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Opportunities

What is your risk of developing a cancer? (prevention)
Once detected, what precisely is your cancer (diagnosis)
After treatment, what is your risk of relapse? (prognosis)
What is the best therapy for your cancer? (precision medicine)
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Challenges

High dimension
Few samples
Structured data
Heterogeneous data
Prior knowledge
Fast and scalable
implementations
Interpretable models



Learning with regularization

For a sample x ∈ Rp, learn a linear decision function:

fβ(x) = β>x

by solving
min
β∈Rp

R(fβ) + λΩ(β)

R(fβ) empirical risk, e.g., R(fβ) = 1
n
∑n

i=1 (fβ(xi)− yi)
2

Ω(β) penalty, to control overfitting in high dimension



Outline

1 FlipFlop: fast isoform prediction from RNA-seq data

2 Learning molecular classifiers with network information

3 Kernel bilinear regression for toxicogenomics
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Joint work with...

Elsa Bernard (Mines ParisTech / Institut Curie), Laurent Jacob (CNRS
/ LBBE), Julien Mairal (INRIA)



Alternative splicing: 1 gene = many proteins

In human, 28k genes give 120k known transcripts (Pal et al., 2012)

http://dx.doi.org/10.1016/j.pharmthera.2012.08.005


Opportunities for drug developments...

(Pal et al., 2012)

http://dx.doi.org/10.1016/j.pharmthera.2012.08.005


The isoform identification and quantification problem

Given a biological sample (e.g., cancer tissue), can we:
1 identify the isoform(s) of each gene present in the sample?
2 quantify their abundance?



RNA-seq measures mRNA abundance by sequencing
short fragments

http://rnaseq.uoregon.edu

http://rnaseq.uoregon.edu


RNA-seq and alternative splicing

(Costa et al., 2011)



Lasso-based estimation of isoforms

Let a gene with e exons
Suppose there are c candidate isoform (c large, up to 2e)
Let φ ∈ Rc the unknown c-dimensional vector of abundance
Let L(φ) quantify whether φ explains well the observed read
counts (e.g., minus log-likelihood)
Find a sparse vector of abundances by solving (e.g., IsoLasso,
SLIDE, NSMAP...)

min
φ∈Rc

+

L(φ) + λ‖φ ‖1

Computational problem: Lasso problem with 2e variables
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Fast isoform deconvolution with the Lasso (FlipFlop)

Theorem (Bernard, Mairal, Jacob and V., 2014)
The isoform deconvolution problem

min
φ∈Rc

+

L(φ) + λ‖φ ‖1

can be solved in polynomial time in the number of exon.

Key ideas
1 Reformulation as a convex cost flow problem (Mairal and Yu,

2012)
2 Recover isoforms by flow decomposition algorithm

"Feature selection on an exponential number of features
in polynomial time"



Isoforms are Paths in a Graph
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Combinations of isoforms are flows
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(a) Reads at every node corresponding to one isoform.
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(b) Reads at every node after adding another isoform.

Figure 2: Flow interpretation of isoforms using the same graph as in Figure 1. For simplification
purposes, the length of the di↵erent bins are assumed to be equal. In (a), one unit of flow is carried
along the path in red, corresponding to an isoform with abundance 1. In (b), another isoform with
abundance 3 is added, yielding additional read counts at every node.

problem (5) falls into the class of convex cost flow problems (Ahuja et al., 1993), for which e�-
cient algorithms exist.2 In our experiments, we implemented a variant of the scaling push-relabel
algorithm (Goldberg, 1997), which also appears under the name of "-relaxation method (Bertsekas,
1998). Note that the approach can be generalized to any concave likelihood function, including the
Gaussian model used by IsoLasso and SLIDE.

We remark that network flows have been used in several occasions in bioinformatics. For
example, the terminology of “flow” for RNA-Seq data appears in Montgomery et al. (2010); Singh
et al. (2011). The context of these two works is significantly di↵erent than ours since they neither
perform isoform detection, nor use any network flow algorithm. The work closest to ours in terms
of optimization is probably the genome assembly technique of Medvedev and Brudno (2009), who
solve minimum cost flow problems to find a genome maximizing a read-count likelihood. It however
neither involves RNA-Seq data, nor a similar type of graph as ours.

3.3 Flow Decomposition

We have seen that after solving (5) we need to decompose f? into (s, t)-path flows to obtain a
solution ✓? of (2). As illustrated in Figure 2, this corresponds to finding the two isoforms from 2(b).
Whereas the decomposition might not be ambiguous when f? is a sum of few (s, t)-path flows, it
is not unique in general. Our approach to flow decomposition consists of finding an (s, t)-path
carrying the maximum amount of flow (equivalently finding an isoform with maximum expression),
removing its contribution from the flow, and repeating until convergence. We remark that finding
(s, t)-path flows according to this criterion can be done e�ciently using dynamic programming,
similarly as for finding a shortest path in a directed acyclic graph (Ahuja et al., 1993).

3.4 Model Selection

The last problem we need to solve is model selection: even if we know how to solve (2) e�ciently,
we need to choose a regularization parameter �. For large values of �, (2) yields solutions involving
few expressed isoforms. As we decrease �, more isoforms have a non-zero estimated expression ✓j ,
leading to a better data fit but also leading to a more complex model. A classical way of balancing

2The function (5) can be decomposed into costs Cv(fv) over vertices v. The general convex cost flow objective
function is usually presented as a sum of costs Cuv(fuv) over arcs (u, v). It is however easy to show that costs over
vertices can be reduced to costs over arcs by a simple network transformation (see Ahuja et al., 1993, Section 2.4).
Note that all arcs have zero lower capacities and infinite upper capacities.

7

L(φ) depends only on the values of the flow on the vertices
||φ||1 = ft

Therefore,
min
φ∈Rc

+

L(φ) + λ‖φ ‖1

is equivalent to
min
f flow

R(f ) + λft



Human Simulation: Precision/Recall
hg19, 1137 genes on chr1, 1million 75 bp single-end reads by transcript levels.
Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html
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Performance increases with read length
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(b) Graph G0 when all exons are bigger than the read length.
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(c) Graph G0 when the length of exon 3 is smaller than the read length.

Fig. 1. Illustration of the graph construction for a gene with 5 exons. The
original splicing graph is represented in (a). The 5 exons are represented
as vertices and an arrow between two vertices indicates a junction. The
nodes of graph G0 in (b) and (c) are bins with positive effective length
denoted by gray square, as well as source s and sink t represented as circles.
G0 in (b) is the resulting graph when all exons are bigger than the read
length. In that case, each bin either corresponds to a unique exon, or to
a junction between two exons. G0 in (c) is the resulting graph when the
length of exon 3 is smaller than the read length. Some bins involve then
more than two exons, here bins (2-3-4) and (2-3-5). The source links all
possible starting bins and conversely all possible stopping bins are linked to
the sink. There is a one-to-one correspondence between (s, t)-paths in G0

(paths starting at s and ending at t) and isoform candidates. For example,
the path (s, 1, 1-4, 4, 4-5, 5, t) corresponds to isoform 1-4-5.

incoming flow at a vertex is equal to the sum of outgoing flow except
for the source s and the sink t. Such conservation property leads
to a physical interpretation about flows as quantities circulating in
the network, for instance, water in a pipe network or electrons in a
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(b) Reads at every node after adding another isoform.

Fig. 2. Flow interpretation of isoforms using the same graph as in
Figure 1(b). For the sake of clarity, some edges connecting s and t to
internal nodes are not represented, and the length of the different bins are
assumed to be equal. In (a), one unit of flow is carried along the path in red,
corresponding to an isoform with abundance 1. In (b), another isoform with
abundance 3 is added, yielding additional read counts at every node.

circuit board. The source node s injects into the network some units
of flow, which move along the arcs before reaching the sink t.

For example, given a path p 2 P and a non-negative number ✓p,
we can make a flow by setting fuv = ✓p when u and v are two
consecutive vertices along the path p, and fuv = 0 otherwise.
This construction corresponds to sending ✓p units of flows from s
to t along the path p. Such simple flows are called (s, t)-path
flows. More interestingly, if we have a set of non-negative weights
✓ 2 R|P|

+ associated to all paths in P , then we can form a more
complex flow by superimposing all (s, t)-path flows according to

fuv =
X

p2P:p3(u,v)

✓p, (4)

where (u, v) 2 p means that u and v are consecutive nodes on p.
While (4) shows how to make a complex flow from simple ones,

a converse exists, known as the flow decomposition theorem (see,
e.g., Ahuja et al., 1993). It says that for any DAG, every flow vector
can always be decomposed into a sum of (s, t)-path flows. In other
words, given a flow [fuv](u,v)2E0 , there exists a vector ✓ in R|P|

+

such that (4) holds. Moreover, there exists linear-time algorithms to
perform this decomposition (Ahuja et al., 1993). As illustrated in
Figure 2, this leads to a flow interpretation for isoforms.

We now have all the tools in hand to turn (3) into a flow problem
by following Mairal and Yu (2012). Given a flow f = [fuv](u,v)2E0 ,
let us define the amount of flow incoming to a node v in V 0 as
fv ,

P
u2V 0:(u,v)2E0 fuv . Given a vector ✓ 2 R|P|

+ associated
to f by the flow decomposition theorem, i.e., such that (4) holds, we
remark that fv =

P
p2P:p3v ✓p and that ft =

P
p2P ✓p. Therefore,

problem (3) can be equivalently rewritten as:

min
f2F

X

v2V

[�v � yv log �v] + �ft with �v = lvfv . (5)

4



Performance increases with coverage
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Extension to paired-end reads OK.

100 bp (400bp fragments, 1M reads) 125 bp (400bp fragments, 1M reads) 150 bp (400bp fragments, 1M reads) 175 bp (400bp fragments, 1M reads)
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Speed trial

●

●
●
●●

●●●●●●●●●●●●●●● ●●
●● ●

● ●
●

●

0 20 40 60

1e
−

02
1e

+
00

1e
+

02

Number of EXONS

E
la

ps
ed

 T
IM

E
 (

s)

● Flipflop
NSMAP

2−5 exons 5−10 exons 10−20 exons 20−116 exons

10

100

1000

10000

C
P

U
 t

im
e
 (

m
s
) 

b
y
 g

e
n

e

IsoLasso
Cufflinks
FlipFlop
NSMAP
SLIDE



FlipFlop summary

Fast method for exact Lasso-based isoform detection and
quantification
http://cbio.mines-paristech.fr/flipflop

Available as an R package
> source("http://bioconductor.org/biocLite.R")
> biocLite("flipflop")

Reference: E. Bernard, L. Jacob, J. Mairal and J.-P. Vert. Efficient
RNA isoform identification and quantification from RNA-seq data
with network flows. Bioinformatics, 2014.
Ongoing: extension to multiple samples and differential analysis



Outline

1 FlipFlop: fast isoform prediction from RNA-seq data

2 Learning molecular classifiers with network information

3 Kernel bilinear regression for toxicogenomics



Joint work with...

Franck Rapaport, Emmanuel Barillot, Andrei Zinovyev, Anne-Claire
Haury, Laurent Jacob, Guillaume Obozinski



Breast cancer prognosis



Gene selection, molecular signature

The idea
We look for a limited set of genes that are sufficient for prediction.
Selected genes should inform us about the underlying biology



Lack of stability of signatures
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Gene networks
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Gene networks and expression data

Motivation
Basic biological functions usually involve the coordinated action of
several proteins:

Formation of protein complexes
Activation of metabolic, signalling or regulatory pathways

Many pathways and protein-protein interactions are already known
Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge



Graph based penalty

fβ(x) = β>x min
β

R(fβ) + λΩ(β)

Prior hypothesis
Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)

Ω(β) =
∑

i∼j

(βi − βj)
2 ,

min
β∈Rp

R(fβ) + λ
∑

i∼j

(βi − βj)
2 .
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Classifiers
Rapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8



Classifier
Spectral analysis of gene expression profiles using gene networks

 a)  b)
Fig. 5. Theglycolysis/gluconeogenesis pathways ofKEGGwithmapped coefficients of the decision function obtained by applying a customary

linear SVM (a) and using high-frequency eigenvalue attenuation (b). The pathways are mutually exclusive in a cell, as clearly highlighted by

our algorithm.

or under-expression of individual genes, which is the cost to

pay to obtain instead an interpretation in terms of more glo-

bal pathways. Constraining the classifier to rely on just a few

genes would have a similar effect of reducing the complexity

of the problem,butwould lead to amoredifficult interpretation

in terms of pathways.

An advantage of our approach over other pathway-based

clustering methods is that we consider the network modules

that naturally appear from spectral analysis rather than a histo-

rically defined separation of the network into pathways. Thus,

pathways cross-talking is taken into account, which is diffi-

cult to do using other approaches. It can however be noticed

that the implicit decomposition into pathways that we obtain

is biased by the very incomplete knowledge of the network

and that certain regions of the network are better understood,

leading to a higher connection concentration.

Like most approaches aiming at comparing expression data

with gene networks such as KEGG, the scope of this work

is limited by two important constraints. First the gene net-

work we use is only a convenient but rough approximation to

describe complex biochemical processes; second, the trans-

criptional analysis of a sample can not give any information

regarding post-transcriptional regulation and modifications.

Nevertheless, we believe that our basic assumptions remain

valid, in that we assume that the expression of the genes

belonging to the same metabolic pathways module are coor-

dinately regulated. Our interpretation of the results supports

this assumption.

Another important caveat is that we simplify the network

description as an undirected graph of interactions. Although

this would seem to be relevant for simplifying the descrip-

tion of metabolic networks, real gene regulation networks are

influenced by the direction, sign and importance of the interac-

tion. Although the incorporationof weights into the Laplacian

(equation 1) is straightforward and allows the extension of the

approach to weighted undirected graphs, the incorporation

of directions and signs to represent signalling or regulatory

pathways requires more work but could lead to important

advances for the interpretation of microarray data in cancer

studies, for example.
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Spectral penalty as a kernel

Theorem
The function f (x) = β>x where β is solution of

min
β∈Rp

1
n

n∑

i=1

`
(
β>xi , yi

)
+ λ

∑

i∼j

(
βi − βj

)2

is equal to g(x) = γ>Φ(x) where γ is solution of

min
γ∈Rp

1
n

n∑

i=1

`
(
γ>Φ(xi), yi

)
+ λγ>γ ,

and where
Φ(x)>Φ(x ′) = x>KGx ′

for KG = L∗, the pseudo-inverse of the graph Laplacian.



Graph Laplacian

Definition
The Laplacian of the graph is the matrix L = D − A.

1

2

3

4

5

L = D − A =




1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 1 1






Pseufo-inverse of the Laplacian

1
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L∗ =




0.88 −0.12 0.08 −0.32 −0.52
−0.12 0.88 0.08 −0.32 −0.52

0.08 0.08 0.28 −0.12 −0.32
−0.32 −0.32 −0.12 0.48 0.28
−0.52 −0.52 −0.32 0.28 1.08






Other penalties with kernels

Φ(x)>Φ(x ′) = x>KGx ′

with:
KG = (c + L)−1 leads to

Ω(β) = c
p∑

i=1

β2
i +

∑

i∼j

(
βi − βj

)2
.

The diffusion kernel:

KG = expM(−2tL) .

penalizes high frequencies of β in the Fourier domain.



Other penalties without kernels

Gene selection + Piecewise constant on the graph

Ω(β) =
∑

i∼j

∣∣βi − βj
∣∣+

p∑

i=1

|βi |

Gene selection + smooth on the graph

Ω(β) =
∑

i∼j

(
βi − βj

)2
+

p∑

i=1

|βi |



Example: classification of DNA copy number profiles
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Fused lasso solution (Rapaport et al., 2008)

Ω(β) =
∑

i∼j

∣∣βi − βj
∣∣+

p∑

i=1

|βi |
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Graph-based structured feature selection

Graph lasso(s)

Ω1(β) =
∑

i∼j

√
β2

i + β2
j , (Jenatton et al., 2009)

Ω2(β) = sup
α∈Rp:∀i∼j,‖α2

i +α
2
j ‖≤1

α>β . (Jacob et al., 2008)



Lasso signature (accuracy 0.61)

Breast cancer prognosis



Graph Lasso signature (accuracy 0.64)

Breast cancer prognosis



Disjoint feature selection

W = (wi)i∈V ∈ Rp×V Ω(W ) = min
−H≤W≤H

∑

i∼j

Kij

∣∣∣h>i hj

∣∣∣

(Vervier et al, 2014)



Example: multiclass classification of MS spectra
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Outline

1 FlipFlop: fast isoform prediction from RNA-seq data

2 Learning molecular classifiers with network information

3 Kernel bilinear regression for toxicogenomics



Joint work with...

Elsa Bernard, Erwan Scornet, Yunlong Jiao, Véronique Stoven,
Thomas Walter



Pharmacogenomics / Toxicogenomics



DREAM8 Toxicogenetics challenge

Genotypes from the 1000 genome project
RNASeq from the Geuvadis project



Bilinear regression

Cell line X , chemical Y , toxicity Z .
Bilinear regression model:

Z = f (X ,Y ) + b(Y ) + ε ,

Estimation by kernel ridge regression:

min
f∈H,b∈Rp

n∑

i=1

p∑

j=1

(
f (xi , yj) + bj − zij

)2
+ λ‖f‖2 ,



Solving in O(max(n,p)3)

2 The kernel bilinear regression model

Let X and Y denote abstract vector space to represent, respectively, cell lines and chemicals. For
example, if each cell line is characterized by a measure of d genetic markers, then we may take
X = Rd to represent each cell line as a vector of markers, but to keep generality we will simply
assume that X and Y are endowed with positive definite kernels, respectively KX and KY . Given
a set of n cell lines x1, . . . , xn 2 X and p chemicals y1, . . . , yp 2 Y, we assume that a quantitative
measure of toxicity response zi,j 2 R has been measured when cell line xi is exposed to chemical yj ,
for i = 1, . . . , n and j = 1, . . . , p. Our goal is to estimate, from this data, a function h : X ⇥Y ! R
to predict the response h(x, y) if a cell line x is exposed to a chemical y.

We propose to model the response with a simple bilinear regression model of the form:

Z = f(X, Y ) + b(Y ) + ✏ , (1)

where f is a bilinear function, b is a chemical-specific bias term and ✏ is some Gaussian noise. We
add the chemical-specific bias term to adjust for the large di↵erences in absolute toxicity response
values between chemicals, while the bilinear term f(X, Y ) can capture some patterns of variations
between cell lines shared by di↵erent chemicals. We will only focus on the problem of predicting
the action of known and tested chemicals on new cell lines, meaning that we will not try to estimate
b(Y ) on new cell lines.

If x and y are finite dimensional vectors, then the bilinear term f(x, y) has the simple form
x>My for some matrix M , with Frobenius norm kMk2 = Tr(M>M). The natural generalization
of this bilinear model to possibly infinite-dimensional spaces X and Y is to consider a function f
in the product reproducing kernel Hilbert space H associated to the product kernel KXKY , with
Hilbert-Schmitt norm kfk2. To estimate model (1), we solve a standard ridge regression problem:

min
f2H,b2Rp

nX

i=1

pX

j=1

(f(xi, yj) + bj � zij)
2 + �kfk2 , (2)

where � is a regularization parameter to be optimized. As shown in the next theorem, (2) has an
analytical solution. Note that 1n refers to the n-dimensional vector of ones, Diag(u) for a vector
u 2 Rn refers to the n ⇥ n diagonal matrix whose diagonal is u, and A � B for two matrices of the
same size refers to their Hadamard (or entrywise) product.

Theorem 1. Let Z 2 Rn⇥p be the response matrix, and KX 2 Rn⇥n and KY 2 Rp⇥p be the kernel
Gram matrices of the n cell lines and p chemicals, with respective eigenvalue decompositions KX =

UXDXU>
X and KY = UY DY U>

Y . Let � = U>
X1n and S 2 Rn⇥p be defined by Sij = 1/

⇣
� + Di

XDj
Y

⌘
,

where Di
X (resp. Di

Y ) denotes the i-th diagonal term of DX (resp. DY ). Then the solution (f⇤, b⇤)
of (2) is given by

b⇤ = UY Diag
⇣
S>��2

⌘�1 ⇣
S> �

⇣
U>

Y Z>UX

⌘⌘
� (3)

and

8(x, y) 2 X ⇥ Y , f⇤(x, y) =

nX

i=1

pX

j=1

↵⇤
i,jKX(xi, x)KY (yi, y) , (4)

where
↵⇤ = UX

⇣
S �

⇣
U>

X

⇣
Z � 1nb⇤>

⌘
UY

⌘⌘
U>

Y . (5)

2
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Kernel Trick

cell line descriptors

drug descriptors

Kcell

kernelized
Kdrug

kernel
bilinear

regression f̂
Kernel choice?
. descriptors
. data integration
. missing data
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Kernel choice

1 Kcell :
=⇒ 29 cell line kernels tested
=⇒ 1 kernel that integrate all information
=⇒ deal with missing data

2 Kdrug :
=⇒ 48 drug kernels tested
=⇒ multi-task kernels
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Cell line data integration

Covariates
. linear kernel

SNPs
. 10 gaussian 

kernels

RNA-seq
. 10 gaussian 

kernels
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Cell line data integration
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. linear kernel
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Multi-task drug kernels

1 Dirac
2 Multi-Task
3 Feature-based
4 Empirical
5 Integrated

independent regression for each drug



Multi-task drug kernels

1 Dirac
2 Multi-Task
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4 Empirical
5 Integrated

sharing information across drugs



Multi-task drug kernels

1 Dirac
2 Multi-Task
3 Feature-based
4 Empirical
5 Integrated

Linear kernel and 10 gaussian kernels
based on features:

CDK (160 descriptors) and SIRMS
(9272 descriptors)
Graph kernel for molecules (2D walk
kernel)
Fingerprint of 2D substructures (881
descriptors)
Ability to bind human proteins (1554
descriptors)



Multi-task drug kernels

1 Dirac
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3 Feature-based
4 Empirical
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Multi-task drug kernels

1 Dirac
2 Multi-Task
3 Feature-based
4 Empirical
5 Integrated

Kint =
∑

i

Ki

Integrated kernel:
Combine all information on drugs



29x48 kernel combinations: CV results
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29x48 kernel combinations: CV results
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29x48 kernel combinations: CV results
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Kernel on cell lines: CV results
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Kernel on drugs: CV results
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Final Submission (ranked 2nd)
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Conclusion

Many new problems and lots of data in computational genomics
Computational constraints =⇒ fast sparse models (FlipFlop)
Small n large p =⇒ regularized models with prior knowledge
Heterogeneous data integration =⇒ kernel methods
Personalized medicine promising but difficult!
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1/!PROMOTION!DU!PROGRAMME!

!

• Rencontre!avec!les!directeurs,!directeurs!scientifiques!et!directeurs!

des!études!de!l’ENS,!Mines,!ENSCP,!ESPCI!pour!organiser!la!

promotion!du!programme!auprès!des!étudiants.!

• Ecole!des!Mines!:!présentation!d’ITI!devant!le!conseil!de!

l'enseignement!;!8!représentants!d’élèves!;!relance!

• ENSCP!:!mailing!de!présentation!d’ITI!aux!3A!via!la!direction!des!

études.!

• ENS!:!mailing;!présentation!directe!auprès!des!étudiants!(2!élèves!

présents)!;!diffusion!des!plaquettes!et!du!syllabus!;!relance!!

• ESPCI!:!mailing!aux!3A!+!présentation!d’ITI/rencontre!avec!les!

étudiants!en!présence!des!directrice!de!la!scolarité!et!directrice!des!

relations!entreprises!;!8!élèves!présents!

• Contacts!en!cours!avec!les!Ponts!et!l’ENS!Lyon!(en!attente!de!

réponse)!

• Rencontre!à!l’ANRT!avec!le!délégué!général!et!la!chef!du!service!

CIFRE:!accord&de&communication&sur&le&programme&ITI&via&le&site&

internet&de&l’ANRT!(rubrique!"zoom!sur")!

• Promotion!aux!Rencontres!Universités!Entreprises!(RUE)!

• Echange!avec!Stéphane!Mallat!et!réflexion!sur!la!pertinence!du!

programme!tronc!commun!

• Rencontre!avec!le!responsable!des!relations!internationales!de!la!

National!Taiwan!University!à!l’ESPCI:!présentation!d’ITI!

• Contact!en!cours!pour!visite!d‘entreprise!

• Article&les&Echos&

• Création&du&logo&PSL/ITI&et&du&Diplôme&Supérieur&de&Recherche&et&

d’Innovation&de&PSL/ITI&(DSRI),&dépôt&INPI&en&cours.&
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