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The « n << p » problem

n = 1E2 ~ 1E4 
(patients) 
!
p = 1E4 ~ 1E7 
(genes, mutations, 
copy numbers, …)



How to learn with n<<p?

1. Simplify data: pairwise comparisons 
!
2. Add prior knowledge: structured 

feature selection
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5.3 Characterization of k-TSPas an ensemblemethod

Various empirical observations and studies have shown that it is
unusual for a single learning algorithm to outperform other learning
methods in all problem domains. Random Forests (Amit and
Geman, 1997; Breiman, 2001), bagging (Breiman, 1996) and boost-
ing (Freund and Schapire, 1996, 1997) represent recent success
stories of ensemble methods, and all have been shown to perform
well in classifying different microarray datasets (Dudoit et al.,
2002; Dettling and Buhlmann, 2003; Long and Vega, 2003; Tan
and Gilbert, 2003).
The k-TSP method can be seen as a straightforward extension of

the TSP classifier to an elementary ensemble approach in which the
‘base classifiers’ are the TSP classifiers for the top-scoring k dis-
joints pairs of genes. Consequently, the k-TSP classifier maintains
interpretability at the same time often improving the accuracy of the
TSP classifier by recruiting additional ‘weaker’ classifiers in the
final decision-making process.

5.4 Interpretation and biological significance of the
TSP-family classifiers

Interpretation of TSP. The TSP classifier can be easily translated
into a set of IF-ELSE decision rules describing the relationship
between the relative expression levels of the informative genes

and the class labels, as illustrated in Figure 2a for the Leukemia
dataset (Golub et al., 1999). The gene pair (SPTAN1, CD33) is
induced by the TSP learning algorithm for distinguishing ALL
(acute lymphoblastic leukemia) from AML (acute myeloid leuke-
mia). The corresponding decision rule is

IF SPTAN1>CD33 THEN ALL; ELSE AML:

In words: if the expression of SPTAN1 is greater than or equal to
CD33, then the sample is classified as ALL, otherwise AML. This
simple decision rule has an estimated accuracy of 93.80% (using
LOOCV). CD33 is one of the genes listed in the ALL vs AML
predictor in Golub et al. (1999), which is based on fifty genes. CD33
encodes a cell surface protein and SPTAN1 is involved in secretion
and it interacts with calmodulin in a calcium-dependent manner.
Early studies (Griffin et al., 1983; Bernstein et al., 1992) have
identified CD33 as a cell surface marker for AML, while several
studies have successfully demonstrated the use of monoclonal
antibodies in discriminating AML from ALL (Golub et al.,
1999), indicating that CD33 may be a therapeutic target for
AML. In another study using gene expression data to distinguish
subtypes of leukemia (Armstrong et al., 2002), SPTAN1 is found
to be over-expressed in ALL compared with AML. These findings
confirm the biological significance of the genes identified by
the TSP.

Fig. 2. Genes that distinguishALL fromAML.Each row corresponds to a gene and each column corresponds to a sample array.Genes labeledwith an asterisk (*)
were identified inGolub et al. (1999). This heatmap is generated by using thematrix2png software (Pavlidis andNoble, 2003). The expression level for each gene

is normalized across the samples such that themean is 0 and the standard deviation (SD) is 1. Geneswith expression levels greater than themean are colored in red

and those below the mean are colored in green. The scale indicates the number of SDs above or below the mean. In (a–c), the discriminative genes and decision
rules in three cases are shown: (a) TSP Classifier, (b) k-TSP Classifier and (c) Decision tree (DT) classifier.

A.C.Tan et al.
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Top Scoring Pairs (TSP)

(Geman et al., 2004; Tan et al., 2005; Leek, 2009;…)



Generalization of TSP

One sample x 
p features

Mapping f(x) 
p(p-1)/2 bits

Select features 
- TSP 
- k-TSP 
- …

Linear model 
- logistic regression 
- ridge regression 
- SVM 
- …



Practical problem

Storing O(p^2) bits 
per sample

Training a linear model 
in O(p^2) dimensions



A trick

x =

O(p^2) O(p log(p))

(Jiao and V., 2015)

+kernel trick = we can train linear models efficiently



ExperimentGene Expression Data

Datasets

Dataset No. of features No. of samples (training/test)
C1 C2

Breast Cancer 1 23624 44/7 (Non-relapse) 32/12 (Relapse)
Breast Cancer 2 22283 142 (Non-relapse) 56 (Relapse)
Breast Cancer 3 22283 71 (Poor Prognosis) 138 (Good Prognosis)
Colon Tumor 2000 40 (Tumor) 22 (Normal)
Lung Cancer 1 7129 24 (Poor Prognosis) 62 (Good Prognosis)
Lung Cancer 2 12533 16/134 (ADCA) 16/15 (MPM)

Medulloblastoma 7129 39 (Failure) 21 (Survivor)
Ovarian Cancer 15154 162 (Cancer) 91 (Normal)

Prostate Cancer 1 12600 50/9 (Normal) 52/25 (Tumor)
Prostate Cancer 2 12600 13 (Non-relapse) 8 (Relapse)

Methods

Kernel machines Support Vector Machines (SVM) and Kernel
Fisher Discriminant (KFD) with Kendall kernel, linear kernel,
Gaussian RBF kernel, polynomial kernel.

Top Scoring Pairs (TSP) classifiers [Tan et al., 2005].

Hybrid scheme of SVM + TSP feature selection algorithm.
17 / 25
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The Kendall and Mallows Kernels for Permutations

Table 1. Information of biomedial datasets.

Dataset No. of features No. of samples (training/test) Reference
C1 C2

Breast Cancer 1 23624 44/7 (Non-relapse) 32/12 (Relapse) (van ’t Veer et al., 2002)
Breast Cancer 2 22283 142 (Non-relapse) 56 (Relapse) (Desmedt et al., 2007)
Breast Cancer 3 22283 71 (Poor Prognosis) 138 (Good Prognosis) (Wang et al., 2005)

Colon Tumor 2000 40 (Tumor) 22 (Normal) (Alon et al., 1999)
Lung Adenocarcinoma 1 7129 24 (Poor Prognosis) 62 (Good Prognosis) (Beer et al., 2002)

Lung Cancer 2 12533 16/134 (ADCA) 16/15 (MPM) (Gordon et al., 2002)
Medulloblastoma 7129 39 (Failure) 21 (Survivor) (Pomeroy et al., 2002)
Ovarian Cancer 15154 162 (Cancer) 91 (Normal) (Petricoin et al., 2002)

Prostate Cancer 1 12600 50/9 (Normal) 52/25 (Tumor) (Singh et al., 2002)
Prostate Cancer 2 12600 13 (Non-relapse) 8 (Relapse) (Singh et al., 2002)

Table 2. Prediction accuracy (%) of different models across datasets.

Average BC1 BC2 BC3 CT LA1 LC2 MB OC PC1 PC2
SVMkdtALL 79.39 78.95 71.31 67.34 85.78 70.98 97.99 63.67 99.48 100 58.4

SVMlinearTOP 77.16 84.21 69.29 67.11 84.19 63.92 97.32 65.17 99.41 85.29 55.7
SVMlinearALL 76.09 78.95 71.67 64.27 86.73 70.23 97.99 62.67 99.64 73.53 55.17

SVMkdtTOP 75.5 52.63 70.61 65.81 85.46 67.7 97.99 58.33 99.92 97.06 59.47
SVMpolyALL 74.54 68.42 71.62 63.66 78.43 70.53 98.66 61.17 99.28 79.41 54.23
KFDkdtALL 74.33 63.16 59.41 67.22 85.46 59.08 99.33 59.33 98.73 97.06 54.57

kTSP 74.03 57.89 58.22 64.47 87.23 61.7 97.99 56 99.92 100 56.83
SVMpolyTOP 73.99 63.16 69.44 66.26 79.14 65.98 99.33 60 99.21 88.24 49.1
KFDlinearALL 71.81 63.16 60.43 67.52 77.26 57.24 97.99 59.5 100 73.53 61.43
KFDpolyALL 71.39 63.16 60.48 67.38 75.1 58.52 97.99 60.33 100 73.53 57.43

TSP 69.71 68.42 49.58 57.8 85.61 58.96 95.97 52.67 99.8 76.47 51.83
SVMrbfALL 69.31 63.16 71.41 65.87 81.18 70.84 93.96 63.83 98.85 26.47 57.5
KFDrbfALL 66.39 63.16 60.48 66.03 83.71 58.73 97.32 59.67 98.46 26.47 49.87

APMV 61.91 84.21 65.98 33.96 64.49 33.6 89.93 42.17 85.19 73.53 46

trained on a subset of features selected from the top scoring
pairs (77.16%) and a standard linear SVM (76.09%). The
SVM with Kendall kernel outperforms all the other meth-
ods at a P-value of 0.07 according to a Wilcoxon rank test.
We note that even though models based on KFD generally
are less accurate than those based on SVM, the relative or-
der of the different kernels is consistent between KFD and
SVM, adding evidence that the Kendall kernel provides an
interesting alternative to other kernels in this context. The
performance of TSP and k-TSP, based on majority vote
rules, are comparatively worse than those of SVM using
the same features, as already observed by Shi et al. (2011).

Figure 2 further shows how the performance of different
kernels depends on the choice of the C parameter or the
SVM (Middle), and on the number of features used (Right),
on some representative datasets. We observe that compared
to other kernels, a SVM with the Kendall kernel is rela-
tively insensitive to hyper-parameter C especially when C
is large, which corresponds to a hard-margin SVM. This
may explain in part the success of SVM in this setting,
since the risk of choosing a bad C during training is re-
duced. Regarding the number of features used in case of
feature selection, we notice that it does not seem to be ben-
eficial to perform feature selection in this problem, explain-

ing why the Kendall kernel which uses all pairwise compar-
isons between features outperforms other kernels restricted
to a subset of these pairs.

Finally, as a proof of concept we empirically compare on
one dataset the smooth alternative (10) and its Monte Carlo
approximate (13) with the original Kendall kernel. Figure
3 shows how the performance varies with the amount of
noise added to the samples (Left), and how the performance
varies with the number of samples in the Monte Carlo
scheme for a given amount of noise (Right). It confirms that
the smooth alternative (10) can improve the performance of
the Kendall kernel, and that the amount of noise (window
size) should be considered as a parameter of the kernel to
be optimized. Although the D2-sample Monte Carlo ap-
proximate kernel (13) mainly serves as a fast estimate to the
exact evaluation of (10), it shows that the idea of jittered in-
put with specific noise can also bring a tempting benefit for
data analysis with Kendall kernel, even when D is small.
This also justifies the motivation of our proposed smooth
alternative (10). Last but not least, despite the fact that the
convergence rate of D2-sample Monte Carlo approximate
to the exact kernel evaluation is guaranteed by Theorem 3,
experiments show that the convergence in practice is typ-
ically faster than the theoretical bound, and even faster in



Summary

- Robust representation as O(p^2) bits 
- Computationally efficient (Kendall kernel) 
- Good accuracy 
- Extension to missing values OK 
- Extension to « fuzzy comparison » OK 
- Open questions:  
 - robustness across technologies (Patil et 

al., 2015) ? 
 - correction for batch / structure?
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Also relevant for 
- isoform identification 

from RNA-seq data 
(IsoLasso, FlipFlop 
etc…) 

- gene network inference 
(GENIE3, TIGRESS, 
etc…)« Molecular signature »



Some "surprising" results
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70 genes (Nature, 2002)
Articles

Introduction
About 60–70% of patients with lymph-node-negative
breast cancer are cured by local or regional treatment
alone.1,2 The most widely used treatment guidelines are
the St Gallen3 and the US National Institutes of Health4

consensus criteria. These guidelines recommend
adjuvant systemic therapy for 85–90% of lymph-node-
negative patients. There is a need for specific definition
of an individual patient’s risk of disease recurrence to
ensure that she receives appropriate therapy. Currently,
few diagnostic tools are available to identify at-risk
patients. To date, gene-expression patterns have been
used to classify breast tumours into clinically relevant
subtypes.5–21 We report a comprehensive genome-wide
assessment of gene expression to identify broadly
applicable prognostic markers.5,6 In this study, we
aimed to develop a gene-expression-based algorithm
and to use it to provide quantitative predictions on
disease outcome for patients with lymph-node-negative
breast cancer.

Methods
Patients’ samples
We selected from our tumour bank at the Erasmus
Medical Center (Rotterdam, Netherlands) frozen
tumour samples from patients with lymph-node-
negative breast cancer who were treated during

1980–95, but who did not receive systemic neoadjuvant
or adjuvant therapy. Tumour samples were submitted
to our reference laboratory from 25 regional hospitals
for measurements of steroid-hormone receptors.
Guidelines for primary treatment were similar for all
hospitals. Selection of tumours aimed to avoid bias. On
the assumption of a relapse rate of 25–30% in 5 years,
and a substantial loss of tumours for quality-control
reasons, 436 samples of invasive tumours were
processed. Patients with poor, intermediate, and good
clinical outcome were included. Samples were rejected
on the basis of insufficient tumour content (53), poor
RNA quality (77), or poor chip quality (20); thus,
286 samples were eligible for further analysis. The
study was approved by institutional medical ethics
committee (number 02·953). The median age of the
patients at surgery was 52 years (range 26–83). 219 had
undergone breast-conserving surgery and 67 modified
radical mastectomy. Radiotherapy was given to
248 patients (87%) according to our institutional
protocol. The proportions of patients who underwent
breast-conserving therapy and radiotherapy are normal
for lymph-node-negative disease. Patients were
included irrespective of radiotherapy status because
this study did not aim to investigate the effects of a
specific type of surgery or adjuvant radiotherapy.
Furthermore, other studies have shown that
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Gene-expression profiles to predict distant metastasis of
lymph-node-negative primary breast cancer
Yixin Wang, Jan G M Klijn, Yi Zhang, Anieta M Sieuwerts, Maxime P Look, Fei Yang, Dmitri Talantov, Mieke Timmermans, 
Marion E Meijer-van Gelder, Jack Yu, Tim Jatkoe, Els M J J Berns, David Atkins, John A Foekens

Summary
Background Genome-wide measures of gene expression can identify patterns of gene activity that subclassify
tumours and might provide a better means than is currently available for individual risk assessment in patients
with lymph-node-negative breast cancer.

Methods We analysed, with Affymetrix Human U133a GeneChips, the expression of 22 000 transcripts from total
RNA of frozen tumour samples from 286 lymph-node-negative patients who had not received adjuvant systemic
treatment.

Findings In a training set of 115 tumours, we identified a 76-gene signature consisting of 60 genes for patients
positive for oestrogen receptors (ER) and 16 genes for ER-negative patients. This signature showed 93% sensitivity
and 48% specificity in a subsequent independent testing set of 171 lymph-node-negative patients. The gene profile
was highly informative in identifying patients who developed distant metastases within 5 years (hazard ratio 5·67
[95% CI 2·59–12·4]), even when corrected for traditional prognostic factors in multivariate analysis (5·55
[2·46–12·5]). The 76-gene profile also represented a strong prognostic factor for the development of metastasis in
the subgroups of 84 premenopausal patients (9·60 [2·28–40·5]), 87 postmenopausal patients (4·04 [1·57–10·4]),
and 79 patients with tumours of 10–20 mm (14·1 [3·34–59·2]), a group of patients for whom prediction of
prognosis is especially difficult.

Interpretation The identified signature provides a powerful tool for identification of patients at high risk of distant
recurrence. The ability to identify patients who have a favourable prognosis could, after independent
confirmation, allow clinicians to avoid adjuvant systemic therapy or to choose less aggressive therapeutic options.

76 genes (Lancet, 2005)

3 genes in common

Early disappointments…



Lack of stability of signatures
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Not because of feature selection 
method



What’s wrong?

Increasing n helps 
!
!
!
!
!
Can we try to « decrease p »? 
Add prior knowledge,  
Structured feature selection

datasets experiments in Table 3. For each training dataset, we
highlight the method with the best results, and report the average
results (over the 4|3|10~120 folds) in the last row. In this
setting, we barely notice any difference with the cross-validation
setting (Table 2) and essentially reach the same conclusions,
namely that no significant result stands out, except for the t-test to
perform overall better than entropy.

In order to check how these results depend on the size of the
signature, we plot in Figure 2 the AUC of the 9 feature
selection methods, with or without ensemble averaging,
combined with a NC classifier, as a function of the size of the
signature. Interestingly, we observe that in some cases the AUC
seems to increase early, implying that fewer than 100 genes
may be sufficient to obtain the maximal performance. Indeed,
while it is significant that 100-gene signatures perform better
than a list of fewer than 10 features (pv0:05 regardless of the
method or the setting), signatures of size 50 do not lead to

significantly worse performances in general. It is worth noting
that some algorithms have an increasing AUC curve in this
range of sizes, and we observe no overfitting that may lead to a
decreasing AUC when the number of features increases.
Random selection was previously shown to give an AUC
equivalent to other methods for a large signature, but as we
observe on this picture, the fewer genes the larger the gap in
AUC.

In order to assess the influence of the number of samples used
to estimate the signature, we computed the 10-fold cross-
validation AUC (repeated 50 times) reached with a NC classifier
as a function of the number of samples in the training set. Figure 3
shows the AUC averaged over the four datasets, for each feature
selection method, while Figure 4 shows the same AUC on each
dataset separately. With no surprise, we observe that the average
accuracy clearly increases with the number of samples in the
training set, for all methods, and that the relative order of the
different methods does not strongly depend on the number of
samples. While it is impossible to extrapolate the curve, it is not
hard to imagine that it would continue to increase to a certain
point. On this plot, t-test clearly outperforms the rest of the
methods. However, looking at the behavior of the methods with
respect to the size of the training set on each set separately, we
note that not only the level of performance but also the relative
order between methods strongly depend on the dataset. For
example, while t-test outperforms all methods in the GSE4922
dataset, Lasso and Elastic Net seem to be the best choices in
GSE2034. On the other hand, we observe that the best methods
on each datasets have not reached their asymptote yet, suggesting
by extrapolation that better accuracies could be reached with
larger cohorts.

Stability of gene lists
We now assess the stability of signatures created by different

feature selection methods at the gene level. Figure 5 compares the
stability of 100-gene signatures estimated by all feature selection

Figure 6. Evolution of stability of t-test signatures with respect
to the size of the training set in the hard-perturbation and the
between datasets settings from GSE2034 and GSE4922.
doi:10.1371/journal.pone.0028210.g006

Figure 7. Stability of different methods in the between-dataset setting, as a function of the size of the signature.
doi:10.1371/journal.pone.0028210.g007

Feature Selection Methods for Molecular Signatures
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subsets of size N=2, where N is the number of samples in a dataset,
to ensure that they have no overlap. Again, we measure the
overlap between the signatures estimated on training sets with no
sample in common. We call this procedure the hard-perturbation
setting. Finally, to assess the stability across datasets, we estimate
signatures on each dataset independently, using all samples on
each dataset, and measure their overlap. We call this procedure
the between-datasets setting below.

Functional interpretability and stability of a signature
To interpret a signature in terms of biological functions, we

perform functional enrichment analysis by inspecting the signature
for over-represented Gene Ontology (GO) terms. This may hint at
biological hypothesis underlying the classification [6,7]. We
perform a hypergeometrical test on each of the 5830 GO

biological process (BP) terms that are associated to at least one
gene in our dataset, and correct the resulting p-values for multiple
testing through the procedure of [19]. To assess the interpretability of
a signature, i.e., how easily one can extract a biological
interpretation, we compute the number of GO terms over-
represented at 5% FDR. To compare two signatures in functional
terms, we first extract from each signature the list of 10 GO terms
with the smallest p-values, and compare the two lists of GO terms
by the similarity measure of [20] which takes into account not only
the overlap between the lists but also the relationships between
GO BP. Finally, to assess the functional stability of a selection
method, we follow a procedure similar to the one presented in the
previous section and measure the mean functional similarity of
signatures in the soft-perturbation, hard-perturbation and be-
tween-datasets settings.

Data
We collected 4 breast cancer datasets from Gene Expression

Omnibus [21], as described in Table 1. The four datasets address
the same problem of predicting metastatic relapse in breast cancer
on different cohorts, and were obtained with the Affymetrix HG-
U133A technology. We used a custom CDF file with EntrezGene
ids as identifiers [22] to estimate expression levels for 12,065 genes
on each array, and normalized all arrays with the Robust Multi-
array Average procedure [23].

Results

Accuracy
We first assess the accuracy of signatures obtained by different

feature selection methods. Intuitively, the accuracy refers to the
performance that a classifier trained on the genes in the signature can
reach in prediction. Although some feature selection methods
(wrapper and embedded) jointly estimate a predictor, we dissociate
here the process of selecting a set of genes and training a predictor on
these genes, in order to perform a fair comparison common to all
feature selection methods. We test the accuracy of 100-gene signatures
obtained by each feature selection method, combined with 5 classifiers
to build a predictor as explained in the Methods section. Table 2
shows the mean accuracies (in AUC) over the datasets as reached by
the different combinations in 10-fold cross-validation.

Figure 3. Area under the ROC Curve. NC classifier trained as a
function of the number of samples in a 50|10-fold CV setting. We
show here the accuracy for 100-gene signatures as averaged over the 4
datasets. Note that the maximum value of the x axis is constrained by
the smallest dataset, namely GSE2990.
doi:10.1371/journal.pone.0028210.g003

Figure 4. Area under the ROC Curve. NC classifier trained as a function of the number of samples in a 50|10-fold CV setting for each of the four
datasets. We show here the accuracy for 100-gene signatures.
doi:10.1371/journal.pone.0028210.g004

Feature Selection Methods for Molecular Signatures
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Sparsity with the LASSO

- Linear model 
f(x) = w1 x1 + w2 x2 + … + wP xP 
!
- Sparse when wK=0 for many K’s 
!
- Learn a sparse model by 
minimize Error(w)   
such that   
w is in the grey box O 
!
- O is convex -> efficient algorithm 
- O has edges -> sparsity

Why LASSO leads to sparse solutions

Jean-Philippe Vert (ParisTech) Machine Learning in Computational Biology 251 / 432



Structured sparsity with 
atomic norms

1) Choose a set of ATOMS

(Chandrasekaran et al., 2012, …)



1) Choose a set of ATOMS

2) Take the convex hull O

Structured sparsity with 
atomic norms

(Chandrasekaran et al., 2012, …)



1) Choose a set of ATOMS

2) Take the convex hull

3) Minimize Error(w) 
 such that 
    w is in the convex hull

The solution is a sparse model over the ATOMS!

Structured sparsity with 
atomic norms

(Chandrasekaran et al., 2012, …)



Unit norm balls
Geometric interpretation

∥w∥2 ∥w∥1
√

w2
1 + w2

2 + |w3|

Beyond sparsity: structured sparsity

Ridge Lasso Group Lasso

Quizz: where are the atoms?
Examples

Vector `1-norm: x 2 Rp 7! kxk1

A =
�± ek | 1  k  p

 

Matrix trace norm: Z 2 Rm1⇥m2 7! kZk⇤ (sum of singular value)

A =
�

ab> : a 2 Rm1 , b 2 Rm2 , k a k2 = k b k2 = 1
 

Trace norm



Graph Lasso

To select features that tend to be connected 
over a given network

Graph-based structured feature selection

Graph lasso(s)

⌦1(�) =
X

i⇠j

q
�2

i + �2
j , (Jenatton et al., 2009)

⌦2(�) = sup
↵2Rp:8i⇠j,k↵2

i +↵2
j k1

↵>� . (Jacob et al., 2008)

Joint work with...
Emile Richard (Stanford)

Guillaume Obozinski (Ecole des Ponts - ParisTech)

G. Obozinski

Joint work with

Elsa Bernard Laurent Jacob Julien Mairal Eric ViaraL. Jacob

(Jacob et al., 2009)



Lasso signature (accuracy 0.61)

Breast cancer prognosis

Breast cancer prognosis signature 
with Lasso (accuracy=61%)



Breast cancer prognosis signature 
with Graph Lasso (accuracy=64%)Graph Lasso signature (accuracy 0.64)

Breast cancer prognosis



Group-Lasso strategy
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Joint work with

Elsa Bernard Laurent Jacob Julien Mairal Eric Viara

Joint isoform detection from multiple 
RNA-Seq samples

Group lasso (Yuan and Lin, 2006)
For x 2 Rp and G = {g1, . . . , gG} a partition of [1, p]:

k x k1,2 =
X

g2G
k xg k2

is the atomic norm associated to the set of atoms

AG =
[

g2G
{u 2 Rp : supp(u) = g, k u k2 = 1}

G = {{1, 2} , {3}}
k x k1,2 = k(x1, x2)

>k2 + kx3k2

=
q

x2
1 + x2

2 +
q

x2
3

(Bernard et al., 2015)

Multi-sample case summary

Extension of FlipFlop to multiple samples (with group Lasso
formulation)
No more flow trick
http://cbio.mines-paristech.fr/flipflop

Available as an R package
> source("http://bioconductor.org/biocLite.R")

> biocLite("flipflop")

E. Bernard, L. Jacob, J. Mairal, E. Viara and J.-P. Vert. A
convex formulation for joint RNA isoform detection and
quantification from multiple RNA-seq samples. Technical
report HAL-01123141, March 2015.



Columns with disjoint supports

X =

Motivation: multiclass or multitask classification problems where
we want to select features specific to each class or task
Example: recognize identify and emotion of a person from an
image (Romera-Paredes et al., 2012), or hierarchical
coarse-to-fine classifier (Xiao et al., 2011; Hwang et al., 2011)

Learning sparse models with  
disjoint support ?

Motivation 
- Multiclass or multi-task 

classification problems 
- Eg: cascade of classifiers

Figure 2.1: Taxonomic constitution of the benchmark dataset. The tree shown
on the upper part of the figure shows the taxonomic organisation of the bacterial panel
considered in our benchmark. The leaves of the taxonomy correpond to the 20 species
and their parent to the 9 genera. Internal correspond to either phenotypic (e.g. Gram
positive and negative at the top of the taxonomy) or evolutive attributes. Nodes shown
in grey are those that can be pruned for computational e�ciency, because they have a
single child. Circles shown on the bottom represent the number of strains (dark grey)
and spectra (light grey) available for each species.

repository1. For intellectual property issues, it had to be anonymized: the name of the

species are not given, and most of the nodes of the taxonomy are hidden. We note

however that the considered taxonomy is polyphasic and involves both phenotypic and

evolutionary traits. For instance, the uppermost level of the taxonomy separates species

into Gram positive and Gram negative, and the two lowest levels provide the species

and genus information. Such a hybrid taxonomic definition is common in the context of

clinical microbiology, where manual identification involves a succesion of tests meant to

establish several phenotypic and metabolic properties of the micro-organism to identify

(e.g., Gram +/- or aerobe/anaerobe). These properties correspond to the upper levels

of the taxonomy, while the lower ones correspond to standard phylogenetic levels (e.g.,

family, genus and species).

We note finally that we have considered in this study a peak-list representation in

which a mass spectrum is represented by a vector x œ Rp, where p is the numbers of

bins considered to discretize the mass to charge range, and each entry of x is derived

from the intensity of the peak(s) found in corresponding bin. Figure 2.2 represents a

clustered version of the MicroMass dataset, where the rows correspond to 571 mass-

spectra ordered according to their genus label and the columns are the 1300 intensity

peaks grouped by an unsupervised clustering step. Interestingly, we remark block

structures suggesting that some features uniquely belong to one genus class.

While several schemes have been proposed to define such a peak-list representation

(see [49] for instance), we have relied in this study on the approach embedded in the

VITEK-MS system, which provides a peak-list representation of dimension p = 1300,

1
http://archive.ics.uci.edu/ml/datasets/MicroMass

40



Columns with disjoint supports

X =

Motivation: multiclass or multitask classification problems where
we want to select features specific to each class or task
Example: recognize identify and emotion of a person from an
image (Romera-Paredes et al., 2012), or hierarchical
coarse-to-fine classifier (Xiao et al., 2011; Hwang et al., 2011)

An atomic norm

Optimality of ⌦K for p = 2

Theorem (Vervier, Mahé, d’Aspremont, Veyrieras and V., 2014)
For any X 2 Rn⇥2,

k X k2
O = ⌦K (X )

with
K =

✓

1 1
1 1

◆

.

Convex penalty for orthogonal columns

⌦K (X ) =
p

X

i=1

Kiik xi k2 +
X

i 6=j

Kij

�

�

�

x>
i xj

�

�

�

Theorem (Xiao et al., 2011)
If K̄ is positive semidefinite, then ⌦K is convex, where

K̄ij =

(

| Kii | if i = j ,
� �

� Kij
�

� otherwise.

Joint work with...
Kevin Vervier, Pierre Mahé, Jean-Baptiste Veyrieras (Biomerieux)

Alexandre d’Aspremont (CNRS/ENS)

Joint work with...
Kevin Vervier, Pierre Mahé, Jean-Baptiste Veyrieras (Biomerieux)

Alexandre d’Aspremont (CNRS/ENS)

A. d’Aspremont

K. Vervier

(Vervier et al., 2014)



Example: multiclass classification of MS spectra

Features

Sp
ec
tra

0

BAC

LIS

CLO

STR

CIT

ENT

ESH−SHG

YER

HAE

multi

Application: Microbial identification 
from MALDI-TOF MS spectraJoint work with...

Kevin Vervier, Pierre Mahé, Jean-Baptiste Veyrieras (Biomerieux)

Alexandre d’Aspremont (CNRS/ENS)



Low-rank matrices with sparse factors

X =

X =
r

X

i=1

uiv>
i

factors not orthogonal a priori
6= from assuming the SVD of X is sparse

Learning low-rank matrices with 
sparse factors ?

- Bilinear regression with 
sparse latent factors 

- Sparse PCA 
- Sparse CCA 
- Hidden clique problem 
- Community detection in 

networks



Low-rank matrices with sparse factors

X =

X =
r

X

i=1

uiv>
i

factors not orthogonal a priori
6= from assuming the SVD of X is sparse

An atomic normVector case

When q = m2 = 1, ⌦k ,1(x) is the k -support norm of Argyriou et al.
(2012), i.e., the overlapping group lasso with all groups of size k .

Joint work with...
Emile Richard (Stanford)

Guillaume Obozinski (Ecole des Ponts - ParisTech)

Joint work with...
Emile Richard (Stanford)

Guillaume Obozinski (Ecole des Ponts - ParisTech)

E. Richard G. Obozinski

(Richard et al., 2014)

Some properties of the (k , q)-trace norm

Nesting property:

⌦m1,m2(Z ) = kZk⇤  ⌦k ,q(Z )  kZk1 = ⌦1,1(Z )

Dual norm and reformulation

Let k · kop denote the operator norm.
Let Gk ,q =

�

(I, J) ⇢ ⇥⇥

1, m1
⇤⇤⇥ ⇥⇥

1, m2
⇤⇤

, |I| = k , |J| = q
 

Given that kxk⇤
A = supa2A ha, xi, we have

⌦⇤
k ,q(Z ) = max

(I,J)2Gk,q

�

�ZI,J
�

�

op

and

⌦k ,q(Z ) = inf

8

<

:

X

(I,J)2Gk,q

�

�A(IJ)
�

�

⇤ : Z =
X

(I,J)2Gk,q

A(IJ) , supp(A(IJ)) ⇢ I⇥J

9

=
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Low-rank matrices with sparse factors

X =

X =
r

X

i=1

uiv>
i

factors not orthogonal a priori
6= from assuming the SVD of X is sparse

An atomic normVector case

When q = m2 = 1, ⌦k ,1(x) is the k -support norm of Argyriou et al.
(2012), i.e., the overlapping group lasso with all groups of size k .

Joint work with...
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Theorem 
Learning with this norm is 
« statistically optimal » to infer 
sparse low-rank matrices
But 
Convex but NP-hard

(Richard et al., 2014)



Empirical results for sparse PCA

Sample covariance Trace `1 Trace + `1 Sequential ⌦k,�
4.20 ± 0.02 0.98 ± 0.01 2.07 ± 0.01 0.96 ± 0.01 0.93 ± 0.08 0.59 ± 0.03

Table 3: Relative error of covariance estimation with different methods.

• ⌦k,� penalty. The following optimization problem, which is a proximal operator computation,
is solved using the active set algorithm:

min
Z�0

1

2

�

�

�

Z � �̂n

�

�

�

2

Fro
+ �⌦k,�(Z) ,

with ⌦k,� the gauge associated with Ak,� already introduced in Section 3.4. The two param-
eters of this method are � > 0 and k 2 N\{0}.

We report the relative errors
�

�

�

�̂ � �?
�

�

�

Fro
/ k�?kFro over 10 runs of our experiments in Table 3, and

a representation of the estimated matrices can be found in Figure 3. We observe that sparse PCA
methods using ⌦k,� and also the sequential method using deflation steps outperform spectral and
`1 baselines. In addition, penalizing ⌦k,� is superior to the sequential approach. This was expected
since our algorithm minimizes a loss function that is close to the test errors reported, whereas the
sequential scheme does not optimize a well-defined objective.

7 Conclusion

In this work, we proposed two new convex penalties, the (k, q)-trace norm and the (k, q)-CUT norm,
specifically tailored to the estimation of low-rank matrices with sparse factors. Our motivation
for proposing such convex formulations for sparse low-rank matrix inference was twofold. First, it
allowed us to consider algorithmic schemes that are better understood when a problem is formulated
as a convex optimization problem, even though the complexity of solving the problem exactly
remains super-polynomial. Second, using convex geometry allowed us to provide sample complexity
and statistical guarantees, and notably to show that the proposed estimators have much better
statistical dimension than more standard convex combinations of the `1 and trace norms. We
observed that the improvement exists only for matrices: for sparse vectors, using our penalty (which
boils down to the k-support norm in this case) does not improve over the standard `1 norm, in terms
of statistical dimension increase rate.
One limitation of this work is that we assume that the sparsity of the factors is known and fixed.
Lifting this constraint and investigating procedures that can adapt to the size of the blocks (like the
`1 norm adapts to the size of the support) is an interesting direction for future research. Another
interesting direction is to use the nuclear norm formulation of the (k, q)-trace norm as in Lemma
10 to optimize the regularized problem.
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Summary

- Include prior knowledge: « sparse on some 
dictionary » 

- Convex, (usually) computationally efficient 
- Leads to interpretable model 
- Good framework for data integrationConclusion

Atomic norms for structured sparsity
Gain in statistical performance at the expense of algorithmic
complexity (convex but NP-hard)
The structure of the convex problem may be exploited to devise
new efficient heuristics or relaxations



Thanks

Point&d’étape&ITI&/&20&FEVRIER&–&1er&JUILLET&2014&!
C.SURIAM!–!F.LEQUEUX!
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!
POINT&D’ETAPE&20&FEVRIER&–&1er&JUILLET&2014&

!

1/!PROMOTION!DU!PROGRAMME!

!

• Rencontre!avec!les!directeurs,!directeurs!scientifiques!et!directeurs!

des!études!de!l’ENS,!Mines,!ENSCP,!ESPCI!pour!organiser!la!

promotion!du!programme!auprès!des!étudiants.!

• Ecole!des!Mines!:!présentation!d’ITI!devant!le!conseil!de!

l'enseignement!;!8!représentants!d’élèves!;!relance!

• ENSCP!:!mailing!de!présentation!d’ITI!aux!3A!via!la!direction!des!

études.!

• ENS!:!mailing;!présentation!directe!auprès!des!étudiants!(2!élèves!

présents)!;!diffusion!des!plaquettes!et!du!syllabus!;!relance!!

• ESPCI!:!mailing!aux!3A!+!présentation!d’ITI/rencontre!avec!les!

étudiants!en!présence!des!directrice!de!la!scolarité!et!directrice!des!

relations!entreprises!;!8!élèves!présents!

• Contacts!en!cours!avec!les!Ponts!et!l’ENS!Lyon!(en!attente!de!

réponse)!

• Rencontre!à!l’ANRT!avec!le!délégué!général!et!la!chef!du!service!

CIFRE:!accord&de&communication&sur&le&programme&ITI&via&le&site&

internet&de&l’ANRT!(rubrique!"zoom!sur")!

• Promotion!aux!Rencontres!Universités!Entreprises!(RUE)!

• Echange!avec!Stéphane!Mallat!et!réflexion!sur!la!pertinence!du!

programme!tronc!commun!

• Rencontre!avec!le!responsable!des!relations!internationales!de!la!

National!Taiwan!University!à!l’ESPCI:!présentation!d’ITI!

• Contact!en!cours!pour!visite!d‘entreprise!

• Article&les&Echos&

• Création&du&logo&PSL/ITI&et&du&Diplôme&Supérieur&de&Recherche&et&

d’Innovation&de&PSL/ITI&(DSRI),&dépôt&INPI&en&cours.&

!

!

2/!MISE!EN!ŒUVRE!OPERATIONNELLE!DU!PROGRAMME!

Thanks



Future

- Find representations simple (for statistical 
reasons), robust to artefacts (batch, 
technology, …) 

!
- n<<p still far from solved


