Cancer prognosis on the symmetric group
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Big data for health

The Body as a Source
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Example: cancer prognosis from gene expression data
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@ X gene expression profile of each patient
@ Y survival information of each patient

e n=10%2~ 10*

e p=2x10*

@ Goal: learn to predict Y from X

@ But... where does X come from?
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Working on the symmetric group

After QN, each sample X; is:
@ atarget distribution d € RP,

@ permuted by a samples-specific permutation o; € Sp, the
symmetric group over the set of features

Can we directly estimate a model Y = f(o) ?
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e Conclusion



0 The Kendall and Mallows kernels



Joint work with

Yunlong Jiao



An idea: all pairwise comparisons

Replace x € RP by ¢(x) € {0, 1}p(pf1)/2

N 1 if x;i < X,
®ij(x) = otherwise.
I .
One sample x Mapping f(x)

p features p(p-1)/2 bits



Related work: Top scoring pairs (TSP)

(a) TSP ALL AML
A A
e N Y
Pl T el e
CD33 (M23197)"
IF SPTAN1 => CD33* THEN ALL, ELSE AML. A=0.9787
(b) k-TSP

SPTANT (J05243)
HA-1(DB6976)
TCF3 (M31523)"
ATP2A3 (269881)"
KD (D63479
CCND3 (M92287)*
TOP28 (215115)°

Macmarcks
PSMBS (714982)
CD33 (M23197)*
2YX (X95735)°
APLP? (L09209)
CST3 (M27891)"
MGST1 (U46499)
NPC2 (X67698)
PLCB2 (M95678)
CTSD (M63138)"
DF (M84526)*

IF SPTAN1 => CD33* THEN ALL, ELSE AML. A=0.9787
IF HA-1 => ZYX* THEN ALL, ELSE AML. A=0.9787
IF TCF3* > APLP2 THEN ALL, ELSE AML. A=0.9574
IF ATP2A3* => CST3* THEN ALL, ELSE AML. A=0.9387
IF DGKD > MGST1 THEN ALL, ELSE AML. A =0.9387
IF CCND3* => NPC2 THEN ALL, ELSE AML. A =0.9387
IF TOP2B* > PLCB2 THEN ALL, ELSE AML. A=0.9387
IF Macmarcks => CTSD* THEN ALL, ELSE AML. A=0.9362
IF PSMB8 => DF* THEN ALL, ELSE AML. A=0.9200

A\ MT

(Geman et al., 2004; Tan et al., 2005; Leek, 2009)



Practical challenge

g P H -]
oy — l! i @ Need to store O(p?)
-.Eiﬁiu_ :r! bits per sample
= F._TI =k @ Need to train a model
-ﬁﬁlll z "'E in O(p?) dimensions



Kernel trick

Theorem (Wahba, Schélkopf, ...)

Training a linear model over a representation ®(x) € R? of the form:

1 n
min =Y 4w o(x), i) + N|wl?
weROn; ( (xi), yi) + Al[w||

can be done efficiently, independently of Q, if the kernel

K(x,x") = &(x) " d(x')

can be computed efficiently.

Ex: ridge regression, O(Q® + nQ?) becomes O(n® + n?T)
Other: SVM, logistic regression, Cox model, survival SVM, ...



Kernel trick for us: Kendall's 7

o(x)"d(x) = 7(x,x") (up to a scaling)

i3 "‘E - I ‘

O(p"2) O(p log(p))

Good news for SVM and kernel methods!




More formally

@ For two permutations o, ¢’ let n¢(o, o’) (resp. ng(o,c’)) the number
of concordant (resp. discordant) pairs.

@ The Kendall kernel (a.k.a. Kendall tau coefficient) is defined as

ng(o,0') — ng(o, o) ‘
(2)

@ The Mallows kernel is defined for any A > 0 by

K. (o,0') =

KA))(U, o) = g a(e0’)

Theorem (Jiao and V., 2015)
The Kendall and Mallows kernels are positive definite.

Theorem (Knight, 1966)

These two kernels for permutations can be evaluated in O(plog p)
time.




Related work

Cayley graph of Sy

@ Kondor and Barbarosa (2010)
proposed the diffusion kernel on the
Cayley graph of the symmetric group
generated by adjacent transpositions.

@ Computationally intensive (O(pP))
@ Mallows kernel is written as

Kif(o. o) = 6 nelo"

where ngy(o, o’) is the shortest path
distance on the Cayley graph.

@ It can be computed in O(plog p)



Application: supervised classification

Datasets
Dataset No. of features No. of samples (training/test)
Cy Co
Breast Cancer 1 23624 44/7 (Non-relapse) 32/12 (Relapse)
Breast Cancer 2 22283 142 (Non-relapse) 56 (Relapse)
Breast Cancer 3 22283 71 (Poor Prognosis) 138 (Good Prognosis)
Colon Tumor 2000 40 (Tumor) 22 (Normal)
Lung Cancer 1 7129 24 (Poor Prognosis) 62 (Good Prognosis)
Lung Cancer 2 12533 16/134 (ADCA) 16/15 (MPM)
Medulloblastoma 7129 39 (Failure) 21 (Survivor)
Ovarian Cancer 15154 162 (Cancer) 91 (Normal)
Prostate Cancer 1 12600 50/9 (Normal) 52/25 (Tumor)
Prostate Cancer 2 12600 13 (Non-relapse) 8 (Relapse)
Methods

@ Kernel machines Support Vector Machines (SVM) and Kernel
Fisher Discriminant (KFD) with Kendall kernel, linear kernel,
Gaussian RBF kernel, polynomial kernel.

@ Top Scoring Pairs (TSP) classifiers [?].
@ Hybrid scheme of SVM + TSP feature selection algorithm.
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Results
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Application: clustering

@ APA data (full
rankings)

e n=5738,p=5

@ (new) Kernel
k-means vs
(standard)
k-means in Sg

@ Show silhouette
as a function of
number of
clusters (higher
better)




Extension to partial rankings

@ Two interesting types of partial rankings are interleaving partial
ranking
Xiy = Xjy = - =X, k<n.

and top-k partial ranking
Xiy = Xig = - = Xj = Xeesty K< n.

@ Partial rankings can be uniquely represented by a set of
permutations compatible with all the observed partial orders.



Extension to partial rankings

@ Two interesting types of partial rankings are interleaving partial
ranking

Xiy = Xjy = - =X, k<n.
and top-k partial ranking
Xiy = Xig = - = Xj = Xeesty K< n.

@ Partial rankings can be uniquely represented by a set of
permutations compatible with all the observed partial orders.

For these two particular types of partial rankings, the convolution
kernel (Haussler, 1999) induced by Kendall kernel

K*(R,R) = |H||R’| Z Z K (o,0")

occRo’'eR’

can be evaluated in O(k log k) time.




Extension to smoother, continuous representations

|

One sample x Mapping f(x)
p features p(p-1)/2 bits

@ Instead of ® : RP — {0, 1}P(P=1)/2 consider the continuous
mapping W, : RP — RP(P-1)/2;

a a,,

Va(x) =Ed(x +¢) with e~ (L{[—E, E])

@ Corresponding kernel Ga(x, X') = Wa(x) TWa(x)



Computation of G(x, x”)

@ Gz(x,x’) can be computed exactly in O(p?) by
explicit computation of W,(x) in RP(P—1)/2

@ Ga(x, x') can be computed approximately in O(D?plog p) by
Monte-Carlo approximation:

D
~ 1
Ga(x,x') = o > K(x+e€,x +¢)
ij=1
@ Theorem: for supervised learning, Monte-Carlo approximation is
better! than exact computation when n = o(p'/3)

'faster for the same accuracy



Performance of Gy(x, x)
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9 Supervised quantile normalization
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Cancer prognosis from somatic mutations



How to choose a "good" target distribution?

gaussian distribution (mean=0, sd=1) uniform distribution bigaussian distribution
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Learning the target distribution

@ Xi,...,Xn a set of p-dimensional samples
@ f € RP a non-decreasing target distribution (CDF)
@ For x € RP, let d¢(x) € RP be the data after QN with target
distribution f
@ Standard approaches (NSQN, NetNorM, ...)
@ Fix 7 arbitrarily

© QN all samples to get ®4(x1),. .., Pr(xn)
© Learn a generalized linear model (w, b) on normalized data:

min — ZE, (W ¢(x;) + b) + AQ(w)

@ SUQUAN: jointly learn f and (w, b):

%nff Ze (W ®s(x) + b) + AQ(w) + (/)



SUQAN: supervised quantile normalization

@ For x € RP, let N, € RP*P the permutation matrix of x’s entries

4.5 0100 0
1.2 1 000 1
X100 | ™=looo1]| 7|3
8.9 0010 4
@ Quantile normalized x with target distribution f is:
Os(x) = Ny f

@ SUQUAN solves

1 T
Vrmn;e(w M+ b) +AQ(W) +722(7)

(1)

. -
_ thTfn;E (< W™,y > +b) + AQ(w) +192(f)

@ A particular rank-1 matrix optimization, x is replaced by Iy
@ Solved by alternatively optimizing f and w
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@ Breast cancer prognosis from gene expression data.

@ Two classes of patients: those who relapsed within 6 years of
diagnosis and those who did not.

Dataset name  #genes # patients # positives % positives

GSE7390 22283 189 58 0.31
GSE4922 22283 225 73 0.32
GSE2990 22283 106 32 0.30
GSE2034 22283 271 104 0.38

GSE1456 22283 141 37 0.26




Performance

average over all datasets
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Estimated distribution: iteration=0
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Estimated distribution: iteration=1
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Estimated distribution: iteration=2
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e Conclusion



Conclusion
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One sample x Mapping f(x)
p features p(p-1)/2 bits

@ Representing omics data as permutations has some potential

e Kendall and Mallows kernel in O(pIn(p))
e SUQUAN supervised quantile normalization as matrix regression

@ Understanding the benefits and cost of different representations
remains very heuristic and sometimes counterintuitive

@ Learning representation may help
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