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Alternative splicing: 1 gene = many proteins

In human, 28k genes give 120k known transcripts (Pal et al., 2012)

http://dx.doi.org/10.1016/j.pharmthera.2012.08.005


Alternative splicing matters: developmental regulation
in Drosophila

http://orchid.bio.cmu.edu/research.html



Alternative splicing matters: drug targets

(Pal et al., 2012)

http://dx.doi.org/10.1016/j.pharmthera.2012.08.005


The isoform identification and quantification problem

Given one or several biological samples (e.g., cancer tissues), can we:
1 identify the isoform(s) of each gene present in the samples?
2 quantify their abundances?



RNA-seq measures mRNA abundance by sequencing
short fragments

http://rnaseq.uoregon.edu

http://rnaseq.uoregon.edu


RNA-seq and alternative splicing

(Costa et al., 2011)



The one-sample case

RNA-Seq
data

Sample 1 Sample TSample t

Isoforms 1 ? Isoforms t ? Isoforms T ? 

Can we perform accurate de novo isoform reconstruction for one given
sample?



The multi-sample case

RNA-Seq
data

Sample 1 Sample TSample t

Isoforms 1 ? Isoforms t ? Isoforms T ? 

Can we improve isoform detection by using several samples
simultaneously?



Outline

1 The one-sample case

2 The multi-sample case
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From RNA-Seq reads to isoforms

library preparation

RNA sample
transcripts

reads
50-200pb

?

De Novo 
approaches

- Trinity (Grabherr et al. 2011)

- OASES (Schultz et al. 2012)

- Kissplice (Sacomoto et al. 2012)

 

Transcripts 
Quantification using 

annotations
- RQuant (Bohnert et al. 2009)

- FluxCapacitor (Montgomery et al. 2010)

- IsoEM (Nicolae et al. 2011)

- BitSeq (Glaus et al., 2012)

- eXpress (Roberts et al. 2013)

Genome-based 
Transcripts 

Reconstruction
- Scripture (Guttman et al. 2010)

- Cufflinks (Trapnell et al. 2010)

- IsoLasso (Li et al. 2011a)

- NSMAP (Xia et al. 2011)

- SLIDE (Li et al. 2011b)

- iReckon (Mezlini et al. 2012)

- MiTie (Behr et al. 2013)

- FlipFlop



Genome-based isoform reconstruction

Input: 
spliced alignment of reads 
against reference genome

Job: 
reconstruct transcripts
multi-assembly problem

samedi 6 avril 13



Contributions?

library preparation

RNA sample
transcripts

reads
50-200pb

?

Genome-based 
Transcripts 

Reconstruction
- Scripture (Guttman et al. 2010)

- Cufflinks (Trapnell et al. 2010)

- IsoLasso (Li et al. 2011a)

- NSMAP (Xia et al. 2011)

- SLIDE (Li et al. 2011b)

- iReckon (Mezlini et al. 2012)

- MiTie (Behr et al. 2013)

- FlipFlop

What is new ?

mardi 17 décembre 13



Contributions

- NO NEED for FILTERING 
of candidate isoforms

- FASTER than existing methods 
that solve the same problem

- adapted to LONG READS

- R package

flow 
method

mardi 17 décembre 13
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Isoforms are Paths in a Graph

Splicing graph for a gene with 5 exons:
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Graph adapted to long reads
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Graph adapted to long reads

Splicing graph for a gene with 5 exons:
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Graph adapted to long reads

Splicing graph for a gene with 5 exons:
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FlipFlop graph: another path with abundance θ2 ...
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Select a small number of paths?

n exons→∼ 2n paths/candidate isoforms
feature selection problem with ∼ 103 candidates for 10 exons

and ∼ 106 for 20 exons

Minimal path cover
Cufflinks

Regularization approach
IsoLasso, NSMAP,
SLIDE, iReckon, MiTie,
FlipFlop



Select a small number of paths?

Cufflinks strategy
A two-step approach

1 find a set of minimal paths to explain read positions (independent
from read counts)

2 estimate isoform abundances using read counts
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junction (Supplementary Table 1). Of the splice junctions spanned 
by fragment alignments, 70% were present in transcripts annotated 
by the UCSC, Ensembl or VEGA groups (known genes).

To recover the minimal set of transcripts supported by our frag-
ment alignments, we designed a comparative transcriptome assem-
bly algorithm. Expressed sequence tag (EST) assemblers such as 
PASA introduced the idea of collapsing alignments to transcripts 
on the basis of splicing compatibility17, and Dilworth’s theorem18 
has been used to assemble a parsimonious set of haplotypes from 
virus population sequencing reads19. Cufflinks extends these ideas, 
reducing the transcript assembly problem to finding a maximum 
matching in a weighted4 bipartite graph that represents com-
patibilities17 among fragments (Fig. 1a–c and Supplementary 
Methods, section 4). Noncoding RNAs20 and microRNAs21 have 
been reported to regulate cell differentiation and development, and 
coding genes are known to produce noncoding isoforms as a means 
of regulating protein levels through nonsense-mediated decay22. 
For these biologically motivated reasons, the assembler does not 
require that assembled transcripts contain an open reading frame 
(ORF). As Cufflinks does not make use of existing gene annotations 

during assembly, we validated the transcripts by first comparing 
individual time point assemblies to existing annotations.

We recovered a total of 13,692 known isoforms and 12,712 new iso-
forms of known genes. We estimate that 77% of the reads originated 
from previously known transcripts (Supplementary Table 2). Of the 
new isoforms, 7,395 (58%) contain novel splice junctions, with the 
remainder being novel combinations of known splicing outcomes; 
11,712 (92%) have an ORF, 8,752 of which end at an annotated stop 
codon. Although we sequenced deeply by current standards, 73% of 
the moderately abundant transcripts (15–30 expected fragments per 
kilobase of transcript per million fragments mapped, abbreviated 
FPKM; see below for further explanation) detected at the 60-h time 
point with three lanes of GAII transcriptome sequencing were fully 
recovered with just a single lane. Because distinguishing a full-length 
transcript from a partially assembled fragment is difficult, we con-
servatively excluded from further analyses the novel isoforms that 
were unique to a single time point. Out of the new isoforms, 3,724 
were present in multiple time points, and 581 were present at all 
time points; 6,518 (51%) of the new isoforms and 2,316 (62%) of 
the multiple time point novel isoforms were tiled by high-identity 

a

c

db

e

Map paired cDNA
fragment sequences

to genome
TopHat

Cufflinks

Spliced fragment
alignments

Abundance estimationAssembly
Mutually

incompatible
fragments

Transcript coverage
and compatibility

Fragment
length

distribution

Overlap graph

Maximum likelihood
abundances

Log-likelihood

Minimum path cover

Transcripts

Transcripts
and their

abundances

3

3

1

1

2

2

Figure 1 Overview of Cufflinks. (a) The algorithm takes as input cDNA 
fragment sequences that have been aligned to the genome by software 
capable of producing spliced alignments, such as TopHat. (b–e) With 
paired-end RNA-Seq, Cufflinks treats each pair of fragment reads as 
a single alignment. The algorithm assembles overlapping ‘bundles’ of 
fragment alignments (b,c) separately, which reduces running time and 
memory use, because each bundle typically contains the fragments from 
no more than a few genes. Cufflinks then estimates the abundances of 
the assembled transcripts (d,e). The first step in fragment assembly is 
to identify pairs of ‘incompatible’ fragments that must have originated 
from distinct spliced mRNA isoforms (b). Fragments are connected in an 
‘overlap graph’ when they are compatible and their alignments overlap 
in the genome. Each fragment has one node in the graph, and an edge, 
directed from left to right along the genome, is placed between each 
pair of compatible fragments. In this example, the yellow, blue and red 
fragments must have originated from separate isoforms, but any other 
fragment could have come from the same transcript as one of these 
three. Isoforms are then assembled from the overlap graph (c). Paths 
through the graph correspond to sets of mutually compatible fragments 
that could be merged into complete isoforms. The overlap graph here can 
be minimally ‘covered’ by three paths (shaded in yellow, blue and red), 
each representing a different isoform. Dilworth’s Theorem states that 
the number of mutually incompatible reads is the same as the minimum 
number of transcripts needed to ‘explain’ all the fragments. Cufflinks 
implements a proof of Dilworth’s Theorem that produces a minimal set 
of paths that cover all the fragments in the overlap graph by finding the 
largest set of reads with the property that no two could have originated 
from the same isoform. Next, transcript abundance is estimated  
(d). Fragments are matched (denoted here using color) to the transcripts 
from which they could have originated. The violet fragment could have 
originated from the blue or red isoform. Gray fragments could have come 
from any of the three shown. Cufflinks estimates transcript abundances 
using a statistical model in which the probability of observing each 
fragment is a linear function of the abundances of the transcripts from 
which it could have originated. Because only the ends of each fragment 
are sequenced, the length of each may be unknown. Assigning a fragment 
to different isoforms often implies a different length for it. Cufflinks 
incorporates the distribution of fragment lengths to help assign fragments 
to isoforms. For example, the violet fragment would be much longer, and 
very improbable according to the Cufflinks model, if it were to come from 
the red isoform instead of the blue isoform. Last, the program numerically 
maximizes a function that assigns a likelihood to all possible sets of 
relative abundances of the yellow, red and blue isoforms ( 1, 2, 3)  
(e), producing the abundances that best explain the observed fragments, 
shown as a pie chart.
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Select a small number of paths?

Regularization approach
1 Suppose there are c candidate isoforms (c large)
2 Let θ the unknown c-dimensional vector of abundance
3 Let L(φ) quantify whether θ explains the observed read counts

e.g., Poisson negative log-likelihood:

L(θ) =
∑

node u

− log p(Xu) with Xu ∼ P(δu) and δu ∝ lu
∑

path p3u

θp

4 Regularization-based approaches try to solve:

min
θ∈Rc

+

L(θ) such that θ is sparse
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Isoform Deconvolution with the Lasso

Lasso
Estimate θ sparse by solving:

min
θ∈Rc

+

L(θ) + λ‖θ‖1 ,

with L a convex loss function.

Computationally challenging:
→ IsoLasso: strong filtering
→ NSMAP, SLIDE: number of exons cut-off

FlipFlop: Fast Lasso-based Isoform Prediction as a FLOw
Problem
→ no filtering
→ no exon restrictions



Fast isoform deconvolution with the Lasso (FlipFlop)

Theorem (Bernard, Mairal, Jacob and V., 2014)
The isoform deconvolution problem

min
θ∈Rc

+

L(θ) + λ‖ θ ‖1

can be solved in polynomial time in the number of exon.

Key ideas
1 Reformulation as a convex cost flow problem (Mairal and Yu,

2012)
2 Recover isoforms by flow decomposition algorithm

"Feature selection on an exponential number of features
in polynomial time"



Combinations of isoforms are flows

Linear combinations of isoforms ⇒ Flow value on every edges
Flow value on every edges ⇒

Flow Decomposition
(linear time algorithm)

Paths with given value/abundance

Flux Capacitor. 2008.

A Novel Min-Cost Flow Method for Estimating Transcript Expression with RNA-Seq. RECOMB-2013.



Equivalent flow problem (simpler!)

L(θ) depends only on the values of the flow on the vertices

‖θ‖1 =
∑

path p θp = ft

Therefore,

min
θ∈Rc

+

L(θ) + λ‖θ‖1 is equivalent to min
f flow
L̃(f ) + λft



Summary

Isoform Detection=Path Selection Problem
∼ 2n variables (all paths in the splicing graph)

m

Equivalent Network Flow Problem

∼ n2

2 variables (all nodes of the splicing graph)

↓

Network Flow Algorithms
Efficient Algorithms ! Polynomial Time.



Human Simulation: Precision/Recall
hg19, 1137 genes on chr1, 1million 200 bp single-end reads by transcript levels.
Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html
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Performance increases with read length
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Performance increases with coverage

1 M (150bp) 5 M (150bp) 10 M (150bp)
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Extension to paired-end reads OK.

100 bp (400bp fragments, 1M reads) 125 bp (400bp fragments, 1M reads) 150 bp (400bp fragments, 1M reads) 175 bp (400bp fragments, 1M reads)
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One-sample case summary

FlipFlop: Fast method for exact Lasso-based isoform detection
and quantification
http://cbio.mines-paristech.fr/flipflop

Available as an R package
> source("http://bioconductor.org/biocLite.R")
> biocLite("flipflop")

E. Bernard, L. Jacob, J. Mairal and J.-P. Vert. Efficient RNA
isoform identification and quantification from RNA-seq data
with network flows. Bioinformatics, 30(17):247-55, 2014



Outline

1 The one-sample case

2 The multi-sample case



Strategy for 1 sample

Sample t

Isoforms t  

Splicing graph

mapping
&

counting

FlipFlop
fast lasso-based 

isoform prediction 
as a flow problem 

Unidimensional
splicing graph

 

[10]

[5] [3]

[7][7]

[10]

: exon or junction

[10]: read counts



Multi-dimensional case

Sample 1 Sample TSample t

6
10
8[ ]

5
5
2[ ] 3

3
2[ ]

 

3
7
6[ ]  

3
7
6[ ]

6
10
8[ ]

Multi-dimensional
splicing graph



Multi-dimensional case

Sample 1 Sample TSample t

6
10
8[ ]

5
5
2[ ] 3

3
2[ ]

 

3
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3
7
6[ ]

6
10
8[ ]

Multi-dimensional
splicing graph

Can we find a sparse set of paths that explains the
multi-dimensional read counts?



Notations

Sample 1 Sample TSample t
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n nodes, T
samples
P paths in the
splicing graph
yt ∈ Rn

+ vector of
counts for sample
t
y1 . . . yt . . . yT

θt ∈ R|P|
+ vector of

isoform
abundances for
sample t
θ1 . . . θt . . . θT



Group-Lasso strategy
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More formally
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each isoform defines a group θp = {θt
p, t ∈ [[1,T ]]}

the multi-samples loss is the sum of the independent losses

L(θ) =
T∑

t=1

loss(yt , θt)

Ideally we want to solve the NP-hard L0 problem

min
{θp}p∈1,...,|P|

L(θ) + λ
∑
p∈P

1{θp 6=0}
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each isoform defines a group θp = {θt
p, t ∈ [[1,T ]]}

the multi-samples loss is the sum of the independent losses

L(θ) =
T∑

t=1

loss(yt , θt)

Instead we solve the group-lasso convex relaxation

min
{θp}p∈1,...,|P|

L(θ) + λ
∑
p∈P
‖θp‖2



Toy simulation

∀t ∈ {1, . . . ,T}, θt = θo + ε
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More realistic simulation
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GroupLasso vs State-of-Art

∀t ∈ {1, . . . ,T}, suppθt = suppθo
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modENCODE data
Time course development of D.melanogaster
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Multi-sample case summary

Extension of FlipFlop to multiple samples (with group Lasso
formulation)
No more flow trick
http://cbio.mines-paristech.fr/flipflop

Available as an R package
> source("http://bioconductor.org/biocLite.R")
> biocLite("flipflop")

E. Bernard, L. Jacob, J. Mairal, E. Viara and J.-P. Vert. A
convex formulation for joint RNA isoform detection and
quantification from multiple RNA-seq samples. Technical
report HAL-01123141, March 2015.
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CIFRE:!accord&de&communication&sur&le&programme&ITI&via&le&site&

internet&de&l’ANRT!(rubrique!"zoom!sur")!

• Promotion!aux!Rencontres!Universités!Entreprises!(RUE)!

• Echange!avec!Stéphane!Mallat!et!réflexion!sur!la!pertinence!du!

programme!tronc!commun!

• Rencontre!avec!le!responsable!des!relations!internationales!de!la!

National!Taiwan!University!à!l’ESPCI:!présentation!d’ITI!

• Contact!en!cours!pour!visite!d‘entreprise!

• Article&les&Echos&

• Création&du&logo&PSL/ITI&et&du&Diplôme&Supérieur&de&Recherche&et&

d’Innovation&de&PSL/ITI&(DSRI),&dépôt&INPI&en&cours.&

!

!

2/!MISE!EN!ŒUVRE!OPERATIONNELLE!DU!PROGRAMME!
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