Machine Learning for Personalized Medicine

Jean-Philippe Vert

Institute of Computational Biology, Montpellier, February 27, 2015

A cancer cell

A cancer cell

- What is your risk of developing a cancer? (prevention)
- Once detected, what precisely is your cancer (*diagnosis*)
- After treatment, what is your risk of relapse? (prognosis)
- What is the best therapy for your cancer? (precision medicine)

•

Challenges

- High dimension
- Few samples
- Structured data
- Heterogeneous data
- Prior knowledge
- Fast and scalable implementations
- Interpretable models

Learning with regularization

For a sample $x \in \mathbb{R}^{p}$, learn a linear decision function:

$$f_{\beta}(x) = \beta^{\top} x$$

by solving

 $\min_{\beta \in \mathbb{R}^{p}} R(f_{\beta}) + \lambda \Omega(\beta)$

- $R(f_{\beta})$ empirical risk, e.g., $R(f_{\beta}) = \frac{1}{n} \sum_{i=1}^{n} (f_{\beta}(x_i) y_i)^2$
- $\Omega(\beta)$ penalty, to control overfitting in high dimension

FlipFlop: fast isoform prediction from RNA-seq data

Learning molecular classifiers with network information

Kernel bilinear regression for toxicogenomics

FlipFlop: fast isoform prediction from RNA-seq data

Learning molecular classifiers with network information

8 Kernel bilinear regression for toxicogenomics

Elsa Bernard (Mines ParisTech / Institut Curie), Laurent Jacob (CNRS / LBBE), Julien Mairal (INRIA)

Alternative splicing: 1 gene = many proteins

In human, 28k genes give 120k known transcripts (Pal et al., 2012)

Opportunities for drug developments...

(Pal et al., 2012)

The isoform identification and quantification problem

Given a biological sample (e.g., cancer tissue), can we:

- identify the isoform(s) of each gene present in the sample?
- Quantify their abundance?

RNA-seq measures mRNA abundance by sequencing short fragments

http://rnaseq.uoregon.edu

RNA-seq and alternative splicing

(Costa et al., 2011)

Lasso-based estimation of isoforms

- Let a gene with *e* exons
- Suppose there are *c* candidate isoform (*c* large, up to 2^{*e*})
- Let $\phi \in \mathbb{R}^{c}$ the unknown *c*-dimensional vector of abundance
- Let L(φ) quantify whether φ explains well the observed read counts (e.g., minus log-likelihood)
- Find a sparse vector of abundances by solving (e.g., IsoLasso, SLIDE, NSMAP...)

 $\min_{\phi \in \mathbb{R}^{c}_{+}} L(\phi) + \lambda \| \phi \|_{1}$

Computational problem: Lasso problem with 2^e variables

Lasso-based estimation of isoforms

- Let a gene with *e* exons
- Suppose there are *c* candidate isoform (*c* large, up to 2^{*e*})
- Let $\phi \in \mathbb{R}^{c}$ the unknown *c*-dimensional vector of abundance
- Let L(φ) quantify whether φ explains well the observed read counts (e.g., minus log-likelihood)
- Find a sparse vector of abundances by solving (e.g., IsoLasso, SLIDE, NSMAP...)

 $\min_{\phi \in \mathbb{R}^{c}_{+}} L(\phi) + \lambda \| \phi \|_{1}$

Computational problem: Lasso problem with 2^e variables

Fast isoform deconvolution with the Lasso (FlipFlop)

Theorem (Bernard, Mairal, Jacob and V., 2014)

The isoform deconvolution problem

 $\min_{\phi \in \mathbb{R}^{c}_{+}} L(\phi) + \lambda \| \phi \|_{1}$

can be solved in polynomial time in the number of exon.

Key ideas

- Reformulation as a convex cost flow problem (Mairal and Yu, 2012)
- Provide the second s

"Feature selection on an exponential number of features in polynomial time"

Combinations of isoforms are flows

L(φ) depends only on the values of the flow on the vertices
||φ||₁ = f_t

Therefore,

$$\min_{\phi \in \mathbb{R}^{c}_{+}} L(\phi) + \lambda \| \phi \|_{1}$$

is equivalent to

 $\min_{\text{f flow}} R(f) + \lambda f_t$

Human Simulation: Precision/Recall

hg19, 1137 genes on chr1, 1million 75 bp single-end reads by transcript levels. Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html

Performance increases with read length

Performance increases with coverage

Extension to paired-end reads OK.

Speed trial

Number of EXONS

- Fast method for exact Lasso-based isoform detection and quantification
- http://cbio.mines-paristech.fr/flipflop
- Available as an R package
 - > source("http://bioconductor.org/biocLite.R")
 - > biocLite("flipflop")
- Reference: E. Bernard, L. Jacob, J. Mairal and J.-P. Vert. Efficient RNA isoform identification and quantification from RNA-seq data with network flows. *Bioinformatics*, 2014.
- Ongoing: extension to multiple samples and differential analysis

FlipFlop: fast isoform prediction from RNA-seq data

2 Learning molecular classifiers with network information

Kernel bilinear regression for toxicogenomics

Franck Rapaport, Emmanuel Barillot, Andrei Zinovyev, Anne-Claire Haury, Laurent Jacob, Guillaume Obozinski

Breast cancer prognosis

Gene selection, molecular signature

The idea

- We look for a limited set of genes that are sufficient for prediction.
- Selected genes should inform us about the underlying biology

Haury et al. (2011)

Gene networks and expression data

Motivation

- Basic biological functions usually involve the coordinated action of several proteins:
 - Formation of protein complexes
 - Activation of metabolic, signalling or regulatory pathways
- Many pathways and protein-protein interactions are already known
- Hypothesis: the weights of the classifier should be "coherent" with respect to this prior knowledge

Graph based penalty

$$f_{\beta}(x) = \beta^{\top} x \qquad \min_{\beta} R(f_{\beta}) + \lambda \Omega(\beta)$$

Prior hypothesis

Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)

$$egin{aligned} \Omega(eta) &= \sum_{i \sim j} (eta_i - eta_j)^2 \,, \ \min_{eta \in \mathbb{R}^p} oldsymbol{R}(f_eta) + \lambda \sum_{i \sim j} (eta_i - eta_j)^2 \end{aligned}$$

Graph based penalty

$$f_{\beta}(x) = \beta^{\top} x \qquad \min_{\beta} R(f_{\beta}) + \lambda \Omega(\beta)$$

Prior hypothesis

Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)

$$\Omega(\beta) = \sum_{i \sim j} (\beta_i - \beta_j)^2,$$

$$\min_{\beta \in \mathbb{R}^p} R(f_{\beta}) + \lambda \sum_{i \sim j} (\beta_i - \beta_j)^2.$$

Classifiers

Spectral penalty as a kernel

Theorem

The function $f(x) = \beta^{\top} x$ where β is solution of

$$\min_{\beta \in \mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \ell\left(\beta^{\top} \mathbf{x}_{i}, \mathbf{y}_{i}\right) + \lambda \sum_{i \sim j} \left(\beta_{i} - \beta_{j}\right)^{2}$$

is equal to $g(x) = \gamma^{\top} \Phi(x)$ where γ is solution of

$$\min_{\gamma \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \ell\left(\gamma^{\top} \Phi(\mathbf{x}_i), \mathbf{y}_i\right) + \lambda \gamma^{\top} \gamma,$$

and where

$$\Phi(x)^{\top}\Phi(x') = x^{\top}K_Gx'$$

for $K_G = L^*$, the pseudo-inverse of the graph Laplacian.

Definition

The Laplacian of the graph is the matrix L = D - A.

Pseufo-inverse of the Laplacian

	/ 0.88	-0.12	0.08	-0.32	-0.52 \
	-0.12	0.88	0.08	-0.32	-0.52
<i>L</i> * =	0.08	0.08	0.28	-0.12	-0.32
	-0.32	-0.32	-0.12	0.48	0.28
	\ −0.52	-0.52	-0.32	0.28	1.08 /

$$\Phi(x)^{\top}\Phi(x') = x^{\top}K_Gx'$$

with:

• $K_G = (c + L)^{-1}$ leads to

$$\Omega(\beta) = c \sum_{i=1}^{p} \beta_i^2 + \sum_{i \sim j} (\beta_i - \beta_j)^2$$

• The diffusion kernel:

 $K_G = \exp_M(-2tL).$

penalizes high frequencies of β in the Fourier domain.

Other penalties without kernels

• Gene selection + Piecewise constant on the graph

$$\Omega(\beta) = \sum_{i \sim j} \left| \beta_i - \beta_j \right| + \sum_{i=1}^{p} \left| \beta_i \right|$$

• Gene selection + smooth on the graph

$$\Omega(\beta) = \sum_{i \sim j} (\beta_i - \beta_j)^2 + \sum_{i=1}^p |\beta_i|$$

Aggressive (left) vs non-aggressive (right) melanoma

Fused lasso solution (Rapaport et al., 2008)

Graph-based structured feature selection

Graph lasso(s)

$$\Omega_1(\beta) = \sum_{i \sim j} \sqrt{\beta_i^2 + \beta_j^2}, \quad \text{(Jenatton et al., 2009)}$$
$$\Omega_2(\beta) = \sup_{\alpha \in \mathbb{R}^{p}: \forall i \sim j, \|\alpha_i^2 + \alpha_j^2\| \le 1} \alpha^\top \beta. \quad \text{(Jacob et al., 2008)}$$

Lasso signature (accuracy 0.61)

Breast cancer prognosis

Graph Lasso signature (accuracy 0.64)

Breast cancer prognosis

$$W = (w_i)_{i \in V} \in \mathbb{R}^{p \times V} \qquad \Omega(W) = \min_{-H \leq W \leq H} \sum_{i \sim j} K_{ij} \left| h_i^\top h_j \right|$$

.

(Vervier et al, 2014)

Example: multiclass classification of MS spectra

Spectra

(Vervier et al, 2013, unpublished)

FlipFlop: fast isoform prediction from RNA-seq data

Learning molecular classifiers with network information

Joint work with...

Elsa Bernard, Erwan Scornet, Yunlong Jiao, Véronique Stoven, Thomas Walter

Pharmacogenomics / Toxicogenomics

DREAM8 Toxicogenetics challenge

156 chemicals

Genotypes from the 1000 genome project RNASeq from the Geuvadis project

- Cell line X, chemical Y, toxicity Z.
- Bilinear regression model:

$$Z = f(X, Y) + b(Y) + \epsilon,$$

• Estimation by kernel ridge regression:

$$\min_{f \in \mathcal{H}, b \in \mathbb{R}^p} \sum_{i=1}^n \sum_{j=1}^p \left(f(x_i, y_j) + b_j - z_{ij} \right)^2 + \lambda \|f\|^2,$$

Theorem 1. Let $Z \in \mathbb{R}^{n \times p}$ be the response matrix, and $K_X \in \mathbb{R}^{n \times n}$ and $K_Y \in \mathbb{R}^{p \times p}$ be the kernel Gram matrices of the n cell lines and p chemicals, with respective eigenvalue decompositions $K_X = U_X D_X U_X^{\top}$ and $K_Y = U_Y D_Y U_Y^{\top}$. Let $\gamma = U_X^{\top} \mathbf{1}_n$ and $S \in \mathbb{R}^{n \times p}$ be defined by $S_{ij} = 1/(\lambda + D_X^i D_Y^j)$, where D_X^i (resp. D_Y^i) denotes the *i*-th diagonal term of D_X (resp. D_Y). Then the solution (f^*, b^*) of (2) is given by

$$b^* = U_Y Diag \left(S^\top \gamma^{\circ 2} \right)^{-1} \left(S^\top \circ \left(U_Y^\top Z^\top U_X \right) \right) \gamma \tag{3}$$

and

$$\forall (x,y) \in \mathcal{X} \times \mathcal{Y}, \quad f^*(x,y) = \sum_{i=1}^n \sum_{j=1}^p \alpha^*_{i,j} K_X(x_i,x) K_Y(y_i,y), \qquad (4)$$

where

$$\alpha^* = U_X \left(S \circ \left(U_X^\top \left(Z - \mathbf{1}_n b^{*\top} \right) U_Y \right) \right) U_Y^\top.$$
(5)

drug descriptors

drug descriptors

drug descriptors

K_{cell}:

- \implies 29 cell line kernels tested
- \implies 1 kernel that *integrate all information*
- \implies deal with missing data

K_{drug}: 48 drug kernels tested multi-task kernels

• K_{cell} :

- \implies 29 cell line kernels tested
- \implies 1 kernel that *integrate all information*
- \implies deal with missing data

Kdrug :

- \implies 48 drug kernels tested
- ⇒ multi-task kernels

Cell line data integration

Covariates . linear kernel

SNPs . 10 gaussian kernels

RNA-seq

. 10 gaussian kernels

0.6

0.4

Cell line data integration

Dirac

- Multi-Task
- Feature-based
- Empirical
- Integrated

independent regression for each drug

Dirac

Multi-Task

- Feature-based
- Empirical

Integrated

sharing information across drugs
Dirac

- Multi-Task
- Feature-based
- Empirical
- Integrated

Linear kernel and 10 gaussian kernels based on features:

- CDK (160 descriptors) and SIRMS (9272 descriptors)
- Graph kernel for molecules (2D walk kernel)
- Fingerprint of 2D substructures (881 descriptors)
- Ability to bind human proteins (1554 descriptors)

Multi-task drug kernels

Empirical correlation

Dirac

- Multi-Task
- Feature-based
- Empirical
- Integrated

Dirac

- Multi-Task
- Feature-based
- Empirical

$$K_{int} = \sum_{i} K_{i}$$

Integrated kernel:

• Combine all information on drugs

Integrated

29x48 kernel combinations: CV results

CI

Kmultitask6 Kmultitask8 Kmultitask9 KsirmsRbf4.txt KsirmsRbf5.txt KpredtargetMean KcdkMean KsirmsMean Kmultitask11 ubstructure.txt Kchemcpp.txt Kmultitask1 KpredtargetRbf8.txt KpredtargetRbf6.txt KpredtargetRbf7.txt Kmultitask7 KpredtargetRbf2.tx KodkRbf2.tx KpredtargetRbf3.tx KodkRbf3.tx Kmultitask KsirmsRbf3.tx KpredtargerRb4.rx KpredtargerRb4.rx KockRb14.rx KockRb16.tx KockRb16.tx KockRb17.rx KsirmsRb61.rx KsirmsRb61.rx Kmultitask KsirmsRbf1.t KodkRbf1.t Kmultitas Kmultitas KpredtargetRbf1. KsirmsRbf2. Kmultitask Kempirid KodkRbf8. sirmsRb

29x48 kernel combinations: CV results

KsnpRbf6.txt KsnpRbf7.txt KsnpRbf8.txt KrnaseqRbf1.txt KsnpRbf5.txt KsnpBbf4 txt KcovariatesSex.txt KsnpRbf2.txt KsnpRbf3.txt KsnpRbf1.txt integrated KrnaseqRbf3.txt KrnaseqRbf2.txt KsnpMean and uniform dirac KrnaseqRbf6.txt covariates KrnaseqRbf7.txt KrnaseqRbf5.txt KrnaseqRbf8.txt kernels KrnaseqRbf10.txt KrnaseqRbf9.txt KrnaseqRbf4.txt KrnasegMean KcovariatesBatch.txt Kint Kcovariates.txt άŢ KsirmsRbf6.1 KsirmsRbf7.1 3053. Kmultitask Kempir Kmultita Kmultita KsirmsRbf KsirmsRbf KpredtargetM KcdkM P-KpredtargetF KpredtargetF Kpredtarc Apredta Apredt

CI

29x48 kernel combinations: CV results

CI

Kernel on cell lines: CV results

Kernel on drugs: CV results

Mean CI for chemicals kernels

KpredtargetRbf8.txt					
Kindiaskiu					
KpiedlargerKbi7.tkt					
KSIIIISKDI8.Dtl					
KCUKKDIO.LKL					
KprediargetRbi6.txt					
KprediargetRbi5.txt					
KSIMSRDI7.Dt					
KsirmsRbf6.txt					
KpredtargetRb14.txt					
Kempirical					
KCdKRD17.txt					
KpredtargetRbf3.txt					
KpredtargetMean					
KcdkRbf5.txt					
KcdkRbf6.txt					
Kmultitask7					
KcdkRbf4.txt					
Kmultitask9					
Kmultitask8					
KsirmsRbf5.txt					
KsirmsMean					
Kmultitask6					
KcdkMean					
Kmultitask2					
Kmultitask4					
Kint					
KsirmsRbf4.txt					
Kmultitask5					
Kmultitask3					
KcdkRbf2.txt					
KsirmsRbf3.txt					
KcdkRbf3.txt					
KsirmsRbf1 txt					
KpredtargetRbf2.txt					
Kmultitask1					
KsirmsRbf2.txt					
KcdkRbf1 tvt					
KpredtargetRbf1.txt					
Ksubstructure tyt					
Kmultitask11					
Kchemcon tyt					
	0.50		0 50	0 50	
	0.50	0.51	0.52	0.53	0.54

Final Submission (ranked 2nd)

Mean CI for chemicals kernels

Empirical kernel on drugs

Integrated kernel on cell lines

- Many new problems and lots of data in computational genomics
- Computational constraints → fast sparse models (FlipFlop)
- Small *n* large $p \implies$ regularized models with prior knowledge
- Heterogeneous data integration \implies kernel methods
- Personalized medicine promising but difficult!

Thanks

Alexandre d'Aspremont, Emmanuel Barillot, Anne-Claire Haury, Laurent Jacob, Pierre Mahé, Julien Mairal, Guillaume Obozinski, Franck Rapaport, Jean-Baptiste Veyrieras, Andrei Zynoviev ... and all CBIO@Mines

