Cancer prognosis on the symmetric group

Jean-Philippe Vert

ENS Paris, December 15, 2016

Big data for health

Opportunities

https://pct.mdanderson.org

Example: cancer prognosis from gene expression data

- X gene expression profile of each patient
- Y survival information of each patient
- $n = 10^2 \sim 10^4$
- $p = 2 \times 10^4$
- Goal: learn to predict Y from X
- But... where does X come from?

From raw data to X

Quantile normalization (per sample) to remove various technical artefacts

Working on the symmetric group

After QN, each sample X_i is:

- a target distribution $d \in \mathbb{R}^p$,
- permuted by a samples-specific permutation $\sigma_i \in S_p$, the symmetric group over the set of features

Can we directly estimate a model $Y = f(\sigma)$?

Outline

The Kendall and Mallows kernels

Supervised quantile normalization

3 Conclusion

Outline

The Kendall and Mallows kernels

Supervised quantile normalization

Conclusion

Joint work with

Yunlong Jiao

An idea: all pairwise comparisons

Replace $x \in \mathbb{R}^p$ by $\Phi(x) \in \{0, 1\}^{p(p-1)/2}$:

One sample x p features

Mapping f(x) p(p-1)/2 bits

Related work: Top scoring pairs (TSP)

(Geman et al., 2004; Tan et al., 2005; Leek, 2009)

Practical challenge

- Need to store O(p²) bits per sample
- Need to train a model in O(p²) dimensions

Kernel trick

Theorem (Wahba, Schölkopf, ...)

Training a linear model over a representation $\Phi(x) \in \mathbb{R}^Q$ of the form:

$$\min_{\mathbf{w} \in \mathbb{R}^Q} \frac{1}{n} \sum_{i=1}^n \ell(\mathbf{w}^\top \Phi(\mathbf{x}_i), \mathbf{y}_i) + \lambda ||\mathbf{w}||^2$$

can be done efficiently, independently of Q, if the kernel

$$K(x, x') = \Phi(x)^{\top} \Phi(x')$$

can be computed efficiently.

Ex: ridge regression, $O(Q^3 + nQ^2)$ becomes $O(n^3 + n^2T)$ Other: SVM, logistic regression, Cox model, survival SVM, ...

Kernel trick for us: Kendall's τ

$$\Phi(x)^{\top}\Phi(x') = \tau(x, x')$$
 (up to a scaling)

O(p^2)

O(p log(p))

Good news for SVM and kernel methods!

More formally

- For two permutations σ , σ' let $n_c(\sigma, \sigma')$ (resp. $n_d(\sigma, \sigma')$) the number of concordant (resp. discordant) pairs.
- The Kendall kernel (a.k.a. Kendall tau coefficient) is defined as

$$K_{\tau}(\sigma,\sigma') = \frac{n_{c}(\sigma,\sigma') - n_{d}(\sigma,\sigma')}{\binom{p}{2}}.$$

• The Mallows kernel is defined for any $\lambda \geq 0$ by

$$K_{M}^{\lambda}(\sigma,\sigma')=e^{-\lambda n_{d}(\sigma,\sigma')}$$
.

Theorem (Jiao and V., 2015)

The Kendall and Mallows kernels are positive definite.

Theorem (Knight, 1966)

These two kernels for permutations can be evaluated in $O(p \log p)$ time.

Related work

Cayley graph of S4

- Kondor and Barbarosa (2010) proposed the diffusion kernel on the Cayley graph of the symmetric group generated by adjacent transpositions.
- Computationally intensive $(O(p^p))$
- Mallows kernel is written as

$$K_{M}^{\lambda}(\sigma,\sigma') = e^{-\lambda n_{d}(\sigma,\sigma')}$$

where $n_d(\sigma, \sigma')$ is the shortest path distance on the Cayley graph.

• It can be computed in $O(p \log p)$

Application: supervised classification

Datasets

Dataset	No. of features	No. of samples (training/test)		
		C_1	C_2	
Breast Cancer 1	23624	44/7 (Non-relapse)	32/12 (Relapse)	
Breast Cancer 2	22283	142 (Non-relapse)	56 (Relapse)	
Breast Cancer 3	22283	71 (Poor Prognosis)	138 (Good Prognosis)	
Colon Tumor	2000	40 (Tumor)	22 (Normal)	
Lung Cancer 1	7129	24 (Poor Prognosis)	62 (Good Prognosis)	
Lung Cancer 2	12533	16/134 (ADCA)	16/15 (MPM)	
Medulloblastoma	7129	39 (Failure)	21 (Survivor)	
Ovarian Cancer	15154	162 (Cancer)	91 (Normal)	
Prostate Cancer 1	12600	50/9 (Normal)	52/25 (Tumor)	
Prostate Cancer 2	12600	13 (Non-relapse)	8 (Relapse)	

Methods

- Kernel machines Support Vector Machines (SVM) and Kernel Fisher Discriminant (KFD) with Kendall kernel, linear kernel, Gaussian RBF kernel, polynomial kernel.
- Top Scoring Pairs (TSP) classifiers [?].
- Hybrid scheme of SVM + TSP feature selection algorithm.

Results

Kendall kernel SVM

- Competitive accuracy!
- Less sensitive to regularization parameter!
- No need for feature selection!

Results

Kendall kernel SVM

- Competitive accuracy!
- Less sensitive to regularization parameter!
- No need for feature selection!

Results

Kendall kernel SVM

- Competitive accuracy!
- Less sensitive to regularization parameter!
- No need for feature selection!

Application: clustering

- APA data (full rankings)
- n = 5738, p = 5
- (new) Kernel
 k-means vs
 (standard)
 k-means in S₅
- Show silhouette as a function of number of clusters (higher better)

Extension to partial rankings

 Two interesting types of partial rankings are interleaving partial ranking

$$x_{i_1} \succ x_{i_2} \succ \cdots \succ x_{i_k}, \quad k \leq n.$$

and top-k partial ranking

$$x_{i_1} \succ x_{i_2} \succ \cdots \succ x_{i_k} \succ X_{\text{rest}}, \quad k \leq n.$$

 Partial rankings can be uniquely represented by a set of permutations compatible with all the observed partial orders.

Theorem

For these two particular types of partial rankings, the convolution kernel (Haussler, 1999) induced by Kendall kernel

$$K_{\tau}^{\star}(R,R') = \frac{1}{|R||R'|} \sum_{\sigma \in R} \sum_{\sigma' \in R'} K_{\tau}(\sigma,\sigma')$$

can be evaluated in $O(k \log k)$ time.

Extension to partial rankings

 Two interesting types of partial rankings are interleaving partial ranking

$$x_{i_1} \succ x_{i_2} \succ \cdots \succ x_{i_k}, \quad k \leq n.$$

and top-k partial ranking

$$x_{i_1} \succ x_{i_2} \succ \cdots \succ x_{i_{k}} \succ X_{\text{rest}}, \quad k \leq n.$$

 Partial rankings can be uniquely represented by a set of permutations compatible with all the observed partial orders.

Theorem

For these two particular types of partial rankings, the convolution kernel (Haussler, 1999) induced by Kendall kernel

$$K_{\tau}^{\star}(R,R') = \frac{1}{|R||R'|} \sum_{\tau \in R} \sum_{\tau' \in R'} K_{\tau}(\sigma,\sigma')$$

can be evaluated in $O(k \log k)$ time.

Extension to smoother, continuous representations

• Instead of $\Phi: \mathbb{R}^p \to \{0,1\}^{p(p-1)/2}$, consider the continuous mapping $\Psi_a: \mathbb{R}^p \to \mathbb{R}^{p(p-1)/2}$:

$$\Psi_a(x) = \mathbb{E}\Phi(x + \epsilon)$$
 with $\epsilon \sim (\mathcal{U}[-\frac{a}{2}, \frac{a}{2}])^n$

• Corresponding kernel $G_a(x, x') = \Psi_a(x)^\top \Psi_a(x')$

Computation of G(x, x')

• $G_a(x, x')$ can be computed exactly in $O(p^2)$ by explicit computation of $\Psi_a(x)$ in $\mathbb{R}^{p(p-1)/2}$

• $G_a(x, x')$ can be computed approximately in $O(D^2 p \log p)$ by Monte-Carlo approximation:

$$\tilde{G}_a(x,x') = \frac{1}{D^2} \sum_{i,j=1}^D K(x+\epsilon_i,x'+\epsilon_j')$$

• Theorem: for supervised learning, Monte-Carlo approximation is better¹ than exact computation when $n = o(p^{1/3})$

¹faster for the same accuracy

Performance of $G_a(x, x)$

Outline

The Kendall and Mallows kernels

Supervised quantile normalization

3 Conclusion

Joint work with

Marine Le Morvan

Standard full quantile normalization

Typically followed by a predictive model f(X) on the normalized data

Chosing a "good" target distributions is important

Cancer prognosis from somatic mutations

How to choose a "good" target distribution?

Learning the target distribution

- x_1, \ldots, x_n a set of *p*-dimensional samples
- $f \in \mathbb{R}^p$ a non-decreasing target distribution (CDF)
- For $x \in \mathbb{R}^p$, let $\Phi_f(x) \in \mathbb{R}^p$ be the data after QN with target distribution f
- Standard approaches (NSQN, NetNorM, ...)
 - Fix f arbitrarily
 - ② QN all samples to get $\Phi_f(x_1), \ldots, \Phi_f(x_n)$
 - 3 Learn a generalized linear model (w, b) on normalized data:

$$\min_{w,b} \frac{1}{n} \sum_{i=1}^{n} \ell_i \left(w^{\top} \Phi_f(x_i) + b \right) + \lambda \Omega(w)$$

SUQUAN: jointly learn f and (w, b):

$$\min_{w,b,f} \frac{1}{n} \sum_{i=1}^{n} \ell_i \left(w^{\top} \Phi_f(x_i) + b \right) + \lambda \Omega(w) + \gamma \Omega_2(f)$$

SUQAN: supervised quantile normalization

• For $x \in \mathbb{R}^p$, let $\Pi_x \in \mathbb{R}^{p \times p}$ the permutation matrix of x's entries

$$x = \begin{pmatrix} 4.5 \\ 1.2 \\ 10.1 \\ 8.9 \end{pmatrix} \quad \Pi_X = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \quad f = \begin{pmatrix} 0 \\ 1 \\ 3 \\ 4 \end{pmatrix}$$

Quantile normalized x with target distribution f is:

$$\Phi_f(x) = \Pi_x f$$

SUQUAN solves

$$\min_{\mathbf{w}, \mathbf{b}, \mathbf{f}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\mathbf{w}^{\top} \mathbf{\Pi}_{\mathbf{x}_{i}} \mathbf{f} + \mathbf{b}\right) + \lambda \Omega(\mathbf{w}) + \gamma \Omega_{2}(\mathbf{f})$$

$$= \min_{\mathbf{w}, \mathbf{b}, \mathbf{f}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\langle \mathbf{w} \mathbf{f}^{\top}, \mathbf{\Pi}_{\mathbf{x}_{i}} \rangle + \mathbf{b}\right) + \lambda \Omega(\mathbf{w}) + \gamma \Omega_{2}(\mathbf{f})$$

(1)

- A particular rank-1 matrix optimization, x is replaced by Π_x
- Solved by alternatively optimizing f and w

Experiments

$$\min_{w,b,f} \frac{1}{n} \sum_{i=1}^{n} \ell_i \left(w^{\top} \Phi_f(x_i) + b \right) + \frac{\lambda}{2} ||w||_2^2 + \frac{\gamma}{2} \sum_{j=1}^{p-1} (f_{j+1} - f_j)^2$$

- Breast cancer prognosis from gene expression data.
- Two classes of patients: those who relapsed within 6 years of diagnosis and those who did not.

Dataset name	# genes	# patients	# positives	% positives
GSE7390	22283	189	58	0.31
GSE4922	22283	225	73	0.32
GSE2990	22283	106	32	0.30
GSE2034	22283	271	104	0.38
GSE1456	22283	141	37	0.26

Performance

Estimated distribution: iteration=0

Estimated distribution: iteration=1

Estimated distribution: iteration=2

Outline

The Kendall and Mallows kernels

Supervised quantile normalization

3 Conclusion

Conclusion

- Representing omics data as permutations has some potential
 - Kendall and Mallows kernel in O(p ln(p))
 - SUQUAN supervised quantile normalization as matrix regression
- Understanding the benefits and cost of different representations remains very heuristic and sometimes counterintuitive
- Learning representation may help

Thanks

Institut national de la santé et de la recherche médicals

