{\mu}{\mu+\theta}\right)^{y}, \quad \forall y \in \mathbb{N}.$$

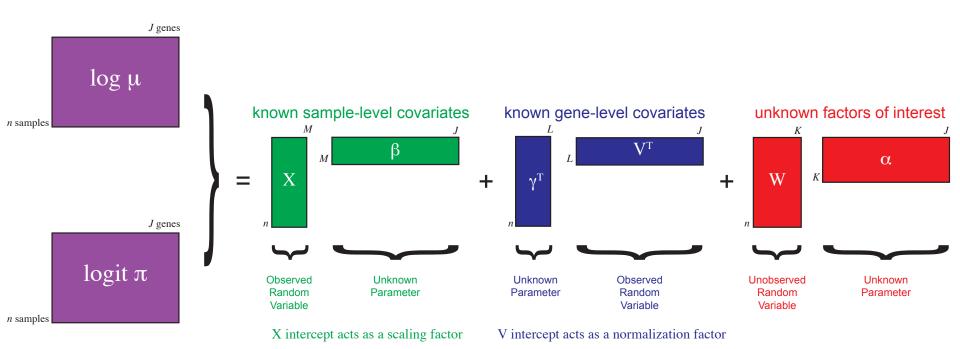
NB ZINB Frequency Frequency 1500 500 20 50 10 30 40 10 20 30 40 50 Count Count

 $\forall y \in \mathbb{N},$

 $f_{ZINB}(y; \mu, \theta, \pi) = \pi \delta_0(y) + (1 - \pi) f_{NB}(y; \mu, \theta),$

ZINB-WaVE model

$$\ln(\mu_{ij}) = (X\beta_{\mu} + (V\gamma_{\mu})^{\top} + W\alpha_{\mu} + O_{\mu})_{ij}$$
$$\log \operatorname{it}(\pi_{ij}) = (X\beta_{\pi} + (V\gamma_{\pi})^{\top} + W\alpha_{\pi} + O_{\pi})_{ij}$$
$$\ln(\theta_{ij}) = \zeta_{j},$$



Usage

- X:
 - (1,...,1) for gene-specific offset
 - Batch effects, quality control
 - Experimental design
- V
 - (1,...,1) for cell-specific offset (size factor)
 - GC content, ...
- W,alpha: cell cycle, clusters, ... (like PCA)

Fitting the model

$$\max_{\beta,\gamma,W,\alpha,\zeta} \left\{ \ell(\beta,\gamma,W,\alpha,\zeta) - \text{Pen}(\beta,\gamma,W,\alpha,\zeta) \right\}$$

$$\ell(\beta, \gamma, W, \alpha, \zeta) = \sum_{i=1}^{n} \sum_{j=1}^{J} \ln f_{ZINB}(Y_{ij}; \mu_{ij}, \theta_{ij}, \pi_{ij})$$

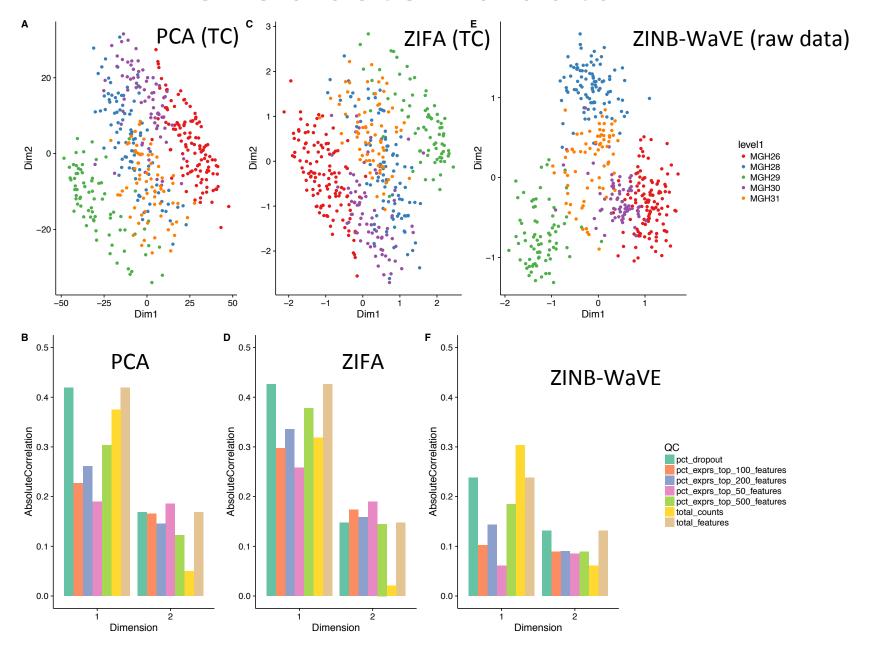
$$\operatorname{Pen}(\beta, \gamma, W, \alpha, \zeta) = \frac{\epsilon_{\beta}}{2} \|\beta^{0}\|^{2} + \frac{\epsilon_{\gamma}}{2} \|\gamma^{0}\|^{2} + \frac{\epsilon_{W}}{2} \|W\|^{2} + \frac{\epsilon_{\alpha}}{2} \|\alpha\|^{2} + \frac{\epsilon_{\zeta}}{2} \operatorname{Var}(\zeta)$$

Fitting the model

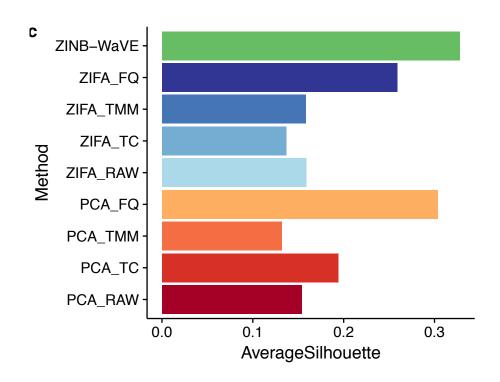
$$\max_{\beta,\gamma,W,\alpha,\zeta} \left\{ \ell(\beta,\gamma,W,\alpha,\zeta) - \text{Pen}(\beta,\gamma,W,\alpha,\zeta) \right\}$$

- Initialization
 - Uncouple mu and pi
- Iterate until convergence optimization of:
 - Dispersion (zeta)
 - Left factors (gamma, W)
 - Right factors (beta, alpha)
 - Orthogonalization (W, alpha)

Glioblastoma data

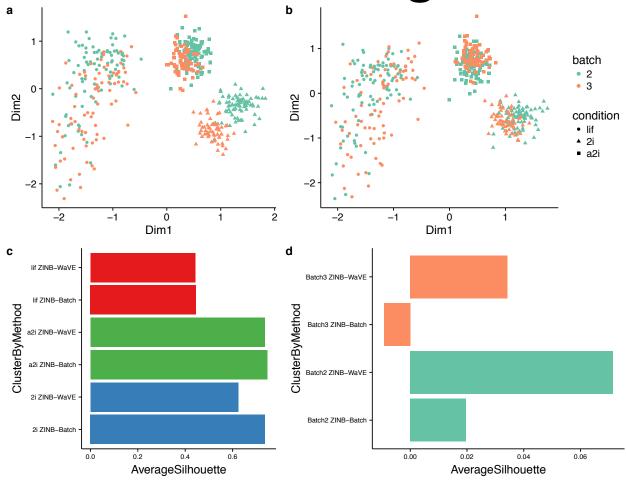


Glioblastoma data



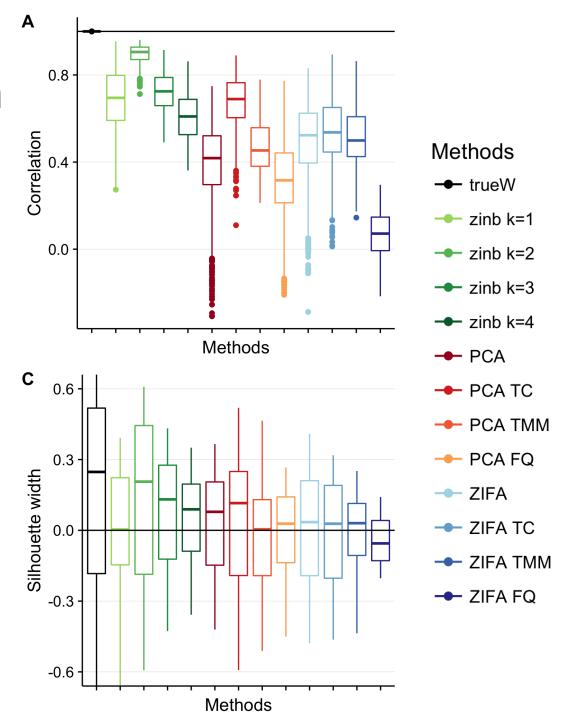
- Less correlated with technical effects
- Better clusters cells by patient

mESC data: decreasing batch effect

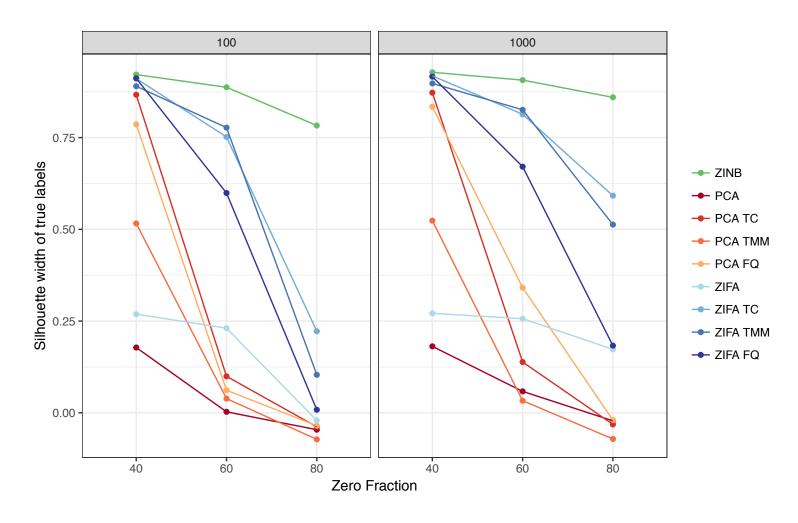


Simulations: W estimation

- Simulate clusters of single cells (from real data) with cell- and gene-level offsets
- Following the ZINB model with K=2 latent factors
- Check how well W is recovered, and the clustering is recovered

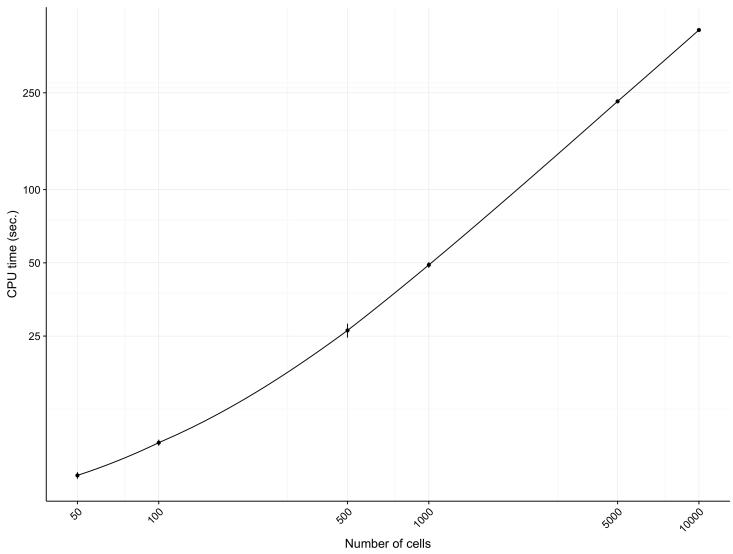


Simulation: cluster recovery



Simulation with the Lun & Marioni (2016) model

CPU time



On a recent iMac, 16GB of RAM, using 7 cores

Try it!

- https://github.com/drisso/zinbwave
- http://biorxiv.org/content/early/ 2017/04/06/125112


```
library(devtools)
install_github("drisso/zinbwave")
```

Conclusion

- A model:
 - Using ZINB distribution to model zero-inflated counts
 - With linear structure to include gene- or cell-specific covariates
 - And low-dimensional signal inferred automatically
- Fitting the model works on simulations
- On real data, better captures clustering than PCA or ZIFA
- Less correlated with batch / unwanted variations