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@ Diagnosis
@ Prognosis
@ Drug response prediction / personalized treatment optimization



Learning from data (EASY case)

n(= 19) patients >> p(= 2) genes
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*-omics challenge: n << p
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p features

@ n= 102 ~ 10* (patients)

@ p=10* ~ 107 (genes, mutations, copy number, ...)

@ Data of various nature (continuous, discrete, structured, ...)
@ Data of variable quality (technical/batch variations, noise, ...)

Consequences: Accuracy drops, biomarker selection unstable

Can we replace the high-dimensional profile of a sample by a "simpler"
representation, more amenable to statistical learning?



0 Patient stratification from somatic mutations using gene network
9 Supervised quantile normalization
e Learning from rankings through pairwise comparisons

e Conclusion



0 Patient stratification from somatic mutations using gene network
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Somatic mutations in cancer
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Stratton et al., Nature 458:719-24, 2009.



Large-scale efforts to collect somatic mutations

profiles

Data used in this study:
@ 3,378 samples with survival information
@ from 8 cancer types

@ downloaded from the TCGA / cBioPortal portals.

Cancer type Patients | Genes

LUAD (Lung adenocarcinoma) 430 20 596

SKCM (Skin cutaneous melanoma) 307 17 463

GBM (Glioblastoma multiforme) 265 14 750

BRCA (Breast invasive carcinoma) 945 16 806

KIRC (Kidney renal clear cell carcinoma) 411 10 609
HNSC (Head and Neck squamous cell carcinoma) 388 17 022
LUSC (Lung squamous cell carcinoma) 169 13 590

QV (Ovarian serous cystadenocarcinoma) 363 10195




Survival prediction from raw mutation profiles

@ Each patient is a binary vector: each gene is mutated (1) or not (2)
@ Silent mutations are removed

@ Survival model estimated with sparse survival SVM

@ Results on 5-fold cross-validation repeated 4 times
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Patient stratification (unsupervised) from raw mutation

profiles

v' Desired behaviour:

N=4
i

N =2 N=3

N N RN YN Y

x
<
9

v Observed behaviour:

N =2 N=3 N =4 N =5 N =6
..

Patients share very few mutated genes!

v" Non-Negative matrix
factorisation (NMF)




Network-based stratification (NBS)

H=cluster
| IcRicT
assignments™

Patients

Network smoothing:
Q
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Hofree et al., Nat. Methods, 10:1108-15, 2013.
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Network Smoothing

@ NS
e QN

Quantile normalization

= NS+QN

@ NBS



Importance of Quantile Normalization (QN) on NBS

— Patient A- NS
— Patient B - NS
— Patient A - NSQN
— Patient B - NSQN

Mutation values

_

Sorted genes




NetNorM: a simplified NSQN

Somatic mutation matrix

Survival prediction

Bﬂrﬁlﬁ
L

NetNorM

New representation of the
mutation matrix

Patient stratification

Gene-gene interaction
network



NetNorM: a simplified NSQN

@ Transforms a binary vector of mutation into another binary vector,
with a fixed number k of mutations.
@ Given a mutation profile x € {0, 1} with m mutations:

o If m < k, add k — m "proxy" mutations: the ones with the largest
number of mutated neighbors

e If m > k, remove m — k "unimportant” mutation: the ones with the
smallest degree in the gene network

@ k is the only parameter, chosen by heuristics or optimized by
cross-validation
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Use Pathway Commons as gene network.



NSQN and NetNorM benefit from biological

information in Pathway Commons

Comparison with 20 randomly permuted networks:

080 LUAD - NetNorM LUAD - NSQN 33?, SKCM - NetNorM 7 SKCM - NSQN
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P-values (Welch t-test): LUAD 2x10® 35x10°2

SKCM 12x1072 {1x107*




Genes frequently selected for survival prediction in

LUAD

freq coef man Mk g Mk ed Log-rank test (p-value) ‘Welsh t-test (p-value)

raw  NetNorM | raw  NetNorM | raw  NetNorM raw NetNorM raw NetNorM

TP53 19 -0.16 | 238 274 123 159 115 115 7.6 x 1072 9.4x1072 | 52x10722  1.2x10"!3
CRB1 18 0.4 44 38 22 22 22 16 1.6 x 1074 14x107% | 9.9x 107 6.9 x 1072
NOTCH4 17 -0.23 | 42 26 14 14 28 12 93x10"1  33x1072 | 1.9x10°° 2.6 x 1071
ANK2 17 0.1 90 90 33 33 57 57 1.2x1072  12x1072 | 63x10°'° 6.3 x10710
RPS9 16 0.38 0 106 0 106 0 0 1.8 x 1071 - 4.2 x 10-47
LAMA2 \ 15 0.16 52 38 14 15 38 23 1.5x 1072 23x102 \ 6.3 x10° 2.6 x 1073
RYR2 ‘ 14 0.07 165 161 70 70 95 91 1.4 %1072 2.1 x 1072 ‘ 6.7 x 10719 1x 1071
IGF2BP2 14 -0.15 6 67 2 63 4 4 1.4x107°  36x103 1x10°t 6.8 %1077
SMARCAS | 14 -0.09 B 137 1 133 4 4 21x107'  53x107%  13x107} 1x 10727
KHDRBS1 13 0.11 7 117 2 112 5 5 7.1 %1071 9.7 x 1071 6.5 x 1072 1.3 x 10718
YWHAZ 13 -0.18 2 241 0 239 2 2 25x10731  61x107% 47x107! 44x107%
HRNR ‘ 13 -0.12 62 64 20 22 42 42 1.1x 107! 1.1x 107! ‘ 6 x 10710 2.9 x 1077
CSNK2A2 11 0.06 2 129 1 128 1 1 9x 107! 8.8 x 1071 59x 1071 4.2x10727
MED12L \ 11 0.04 27 27 8 8 19 19 55x1072  5.5x1072 \ 1.7 x 1074 1.7 x 1074

@ 14 genes are selected at least 50% of the time
@ 6/14 are "proxy" genes (in blue)
@ big hubs in the network

o get mutated by NetNorm in patients with few mutations —- they
encode the mutation rate

@ 8/14 are "normal" prognostic genes




Proxy mutations encode also local mutational burden

50| e®e mutated patients 1
ee e non mutated patients ° °
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# mutated neighbours of KHDRBS1
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# mutations

KHDRBS1: a member of the K homology domain-containing, RNA-binding, signal transduction-associated protein family



Unsupervised patient stratification

Log-rank statistic
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@ Somatic profiles are challenging because
o Little overlap between patients
o Large variability in number of mutations
@ Network smoothing / local averaging sometimes helps
e but with current methods, looking at the direct neighbors is good
enough
@ Normalizing for total number of mutations is at least as important

o through QN or NetNorm, for example
e this is not for biological reasons, but for mathematical reasons
@ probably room for improvement



9 Supervised quantile normalization
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Before Normalization
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After Normalization

signal should have the same distribution

"true

Useful we believe the

but is perturbed by "noise" (e.g., batch effect)



QN for mutations
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@ The difference in distribution is not due to noise

@ However QN helps, and impacts the performance
@ How to choose the "best" target distribution?



Learning the target distribution

@ Xi,...,Xn a set of p-dimensional samples

@ f € RP a non-decreasing target distribution (CDF)

@ For x € RP, let d¢(x) € RP be the data after QN with target
distribution f

@ Standard approaches (NSQN, NetNorM, ...)

@ Fix f arbitrarily
© QN all samples to get ®4(x1),. .., Pr(xn)
© Learn a generalized linear model (w, b) on normalized data:

min — ZE, (W ¢(x;) + b) + AQ(w)

@ SUQUAN: jointly learn f and (w, b):

V%nf—ZZ (w d>f(x,)+b> +AQ(w)



SUQAN: supervised quantile normalization

@ For x € RP, let N, € RP*P the permutation matrix of x’s entries

4.5 0100 0
1.2 1 000 1
X100 | ™=looo1]| 7|3
8.9 0010 4
@ Quantile normalized x with target distribution f is:
Os(x) = Ny f

@ SUQUAN solves

Vrpll)r}f Zf( w T f+ b) +AQ(w)

_ m|n—Z£(< wiT, Ty, > +b) + AQ(w)

@ A particular rank-1 matrix optimization, x is replaced by Iy
@ Solved by alternatively optimizing f (isotonic GLM) and w



Results (preliminary)

Breast cancer 10-year metastasis prognosis

0.58
|

0.54

log(lambda)

@ Breast cancer prognosis from gene expression data (survival
logistic regression), TRANSBIG, n = 198

@ Performance after 1,2,...,5 iterations of alternative optimization
of fand (w, b)



SUQUAN summary

Before Normalization

0

Signal Intensities (log)
1
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"
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After Normalization

@ The target distribution of QN can be seen as a parameter to
optimize.
@ SUQUAN boils down to
o Represent each sample x by the permutation matrix I, that
represents the ranking of its features
o Learn a linear model over these matrices, with a rank-1 matrix of
weights



e Learning from rankings through pairwise comparisons



Joint work with

Yunlong Jiao



An idea: all pairwise comparisons

Replace x € RP by ¢(x) € {0, 1}p(pf1)/2

N 1 if x;i < X,
®ij(x) = otherwise.
I .
One sample x Mapping f(x)

p features p(p-1)/2 bits



Remark: representation of the symmetric group

| Cpn
|

One sample x Mapping f(x)
p features p(p-1)/2 bits

@ Obviously, this representation as O(p?) bits exists for any ranking
or permutation of p items

@ Many other applications in learning over rankings, learning to
rank, learning permutations eftc...

@ We are interested particularly in practical solutions when p is large



Related work: Top scoring pairs (TSP)

(a) TSP ALL AML
A A
e N Y
Pl T el e
CD33 (M23197)"
IF SPTAN1 => CD33* THEN ALL, ELSE AML. A=0.9787
(b) k-TSP

SPTANT (J05243)
HA-1(DB6976)
TCF3 (M31523)"
ATP2A3 (269881)"
KD (D63479
CCND3 (M92287)*
TOP28 (215115)°

Macmarcks
PSMBS (714982)
CD33 (M23197)*
2YX (X95735)°
APLP? (L09209)
CST3 (M27891)"
MGST1 (U46499)
NPC2 (X67698)
PLCB2 (M95678)
CTSD (M63138)"
DF (M84526)*

IF SPTAN1 => CD33* THEN ALL, ELSE AML. A=0.9787
IF HA-1 => ZYX* THEN ALL, ELSE AML. A=0.9787
IF TCF3* > APLP2 THEN ALL, ELSE AML. A=0.9574
IF ATP2A3* => CST3* THEN ALL, ELSE AML. A=0.9387
IF DGKD > MGST1 THEN ALL, ELSE AML. A =0.9387
IF CCND3* => NPC2 THEN ALL, ELSE AML. A =0.9387
IF TOP2B* > PLCB2 THEN ALL, ELSE AML. A=0.9387
IF Macmarcks => CTSD* THEN ALL, ELSE AML. A=0.9362
IF PSMB8 => DF* THEN ALL, ELSE AML. A=0.9200

A\ MT

(Geman et al., 2004; Tan et al., 2005; Leek, 2009)



Practical challenge

g P H -]
oy — l! i @ Need to store O(p?)
-.Eiﬁiu_ :r! bits per sample
= F._TI =k @ Need to train a model
-ﬁﬁlll z "'E in O(p?) dimensions



Kernel trick

Theorem (Wahba, Schélkopf, ...)

Training a linear model over a representation ®(x) € R? of the form:

1 n
min =Y 4w o(x), i) + N|wl?
weROn; ( (xi), yi) + Al[w||

can be done efficiently, independently of Q, if the kernel

K(x,x") = &(x) " d(x')

can be computed efficiently.

Ex: ridge regression, O(Q® + nQ?) becomes O(n® + n?T)
Other: SVM, logistic regression, Cox model, survival SVM, ...



Kernel trick for us: Kendall's 7

o(x)"d(x) = 7(x,x") (up to a scaling)

i3 "‘E - I ‘

O(p"2) O(p log(p))

Good news for SVM and kernel methods!




More formally

@ For two permutations o, ¢’ let n¢(o, o’) (resp. ng(o,c’)) the number
of concordant (resp. discordant) pairs.

@ The Kendall kernel (a.k.a. Kendall tau coefficient) is defined as

ng(o,0') — ng(o, o) ‘
(2)

@ The Mallows kernel is defined for any A > 0 by

K. (o,0') =

KA))(U, o) = g a(e0’)

Theorem (Jiao and V., 2015)
The Kendall and Mallows kernels are positive definite.

Theorem (Knight, 1966)

These two kernels for permutations can be evaluated in O(plog p)
time.




Related work

Cayley graph of Sy

@ Kondor and Barbarosa (2010)
proposed the diffusion kernel on the
Cayley graph of the symmetric group
generated by adjacent transpositions.

@ Computationally intensive (O(pP))
@ Mallows kernel is written as

Kif(o. o) = 6 nelo"

where ngy(o, o’) is the shortest path
distance on the Cayley graph.

@ It can be computed in O(plog p)



Application: supervised classification

Datasets
Dataset No. of features No. of samples (training/test)
Cy Co
Breast Cancer 1 23624 44/7 (Non-relapse) 32/12 (Relapse)
Breast Cancer 2 22283 142 (Non-relapse) 56 (Relapse)
Breast Cancer 3 22283 71 (Poor Prognosis) 138 (Good Prognosis)
Colon Tumor 2000 40 (Tumor) 22 (Normal)
Lung Cancer 1 7129 24 (Poor Prognosis) 62 (Good Prognosis)
Lung Cancer 2 12533 16/134 (ADCA) 16/15 (MPM)
Medulloblastoma 7129 39 (Failure) 21 (Survivor)
Ovarian Cancer 15154 162 (Cancer) 91 (Normal)
Prostate Cancer 1 12600 50/9 (Normal) 52/25 (Tumor)
Prostate Cancer 2 12600 13 (Non-relapse) 8 (Relapse)
Methods

@ Kernel machines Support Vector Machines (SVM) and Kernel
Fisher Discriminant (KFD) with Kendall kernel, linear kernel,
Gaussian RBF kernel, polynomial kernel.

@ Top Scoring Pairs (TSP) classifiers [?].
@ Hybrid scheme of SVM + TSP feature selection algorithm.



%)
=
>
n
)
o

Kendall kernel SVM

@ Competitive
accuracy!

F ANDY
F Tviaiadd

F TIVIGINAS
FdsL

F TvAlodady
F Tvresunady
F dOoLAlodiNAS
FdSDI

F TvIa-y

F TIvAI0dWAS
- dOLIPINAS
TIVIRBUINAS
dOLIesulNAS
F TIVIPINAS




Results

acc
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S Kendall kernel SVM
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Application: clustering

@ APA data (full
rankings)

e n=5738,p=5

@ (new) Kernel
k-means vs
(standard)
k-means in Sg

@ Show silhouette
as a function of
number of
clusters (higher
better)




Extension to partial rankings

@ Two interesting types of partial rankings are interleaving partial
ranking
Xiy = Xjy = - =X, k<n.

and top-k partial ranking
Xiy = Xig = - = Xj = Xeesty K< n.

@ Partial rankings can be uniquely represented by a set of
permutations compatible with all the observed partial orders.



Extension to partial rankings

@ Two interesting types of partial rankings are interleaving partial
ranking

Xiy = Xjy = - =X, k<n.
and top-k partial ranking
Xiy = Xig = - = Xj = Xeesty K< n.

@ Partial rankings can be uniquely represented by a set of
permutations compatible with all the observed partial orders.

For these two particular types of partial rankings, the convolution
kernel (Haussler, 1999) induced by Kendall kernel

K*(R,R) = |H||R’| Z Z K (o,0")

occRo’'eR’

can be evaluated in O(k log k) time.




Extension to smoother, continuous representations

|

One sample x Mapping f(x)
p features p(p-1)/2 bits

@ Instead of ® : RP — {0, 1}P(P=1)/2 consider the continuous
mapping W, : RP — RP(P-1)/2;

a a,,

Va(x) =Ed(x +¢) with e~ (L{[—E, E])

@ Corresponding kernel Ga(x, X') = Wa(x) TWa(x)



Computation of G(x, x”)

@ Gz(x,x’) can be computed exactly in O(p?) by
explicit computation of W,(x) in RP(P—1)/2

@ Ga(x, x') can be computed approximately in O(D?plog p) by
Monte-Carlo approximation:

D
~ 1
Ga(x,x') = o > K(x+e€,x +¢)
ij=1
@ Theorem: for supervised learning, Monte-Carlo approximation is
better! than exact computation when n = o(p'/3)

'faster for the same accuracy



Performance of Gy(x, x)
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e Conclusion



Conclusion

One sample x Mapping f(x)
p features p(p-1)/2 bits

@ Representing omics data as permutations has some potential
o NetNorM normalization of somatic mutation profiles
e SUQUAN supervised quantile normalization as matrix regression
e Kendall and Mallows kernel in O(pIn(p))
@ Understanding the benefits and cost of different representations
remains very heuristic and sometimes counterintuitive

@ Learning representation may help
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