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Motivation

Diagnosis
Prognosis
Drug response prediction / personalized treatment optimization



Learning from data (EASY case)

n(= 19) patients >> p(= 2) genes
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*-omics challenge: n << p

n = 102 ∼ 104 (patients)
p = 104 ∼ 107 (genes, mutations, copy number, ...)
Data of various nature (continuous, discrete, structured, ...)
Data of variable quality (technical/batch variations, noise, ...)

Consequences: Accuracy drops, biomarker selection unstable

Can we replace the high-dimensional profile of a sample by a "simpler"
representation, more amenable to statistical learning?
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Somatic mutations in cancer

Stratton et al., Nature 458:719-24, 2009.



Large-scale efforts to collect somatic mutations
profiles

Data used in this study:

3,378 samples with survival information

from 8 cancer types

downloaded from the TCGA / cBioPortal portals.

Cancer type Patients Genes
LUAD (Lung adenocarcinoma) 430 20 596

SKCM (Skin cutaneous melanoma) 307 17 463
GBM (Glioblastoma multiforme) 265 14 750

BRCA (Breast invasive carcinoma) 945 16 806
KIRC (Kidney renal clear cell carcinoma) 411 10 609

HNSC (Head and Neck squamous cell carcinoma) 388 17 022
LUSC (Lung squamous cell carcinoma) 169 13 590

OV (Ovarian serous cystadenocarcinoma) 363 10 195



Survival prediction from raw mutation profiles

Each patient is a binary vector: each gene is mutated (1) or not (2)
Silent mutations are removed
Survival model estimated with sparse survival SVM
Results on 5-fold cross-validation repeated 4 times



Patient stratification (unsupervised) from raw mutation
profiles

X Non-Negative matrix
factorisation (NMF)

X Desired behaviour:

X Observed behaviour:

Patients share very few mutated genes!



Network-based stratification (NBS)
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knowledge, we were able to cluster somatic mutation profiles into 
robust tumor subtypes that are biologically informative and have 
a strong association to clinical outcomes such as patient survival 
time and emergence of drug resistance. As a proof of principle, 
we applied this method to stratify the somatic mutation profiles 
of three major cancers cataloged in TCGA: ovarian, uterine and 
lung adenocarcinoma.

RESULTS
Overview of network-based stratification
NBS combines genome-scale somatic mutation profiles with 
a gene interaction network to produce a robust subdivision of 
patients into subtypes (Fig. 1a). Briefly, somatic mutations for 
each patient are represented as a profile of binary (1, 0) states on 
genes, in which a ‘1’ indicates a gene for which mutation (a single- 
nucleotide base change or the insertion or deletion of bases) has 
occurred in the tumor relative to germ line. For each patient,  
we project the mutation profile onto a human gene interaction 
network obtained from public databases28–30. Next we apply 
network propagation31 to spread the influence of each mutation 
over its network neighborhood (Fig. 1b). The resulting matrix 
of ‘network-smoothed’ patient profiles is clustered into a pre-
defined number of subtypes (k = 2, 3, … 12) via non-negative 
matrix factorization32 (NMF, Fig. 1c), an unsupervised technique. 
Finally, to promote robust cluster assignments, we use consensus 
clustering33, aggregating the results of 1,000 different subsamples 
from the entire data set into a single clustering result (Fig. 1d). 
For further details, see Online Methods. To evaluate the impact 
of different sources of network data, we used three interaction 
databases for this analysis: search tool for the retrieval of inter-
acting genes (STRING)29, HumanNet28 or PathwayCommons30. 
Supplementary Table 1 summarizes the number of genes and 
interactions used in our analysis from each of these three net-
works. Our implementation of NBS is available as Supplementary 

Software; for updated versions, NBS may be downloaded from 
http://idekerlab.ucsd.edu/software/NBS/.

Benchmarking and performance analysis
In an initial exploration of NBS, we simulated a somatic mutation 
data set using the structure of the TCGA ovarian tumor muta-
tion data and the STRING gene interaction network (Fig. 2a).  
Mutation profiles were permuted, and patients were divided 
randomly and uniformly into a predefined number of subtypes  
(k = 4). Next we reassigned a fraction of mutations in each patient 
to fall within genes of a single ‘network module’ characteristic of 
that patient’s subtype (the ‘driver’ mutation frequency f, varied 
from 0% to 15%); the remaining mutations were left to occur 
randomly. We selected the network modules randomly from the 
set of all network modules in STRING, defined as sets of densely 
interacting genes with size range s = 10–250 (see Online Methods 
for details and justification for the ranges of k, f and s). Although 
it is unknown whether these assumptions completely mirror the 
biology of cancer, they provide a reasonable model of a pathway-
based genetic disease that is (i) driven by genetic circuits cor-
responding to a molecular network whose activity can be altered 
by mutations at multiple genes and (ii) characterized by many 
additional mutations that are noncausal ‘passengers’.

Using this simulation framework, we measured the ability of 
NBS to recover the correct subtype assignments in comparison to 
a standard consensus clustering approach not based on network 
knowledge (Online Methods). NBS showed a striking improve-
ment in performance, especially for large network modules, as 
these can be associated with any of numerous different mutations 
across the patient population (Fig. 2b). As module size decreased, 
the chance of observing the same mutated gene in patients of the 
same subtype increased, and the standard clustering algorithm 
performed increasingly well. We found that the high performance 
of NBS depended not only on network smoothing but also on the 

Somatic mutation matrix
(patients × genes)

Draw a sample of genes
and patients

Repeat N times

Aggregate consensus matrix
(patient × patient)

Network smoothing:
for each patient, project mutations
onto a network and propagate

Network clustering:
cluster smoothed (patients × genes)
matrix using network NMF
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Figure 1 | Overview of network-based stratification (NBS). (a) Flowchart of the approach. (b) Example illustrating smoothing of patient somatic mutation profiles 
over a molecular interaction network. Mutated genes are shown in yellow (patient 1) and blue (patient 2) in the context of a gene interaction network. Following 
smoothing, the mutational activity of a gene is a continuous value reflected in the intensity of yellow or blue; genes with high scores in both patients appear 
in green (dashed oval). (c) Clustering mutation profiles using non-negative matrix factorization (NMF) regularized by a network. The input data matrix (F) is 
decomposed into the product of two matrices: one of subtype prototypes (W) and the other of assignments of each mutation profile to the prototypes (H). The 
decomposition attempts to minimize the objective function shown, which includes a network influence constraint L on the subtype prototypes. k, predefined 
number of subtypes. (d) The final tumor subtypes are obtained from the consensus (majority) assignments of each tumor after 1,000 applications of the 
procedures in b and c to samples of the original data set. A darker blue color in the matrix coincides with higher co-clustering for pairs of patients.
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Hofree et al., Nat. Methods, 10:1108-15, 2013.



NBS representation helps to predict survival

NS = Network Smoothing
QN = Quantile normalization
NBS = NS+QN



Importance of Quantile Normalization (QN) on NBS



NetNorM: a simplified NSQN



NetNorM: a simplified NSQN

Transforms a binary vector of mutation into another binary vector,
with a fixed number k of mutations.
Given a mutation profile x ∈ {0,1}p with m mutations:

If m < k , add k −m "proxy" mutations: the ones with the largest
number of mutated neighbors
If m > k , remove m − k "unimportant" mutation: the ones with the
smallest degree in the gene network

k is the only parameter, chosen by heuristics or optimized by
cross-validation



Impact of NetNorM on survival prediction

Use Pathway Commons as gene network.



NSQN and NetNorM benefit from biological
information in Pathway Commons

Comparison with 20 randomly permuted networks:

P-values (Welch t-test):
NSQN NetNorM

LUAD 2 × 10−3 3.5 × 10−2

SKCM 1.2 × 10−2 1 × 10−4



Genes frequently selected for survival prediction in
LUAD

freq coef mall m<kmed
m�kmed

Log-rank test (p-value) Welsh t-test (p-value)

raw NetNorM raw NetNorM raw NetNorM raw NetNorM raw NetNorM

TP53 19 -0.16 238 274 123 159 115 115 7.6 ⇥ 10�2 9.4 ⇥ 10�2 5.2 ⇥ 10�22 1.2 ⇥ 10�13

CRB1 18 -0.4 44 38 22 22 22 16 1.6 ⇥ 10�4 1.4 ⇥ 10�6 9.9 ⇥ 10�4 6.9 ⇥ 10�2

NOTCH4 17 -0.23 42 26 14 14 28 12 9.3 ⇥ 10�1 3.3 ⇥ 10�2 1.9 ⇥ 10�6 2.6 ⇥ 10�1

ANK2 17 0.1 90 90 33 33 57 57 1.2 ⇥ 10�2 1.2 ⇥ 10�2 6.3 ⇥ 10�10 6.3 ⇥ 10�10

RPS9 16 0.38 0 106 0 106 0 0 - 1.8 ⇥ 10�1 - 4.2 ⇥ 10�47

LAMA2 15 0.16 52 38 14 15 38 23 1.5 ⇥ 10�2 2.3 ⇥ 10�2 6.3 ⇥ 10�9 2.6 ⇥ 10�3

RYR2 14 0.07 165 161 70 70 95 91 1.4 ⇥ 10�2 2.1 ⇥ 10�2 6.7 ⇥ 10�19 1 ⇥ 10�15

IGF2BP2 14 -0.15 6 67 2 63 4 4 1.4 ⇥ 10�5 3.6 ⇥ 10�3 1 ⇥ 10�1 6.8 ⇥ 10�7

SMARCA5 14 -0.09 5 137 1 133 4 4 2.1 ⇥ 10�1 5.3 ⇥ 10�3 1.3 ⇥ 10�1 1 ⇥ 10�27

KHDRBS1 13 0.11 7 117 2 112 5 5 7.1 ⇥ 10�1 9.7 ⇥ 10�1 6.5 ⇥ 10�2 1.3 ⇥ 10�18

YWHAZ 13 -0.18 2 241 0 239 2 2 2.5 ⇥ 10�31 6.1 ⇥ 10�4 4.7 ⇥ 10�1 4.4 ⇥ 10�37

HRNR 13 -0.12 62 64 20 22 42 42 1.1 ⇥ 10�1 1.1 ⇥ 10�1 6 ⇥ 10�10 2.9 ⇥ 10�9

CSNK2A2 11 0.06 2 129 1 128 1 1 9 ⇥ 10�1 8.8 ⇥ 10�1 5.9 ⇥ 10�1 4.2 ⇥ 10�27

MED12L 11 0.04 27 27 8 8 19 19 5.5 ⇥ 10�2 5.5 ⇥ 10�2 1.7 ⇥ 10�4 1.7 ⇥ 10�4

Table 2 – Genes frequently selected in the survival prediction model for LUAD using NetNorM with
Pathway Commons. freq : number of times a gene was selected in the model out of 20 cross-validation folds
(we only report genes that were selected at least 10 times). coef : median coe�cient associated to a gene
across the cross-validation folds where this gene was selected. mall: number of mutations across all patients.
m<kmed

(resp. m�kmed)
): number of mutations across patients with less (resp. more) than kmed mutations

where kmed is the median value learned for the parameter k across cross-validation folds. Log-rank test
(resp. Welsh t-test): p-value obtained with a log-rank test (resp. Welsh t-test) that compares mutated and
non-mutated patients in a given gene. mall, m<kmed

, m�kmed)
, Log-rank test and Welsh t-test were computed

for both the raw data and the data preprocessed with NetNorM with k = kmed. Rows highlighted in blue
indicate proxy genes.

In the case of LUAD, 8 out of the 14 selected genes are non-proxy genes, meaning they tend to
be really mutated when they are marked as mutated after NetNorM normalisation. Interestingly,
mutations in half of these genes are predictive of an increased survival time (corresponding to a
positive coe�cient in the sparse survival SVM) while mutations in the other half are predictive
of a decreased survival time (corresponding to a negative coe�cient). The three most important
predictors according to their weight in the model and their frequency of selection include TP53
(selected in 95% of the folds, median coe�cient �0.16), CRB1 (selected in 90% of the folds, median
coe�cient �0.4) and NOTCH4 (selected in 85% of the folds, median coe�cient �0.23) and are all
predictive of a decreased survival time. TP53 is a well-known cancer gene and has been reported as
significantly mutated in LUAD [19, 20]. NOTCH4 is part of the NOTCH signalling pathway which
has been widely implicated in cancer and shown to act as both oncogene or tumour suppressor
depending on the context [21]. Finally, CRB1 is known to localise at tight junctions but little is

freq coef mall m<k m�k Log-rank test (p-value) Welsh t-test (p-value)

raw NetNorM raw NetNorM raw NetNorM raw NetNorM raw NetNorM

UBC 17 -0.27 19 116 4 101 15 15 4.6 ⇥ 10�2 4.4 ⇥ 10�7 3.8 ⇥ 10�2 7.7 ⇥ 10�4

FLNC 15 -0.2 50 53 1 4 49 49 8.3 ⇥ 10�4 4.8 ⇥ 10�3 2.9 ⇥ 10�5 5.6 ⇥ 10�5

PRRC2A 13 -0.11 29 29 1 1 28 28 1.4 ⇥ 10�2 1.4 ⇥ 10�2 1.7 ⇥ 10�4 1.7 ⇥ 10�4

MATR3 12 -0.13 7 47 0 40 7 7 9.3 ⇥ 10�4 2.9 ⇥ 10�6 1.5 ⇥ 10�1 2.9 ⇥ 10�6

DSP 12 -0.06 64 67 3 6 61 61 7.6 ⇥ 10�2 5.4 ⇥ 10�2 2.3 ⇥ 10�6 4.7 ⇥ 10�6

SACS 12 0.12 42 40 3 4 39 36 2.8 ⇥ 10�3 4.7 ⇥ 10�3 4.9 ⇥ 10�3 2.4 ⇥ 10�3

IQGAP2 12 -0.1 24 23 1 1 23 22 3.2 ⇥ 10�2 2.6 ⇥ 10�2 5.8 ⇥ 10�2 2.7 ⇥ 10�2

Table 3 – Genes frequently selected in the survival prediction model for SKCM using NetNorM.
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14 genes are selected at least 50% of the time
6/14 are "proxy" genes (in blue)

big hubs in the network
get mutated by NetNorm in patients with few mutations =⇒ they
encode the mutation rate

8/14 are "normal" prognostic genes



Proxy mutations encode also local mutational burden

a b

c

Figure 4 – Analysis of predictive genes. (a) Comparison of survival prediction performances according
to patients’ mutation rate for LUAD. Three di↵erent representations of the mutations are used to perform
survival prediction using a ranking SVM: raw (the raw binary mutation data), NSQN (network smoothing
with quantile normalisation) and NetNorM. NSQN and NetNorM are applied with Pathway Commons as
gene-gene interaction network. Performances for half of the patients with fewer (resp. more) mutations are
derived from the predictions made using the whole dataset. (b) Scatter plot of the correlation between the
total number of mutations across patients and the number of mutated neighbours of a gene across patients
(x-axis) against the degree of a gene (y-axis). This plot was generated using the raw mutation data for LUAD
and Pathway Commons. (c) Scatter plot of the total number of mutations in a patient (x-axis) against the
number of mutated neighbours of KHDRBS1 in a patient (y-axis). Only patients with less that kmed = 295
mutations are shown, where kmed is the median value of k learned across cross-validation folds. Red (resp.
blue) indicate patients mutated (resp. non mutated) in KHDRBS1 after processing with NetNorM using
k = kmed. The black line was fit by linear regression and by definition indicates the expected number of
mutated neighbours of KHDRBS1 given the mutation rate of a patient. The plot was generated using the
LUAD dataset with Pathway Commons.
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KHDRBS1: a member of the K homology domain-containing, RNA-binding, signal transduction-associated protein family



Unsupervised patient stratification



Summary

Somatic profiles are challenging because
Little overlap between patients
Large variability in number of mutations

Network smoothing / local averaging sometimes helps
but with current methods, looking at the direct neighbors is good
enough

Normalizing for total number of mutations is at least as important
through QN or NetNorm, for example
this is not for biological reasons, but for mathematical reasons
probably room for improvement



Outline

1 Patient stratification from somatic mutations using gene network

2 Supervised quantile normalization

3 Learning from rankings through pairwise comparisons

4 Conclusion
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Marine Le Morvan



Standard full quantile normalization

Useful we believe the "true" signal should have the same distribution
but is perturbed by "noise" (e.g., batch effect)



QN for mutations

The difference in distribution is not due to noise
However QN helps, and impacts the performance
How to choose the "best" target distribution?



Learning the target distribution

x1, . . . , xn a set of p-dimensional samples
f ∈ Rp a non-decreasing target distribution (CDF)
For x ∈ Rp, let Φf (x) ∈ Rp be the data after QN with target
distribution f
Standard approaches (NSQN, NetNorM, ...)

1 Fix f arbitrarily
2 QN all samples to get Φf (x1), . . . ,Φf (xn)
3 Learn a generalized linear model (w ,b) on normalized data:

min
w,b

1
n

n∑
i=1

`i
(
w>Φf (xi ) + b

)
+ λΩ(w)

SUQUAN: jointly learn f and (w ,b):

min
w ,b,f

1
n

n∑
i=1

`i

(
w>Φf (xi) + b

)
+ λΩ(w)



SUQAN: supervised quantile normalization

For x ∈ Rp, let Πx ∈ Rp×p the permutation matrix of x ’s entries

x =


4.5
1.2

10.1
8.9

 Πx =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 f =


0
1
3
4


Quantile normalized x with target distribution f is:

Φf (x) = Πx f

SUQUAN solves

min
w ,b,f

1
n

n∑
i=1

`
(

w>Πxi f + b
)

+ λΩ(w)

= min
w ,b,f

1
n

n∑
i=1

`
(
< wf>,Πxi > +b

)
+ λΩ(w)

(1)

A particular rank-1 matrix optimization, x is replaced by Πx
Solved by alternatively optimizing f (isotonic GLM) and w



Results (preliminary)

Breast cancer prognosis from gene expression data (survival
logistic regression), TRANSBIG, n = 198
Performance after 1,2, . . . ,5 iterations of alternative optimization
of f and (w ,b)



SUQUAN summary

The target distribution of QN can be seen as a parameter to
optimize.
SUQUAN boils down to

Represent each sample x by the permutation matrix Πx that
represents the ranking of its features
Learn a linear model over these matrices, with a rank-1 matrix of
weights



Outline

1 Patient stratification from somatic mutations using gene network
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4 Conclusion
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An idea: all pairwise comparisons

Replace x ∈ Rp by Φ(x) ∈ {0,1}p(p−1)/2:

Φi,j(x) =

{
1 if xi ≤ xj ,

0 otherwise.



Remark: representation of the symmetric group

Obviously, this representation as O(p2) bits exists for any ranking
or permutation of p items
Many other applications in learning over rankings, learning to
rank, learning permutations etc...
We are interested particularly in practical solutions when p is large



Related work: Top scoring pairs (TSP)

(Geman et al., 2004; Tan et al., 2005; Leek, 2009)



Practical challenge

Need to store O(p2)
bits per sample
Need to train a model
in O(p2) dimensions



Kernel trick

Theorem (Wahba, Schölkopf, ...)

Training a linear model over a representation Φ(x) ∈ RQ of the form:

min
w∈RQ

1
n

n∑
i=1

`(w>Φ(xi), yi) + λ||w ||2

can be done efficiently, independently of Q, if the kernel

K (x , x ′) = Φ(x)>Φ(x ′)

can be computed efficiently.

Ex: ridge regression, O(Q3 + nQ2) becomes O(n3 + n2T )
Other: SVM, logistic regression, Cox model, survival SVM, ...



Kernel trick for us: Kendall’s τ

Φ(x)>Φ(x ′) = τ(x , x ′) (up to a scaling)

Good news for SVM and kernel methods!



More formally

For two permutations σ, σ′ let nc(σ, σ′) (resp. nd (σ, σ′)) the number
of concordant (resp. discordant) pairs.
The Kendall kernel (a.k.a. Kendall tau coefficient) is defined as

Kτ (σ, σ′) =
nc(σ, σ′)− nd (σ, σ′)(p

2

) .

The Mallows kernel is defined for any λ ≥ 0 by

K λ
M(σ, σ′) = e−λnd (σ,σ

′) .

Theorem (Jiao and V., 2015)
The Kendall and Mallows kernels are positive definite.

Theorem (Knight, 1966)
These two kernels for permutations can be evaluated in O(p log p)
time.



Related work

Cayley graph of S4

Kondor and Barbarosa (2010)
proposed the diffusion kernel on the
Cayley graph of the symmetric group
generated by adjacent transpositions.
Computationally intensive (O(pp))

Mallows kernel is written as

K λ
M(σ, σ′) = e−λnd (σ,σ

′) ,

where nd (σ, σ′) is the shortest path
distance on the Cayley graph.
It can be computed in O(p log p)



Application: supervised classification

Datasets

Dataset No. of features No. of samples (training/test)
C1 C2

Breast Cancer 1 23624 44/7 (Non-relapse) 32/12 (Relapse)
Breast Cancer 2 22283 142 (Non-relapse) 56 (Relapse)
Breast Cancer 3 22283 71 (Poor Prognosis) 138 (Good Prognosis)

Colon Tumor 2000 40 (Tumor) 22 (Normal)
Lung Cancer 1 7129 24 (Poor Prognosis) 62 (Good Prognosis)
Lung Cancer 2 12533 16/134 (ADCA) 16/15 (MPM)

Medulloblastoma 7129 39 (Failure) 21 (Survivor)
Ovarian Cancer 15154 162 (Cancer) 91 (Normal)

Prostate Cancer 1 12600 50/9 (Normal) 52/25 (Tumor)
Prostate Cancer 2 12600 13 (Non-relapse) 8 (Relapse)

Methods
Kernel machines Support Vector Machines (SVM) and Kernel
Fisher Discriminant (KFD) with Kendall kernel, linear kernel,
Gaussian RBF kernel, polynomial kernel.
Top Scoring Pairs (TSP) classifiers [?].
Hybrid scheme of SVM + TSP feature selection algorithm.



Results
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Application: clustering

APA data (full
rankings)
n = 5738, p = 5
(new) Kernel
k-means vs
(standard)
k-means in S5

Show silhouette
as a function of
number of
clusters (higher
better)



Extension to partial rankings

Two interesting types of partial rankings are interleaving partial
ranking

xi1 � xi2 � · · · � xik , k ≤ n.

and top-k partial ranking

xi1 � xi2 � · · · � xik � Xrest, k ≤ n.

Partial rankings can be uniquely represented by a set of
permutations compatible with all the observed partial orders.

Theorem
For these two particular types of partial rankings, the convolution
kernel (Haussler, 1999) induced by Kendall kernel

K ?
τ (R,R′) =

1
|R||R′|

∑
σ∈R

∑
σ′∈R′

Kτ (σ, σ′)

can be evaluated in O(k log k) time.
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Extension to smoother, continuous representations

Instead of Φ : Rp → {0,1}p(p−1)/2, consider the continuous
mapping Ψa : Rp → Rp(p−1)/2:

Ψa(x) = EΦ(x + ε) with ε ∼ (U [−a
2
,
a
2

])n

Corresponding kernel Ga(x , x ′) = Ψa(x)>Ψa(x ′)



Computation of G(x , x ′)

−3 −2 −1 0 1 2 3

−1
.0

−0
.5

0.
0

0.
5

1.
0

xi − xj

Φij
Ψij

Ga(x , x ′) can be computed exactly in O(p2) by
explicit computation of Ψa(x) in Rp(p−1)/2

Ga(x , x ′) can be computed approximately in O(D2p log p) by
Monte-Carlo approximation:

G̃a(x , x ′) =
1

D2

D∑
i,j=1

K (x + εi , x ′ + ε′j)

Theorem: for supervised learning, Monte-Carlo approximation is
better1 than exact computation when n = o(p1/3)

1faster for the same accuracy



Performance of Ga(x , x)
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Conclusion

Representing omics data as permutations has some potential
NetNorM normalization of somatic mutation profiles
SUQUAN supervised quantile normalization as matrix regression
Kendall and Mallows kernel in O(p ln(p))

Understanding the benefits and cost of different representations
remains very heuristic and sometimes counterintuitive
Learning representation may help
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1/!PROMOTION!DU!PROGRAMME!

!

• Rencontre!avec!les!directeurs,!directeurs!scientifiques!et!directeurs!

des!études!de!l’ENS,!Mines,!ENSCP,!ESPCI!pour!organiser!la!

promotion!du!programme!auprès!des!étudiants.!

• Ecole!des!Mines!:!présentation!d’ITI!devant!le!conseil!de!

l'enseignement!;!8!représentants!d’élèves!;!relance!

• ENSCP!:!mailing!de!présentation!d’ITI!aux!3A!via!la!direction!des!

études.!

• ENS!:!mailing;!présentation!directe!auprès!des!étudiants!(2!élèves!

présents)!;!diffusion!des!plaquettes!et!du!syllabus!;!relance!!

• ESPCI!:!mailing!aux!3A!+!présentation!d’ITI/rencontre!avec!les!

étudiants!en!présence!des!directrice!de!la!scolarité!et!directrice!des!

relations!entreprises!;!8!élèves!présents!

• Contacts!en!cours!avec!les!Ponts!et!l’ENS!Lyon!(en!attente!de!

réponse)!

• Rencontre!à!l’ANRT!avec!le!délégué!général!et!la!chef!du!service!

CIFRE:!accord&de&communication&sur&le&programme&ITI&via&le&site&

internet&de&l’ANRT!(rubrique!"zoom!sur")!

• Promotion!aux!Rencontres!Universités!Entreprises!(RUE)!

• Echange!avec!Stéphane!Mallat!et!réflexion!sur!la!pertinence!du!

programme!tronc!commun!

• Rencontre!avec!le!responsable!des!relations!internationales!de!la!

National!Taiwan!University!à!l’ESPCI:!présentation!d’ITI!

• Contact!en!cours!pour!visite!d‘entreprise!

• Article&les&Echos&

• Création&du&logo&PSL/ITI&et&du&Diplôme&Supérieur&de&Recherche&et&

d’Innovation&de&PSL/ITI&(DSRI),&dépôt&INPI&en&cours.&

!

!

2/!MISE!EN!ŒUVRE!OPERATIONNELLE!DU!PROGRAMME!


	Patient stratification from somatic mutations using gene network
	Supervised quantile normalization
	Learning from rankings through pairwise comparisons
	Conclusion

