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Machine learning formulation
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@ noisy data, subject to various technical variations
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@ Normalize data (difficult)
@ Learn in high dimension with normalized data



Machine learning formulation
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p features

@ Challenges

o N p
@ noisy data, subject to various technical variations

@ Standard approach:

@ Normalize data (difficult)

@ Learn in high dimension with normalized data
@ Skip normalization issue

@ Find a simpler, more robust representation
@ Learn with the simpler representation
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a SUQUAN: Supervised full quantile normalization (w. M. Le Morvan)



Before Normalization
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After Normalization
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Learning the target distribution

@ Let f € RP a non-decreasing target distribution (CDF)

@ For x € RP, let ®¢(x) € RP be the data after full quantile
normalization with target distribution f

@ Learn a (generalized) linear model over normalized data:
min Zé (W dr(x;) + b) +AQ(w)
@ SUQUAN: jointly learn f and (w, b):

vrpll)r}f Zé (W r(x;) + b) + AQ(w)



SUQAN: supervised quantile normalization

@ For x € RP, let My € RP*P the permutation matrix of x’s entries
@ Quantile normalized x with target distribution f is:

(Df(X) =,f

@ SUQUAN solves

vrvnll)nf— ZE( w T f + b) +AQ(w)

z T
_VTLnfnZE(< wf I'IX>+b)+)\Q( w)
@ A particular rank-1 matrix optimization

o Efficiently solved by alternatively optimizing f (isotonic GLM) and
w



Results (preliminary)

Breast cancer 10-year metastasis prognosis
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Breast cancer prognosis from gene expression data (survival logistic
regression)



9 The Kendall and Mallows kernels (w. Y. Jiao)



An idea: Top scoring pairs (TSP)

(a) TSP ALL AML
A A
e N Y
Pl T el e
CD33 (M23197)"
IF SPTAN1 => CD33* THEN ALL, ELSE AML. A=0.9787
(b) k-TSP

SPTANT (J05243)
HA-1(DB6976)
TCF3 (M31523)"
ATP2A3 (269881)"
KD (D63479
CCND3 (M92287)*
TOP28 (215115)°

Macmarcks
PSMBS (714982)
CD33 (M23197)*
2YX (X95735)°
APLP? (L09209)
CST3 (M27891)"
MGST1 (U46499)
NPC2 (X67698)
PLCB2 (M95678)
CTSD (M63138)"
DF (M84526)*

IF SPTAN1 => CD33* THEN ALL, ELSE AML. A=0.9787
IF HA-1 => ZYX* THEN ALL, ELSE AML. A=0.9787
IF TCF3* > APLP2 THEN ALL, ELSE AML. A=0.9574
IF ATP2A3* => CST3* THEN ALL, ELSE AML. A=0.9387
IF DGKD > MGST1 THEN ALL, ELSE AML. A =0.9387
IF CCND3* => NPC2 THEN ALL, ELSE AML. A =0.9387
IF TOP2B* > PLCB2 THEN ALL, ELSE AML. A=0.9387
IF Macmarcks => CTSD* THEN ALL, ELSE AML. A=0.9362
IF PSMB8 => DF* THEN ALL, ELSE AML. A=0.9200

A\ MT

(Geman et al., 2004; Tan et al., 2005; Leek, 2009)



More generally: all pairwise comparisons
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One sample x Mapping f(x)
p features p(p-1)/2 bits




Remark: representation of the symmetric group
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One sample x Mapping f(x)
p features p(p-1)/2 bits

@ Obviously, this representation as O(p?) bits exists for any ranking
or permutation of p items

@ Many other applications in learning over rankings, learning to
rank, learning permutations eftc...

@ We are interested particularly in practical solutions when p is large



Practical challenge
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The good old kernel trick
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O(p"2) O(p log(p))




More formally

@ For two permutations o, ¢’ let n¢(o, o’) (resp. ng(o,c’)) the number
of concordant (resp. discordant) pairs.

@ The Kendall kernel (a.k.a. Kendall tau coefficient) is defined as

ng(o,0') — ng(o, o) ‘
(2)

@ The Mallows kernel is defined for any A > 0 by

K. (o,0') =

KA))(U, o) = g a(e0’)

Theorem (Jiao and V., 2015)
The Kendall and Mallows kernels are positive definite.

Theorem (Knight, 1966)

These two kernels for permutations can be evaluated in O(plog p)
time.




Related work

Cayley graph of Sy

@ Kondor and Barbarosa (2010)
proposed the diffusion kernel on the
Cayley graph of the symmetric group
generated by adjacent transpositions.

@ Computationally intensive (O(pP))
@ Mallows kernel is written as

Kif(o. o) = 6 nelo"

where ngy(o, o’) is the shortest path
distance on the Cayley graph.

@ It can be computed in O(plog p)



Application: supervised classification

Datasets
Dataset No. of features No. of samples (training/test)
Cy Co
Breast Cancer 1 23624 44/7 (Non-relapse) 32/12 (Relapse)
Breast Cancer 2 22283 142 (Non-relapse) 56 (Relapse)
Breast Cancer 3 22283 71 (Poor Prognosis) 138 (Good Prognosis)
Colon Tumor 2000 40 (Tumor) 22 (Normal)
Lung Cancer 1 7129 24 (Poor Prognosis) 62 (Good Prognosis)
Lung Cancer 2 12533 16/134 (ADCA) 16/15 (MPM)
Medulloblastoma 7129 39 (Failure) 21 (Survivor)
Ovarian Cancer 15154 162 (Cancer) 91 (Normal)
Prostate Cancer 1 12600 50/9 (Normal) 52/25 (Tumor)
Prostate Cancer 2 12600 13 (Non-relapse) 8 (Relapse)
Methods

@ Kernel machines Support Vector Machines (SVM) and Kernel
Fisher Discriminant (KFD) with Kendall kernel, linear kernel,
Gaussian RBF kernel, polynomial kernel.

@ Top Scoring Pairs (TSP) classifiers [?].
@ Hybrid scheme of SVM + TSP feature selection algorithm.
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Kendall kernel SVM

@ Competitive
accuracy!
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Results
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w | @ Competitive

o

accuracy!

N~ ™
R @ Less sensitive to
E © | regularization

o

—— SVMlinearTOP parameter!
—— SVMkdtTOP
31 = SVMpD}yTOP @ No need for
— kTSP :
< | — SVMinearaLL feature selection!
S ] ---- SVMKdtALL
---- SVMpolyALL
w | 7 TSP
CS L T APMV\ T T T T
1 5 10 50 500 5000

Number k of top gene pairs



Application: clustering

@ APA data (full
rankings)

e n=5738,p=5

@ (new) Kernel
k-means vs
(standard)
k-means in Sg

@ Show silhouette
as a function of
number of
clusters (higher
better)




Extension to partial rankings

@ Two interesting types of partial rankings are interleaving partial
ranking
Xiy = Xjy = - =X, k<n.

and top-k partial ranking
Xiy = Xig = - = Xj = Xeesty K< n.

@ Partial rankings can be uniquely represented by a set of
permutations compatible with all the observed partial orders.



Extension to partial rankings

@ Two interesting types of partial rankings are interleaving partial
ranking

Xiy = Xjy = - =X, k<n.
and top-k partial ranking
Xiy = Xig = - = Xj = Xeesty K< n.

@ Partial rankings can be uniquely represented by a set of
permutations compatible with all the observed partial orders.

For these two particular types of partial rankings, the convolution
kernel (Haussler, 1999) induced by Kendall kernel

K*(R,R) = |H||R’| Z Z K (o,0")

occRo’'eR’

can be evaluated in O(k log k) time.




Extension to smoother, continuous representations

|

One sample x Mapping f(x)
p features p(p-1)/2 bits

@ Instead of ® : RP — {0, 1}P(P=1)/2 consider the continuous
mapping W, : RP — RP(P-1)/2;

a a,,

Va(x) =Ed(x +¢) with e~ (L{[—E, E])

@ Corresponding kernel Ga(x, X') = Wa(x) TWa(x)



Computation of G(x, x”)

@ Gz(x,x’) can be computed exactly in O(p?) by
explicit computation of W,(x) in RP(P—1)/2

@ Ga(x, x') can be computed approximately in O(D?plog p) by
Monte-Carlo approximation:

D
~ 1
Ga(x,x') = o > K(x+e€,x +¢)
ij=1
@ Theorem: for supervised learning, Monte-Carlo approximation is
better! than exact computation when n = o(p'/3)

'faster for the same accuracy



Performance of Gy(x, x)
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One sample x Mapping f(x)
p features p(p-1)/2 bits
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@ Full quantile normalization as matrix learning

@ A representation of vectors that only depends on the relative order
of features

@ Atractable O(plog p) kernel for (partial) ranking and permutations
@ Open questions

@ higher-order comparisons

e primal approximation in less than O(p?) dimension

o other applications (learning to rank etc..)
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