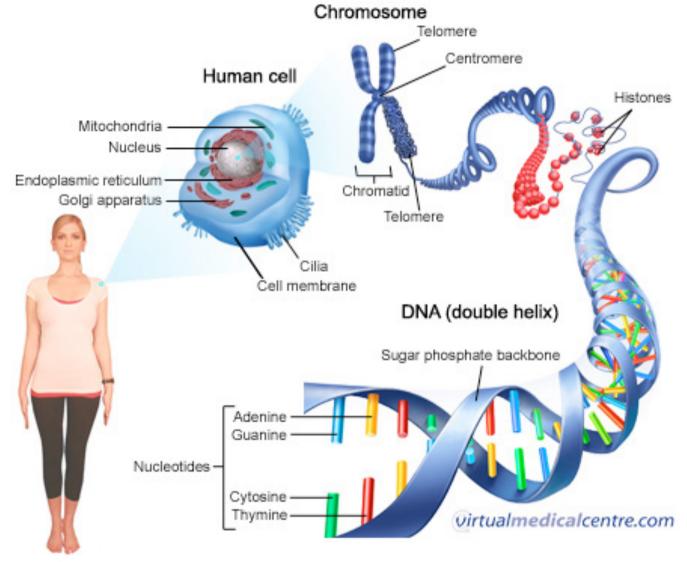
Machine Learning for Personalized Genomics

Jean-Philippe Vert

Paris-Saclay Center for Data Science kick-off meeting LAL, Saclay, June 30, 2014

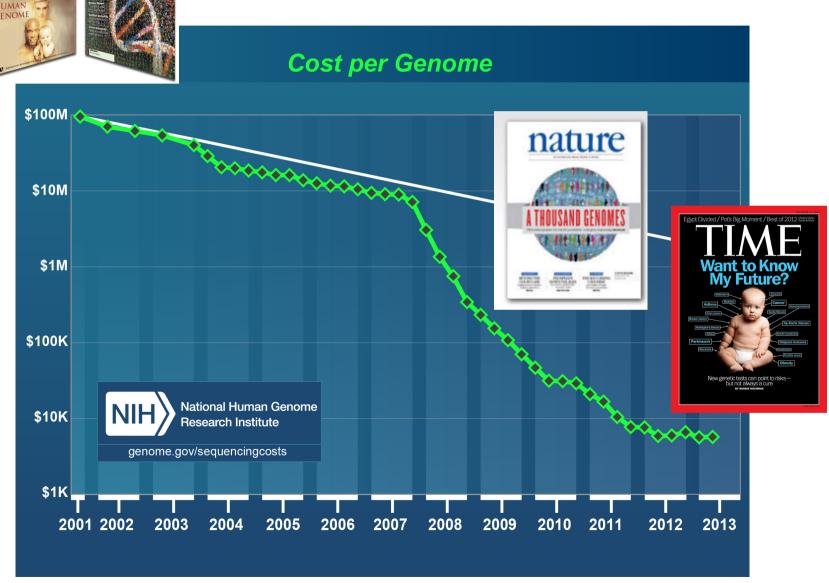
1 body = 100 trillions cells 1 cell = 6 billions ACGT in DNA



Human genome project (1990-2003)

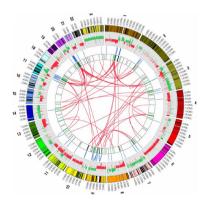
- Goal: sequence the 3,000,000,000 base pairs of the human genome
- Consortium of 20 laboratories, 6 countries
- 13 years, \$3,000,000,000

The **second** revolution



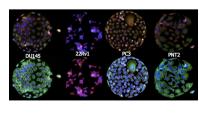
A flood of omics data

Interactome

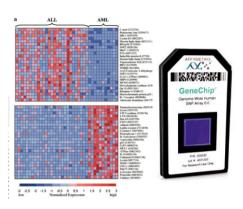


Mutations
Structural variations

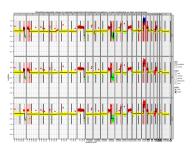
Genome



Phenome

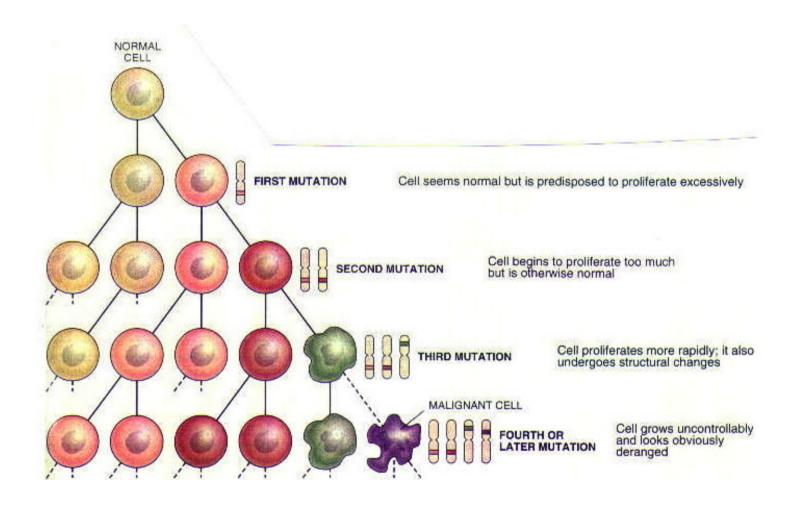


Transcriptome

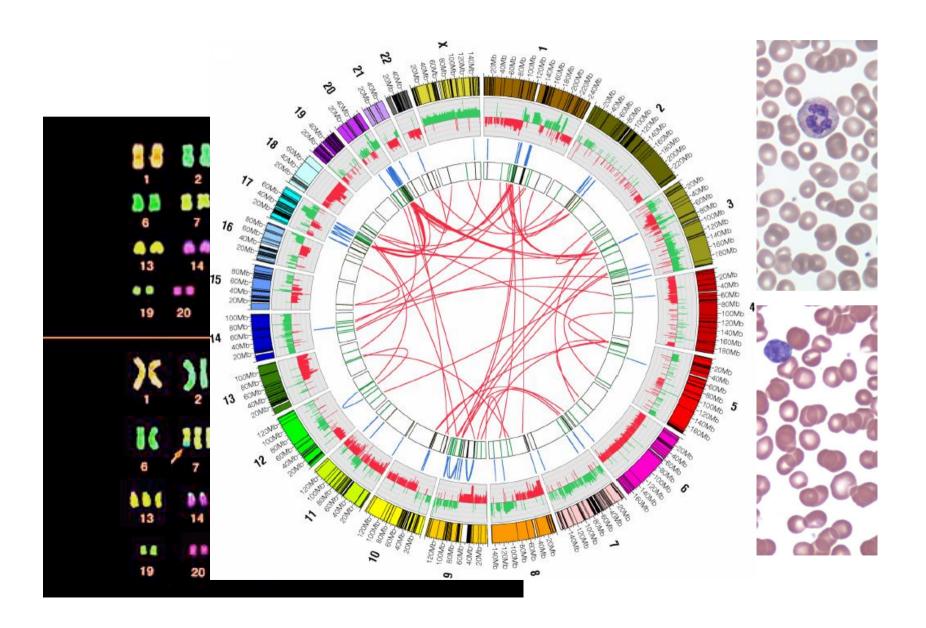


Epigenome

All cancers are different

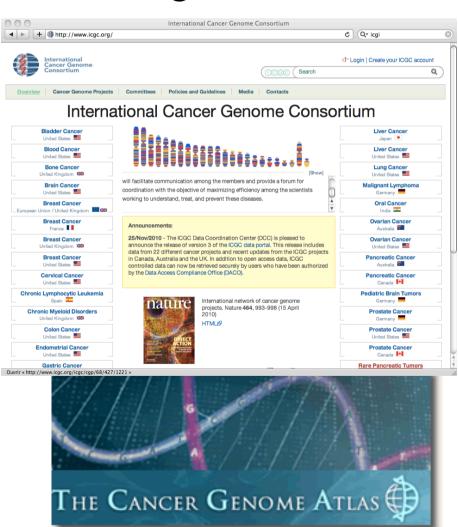


Cancer: different views



Big data!

http://aws.amazon.com/1000genomes/



Opportunities

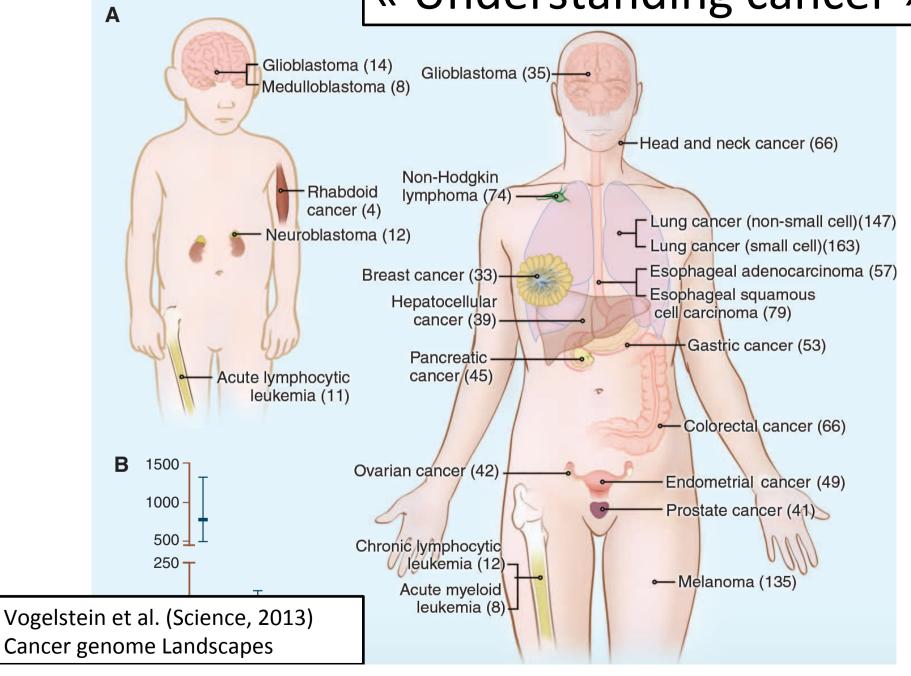
New drug targets and therapies

By analyzing specificities of cancer cells at the molecular level

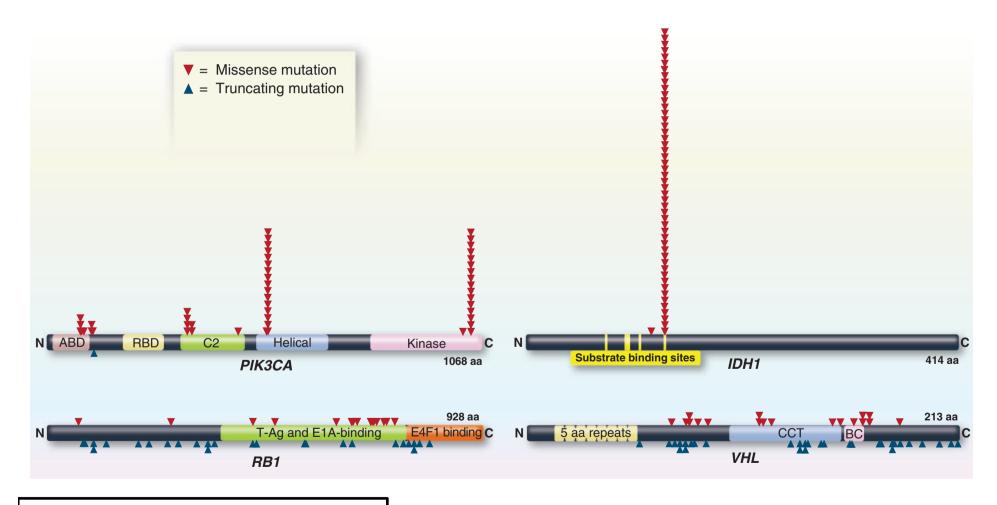
Precision medicine

 By developing predictive models for diagnosis, prognosis, response to drugs...

« Understanding cancer »

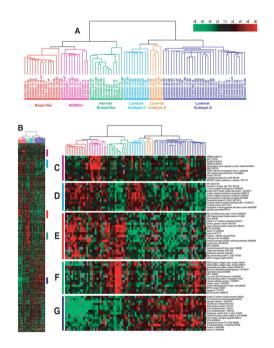


Finding « cancer genes »

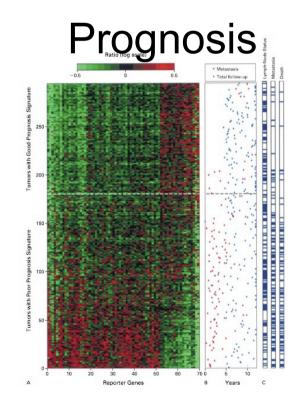


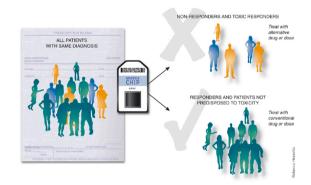
Vogelstein et al. (Science, 2013) Cancer genome Landscapes

Opportunities



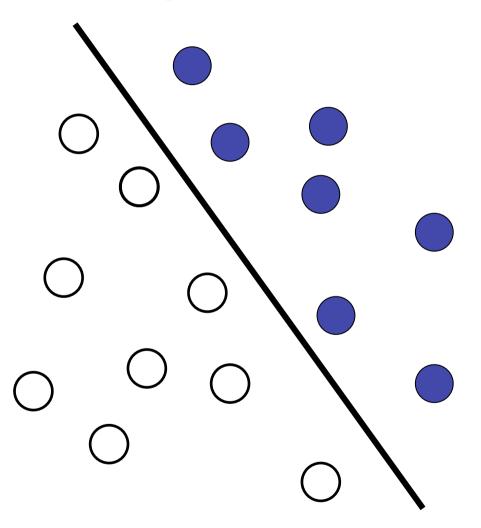
Diagnosis





Response to drugs

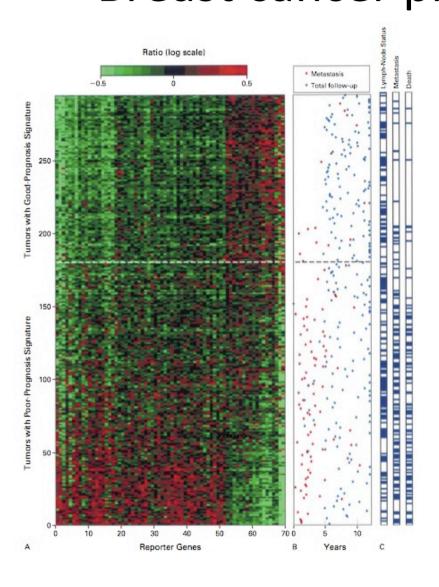
Supervised machine learning

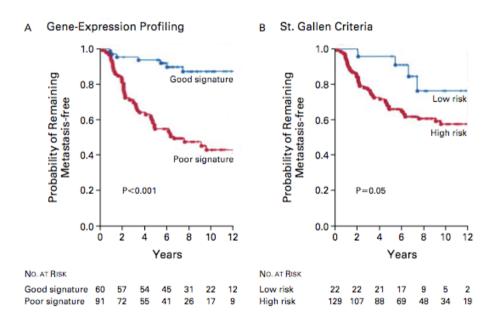


Challenges

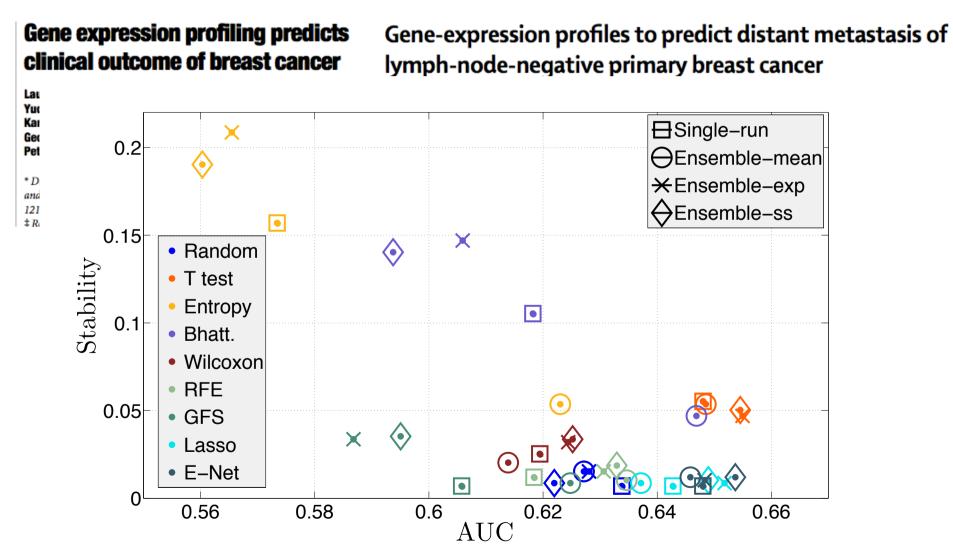
- High dimension
- Few examples
- Structured data
- Efficient algorithms
- Interpretability

Example: Breast cancer prognostic signature

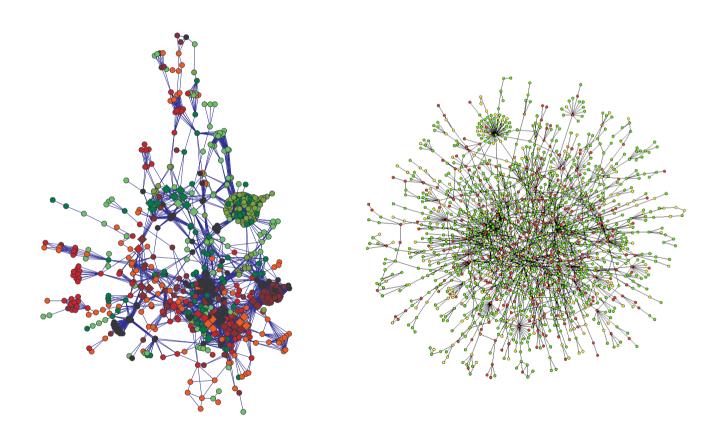




Two signatures have less than 5% genes in common...



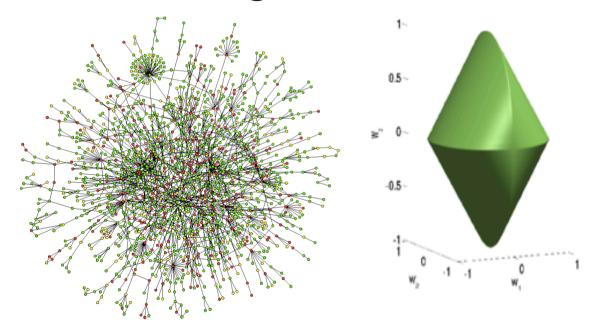
Prior knowledge: gene network



Can we « force » the signature to be « coherent » with a known network?

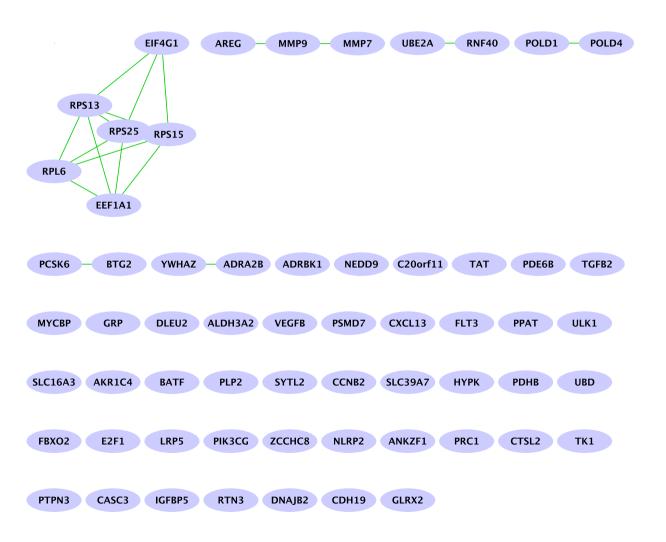
Example: the graph lasso

 Step 1: Using the network, define a subset of « candidate » signatures

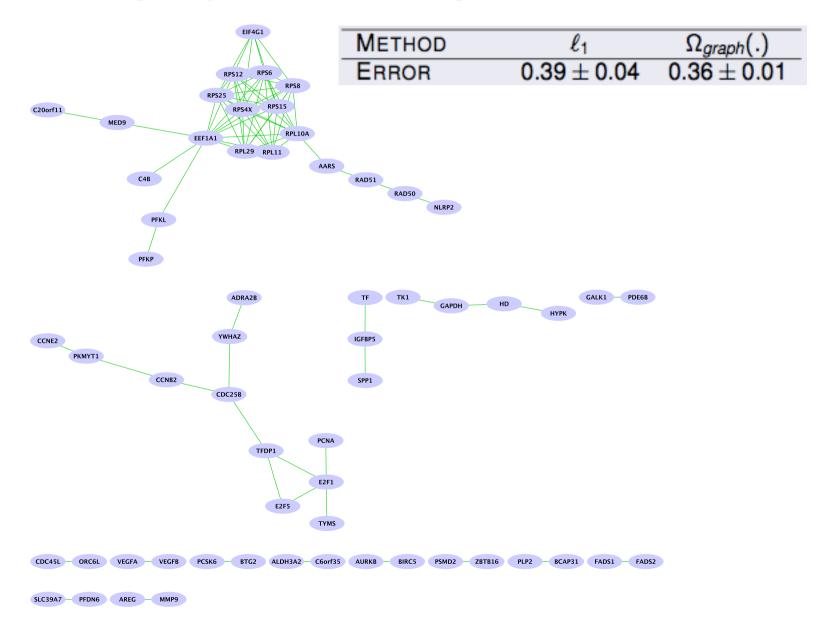


• Step 2: Among the candidates, find the best signature to explain the data

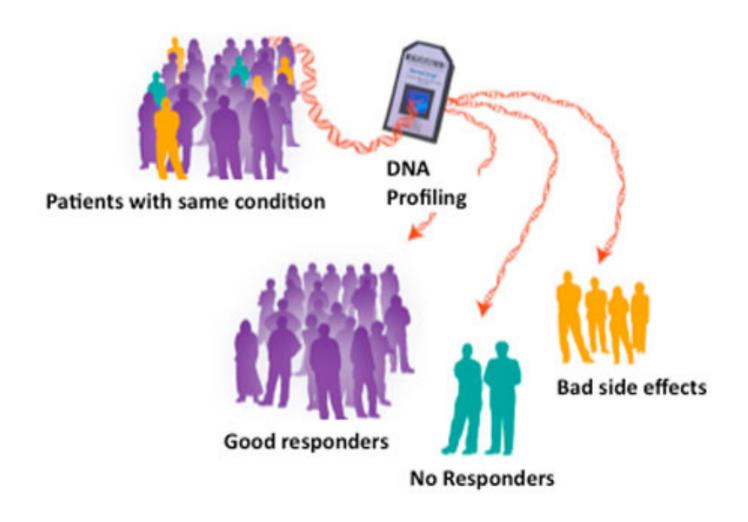
Classical signature



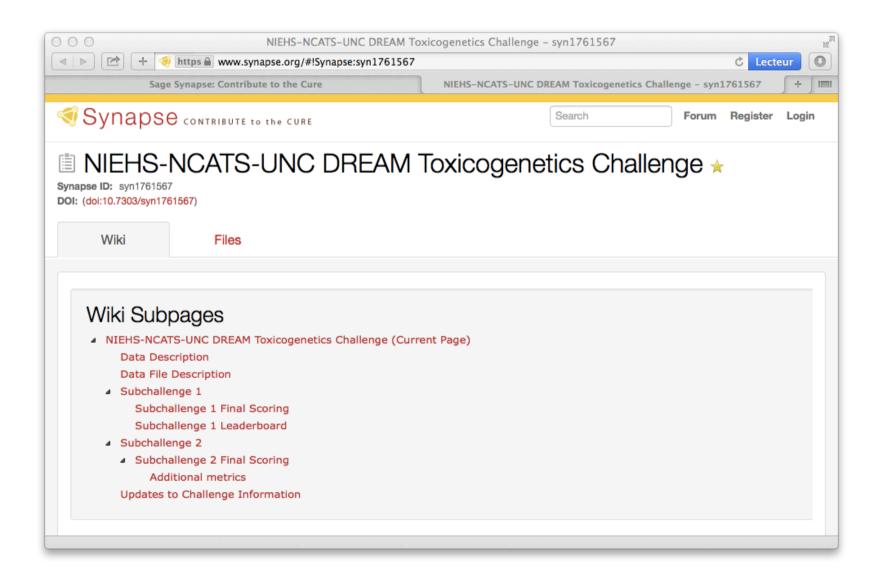
The graph lasso signature



Example: Pharmacogenomics / Toxicogenomics

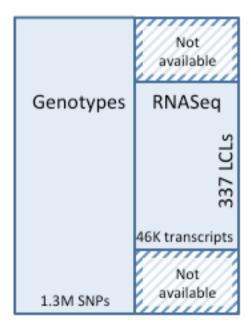


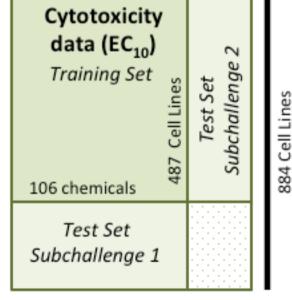
Crowd-sourcing initiatives



DREAM8 challenge (jun-sep 2013)

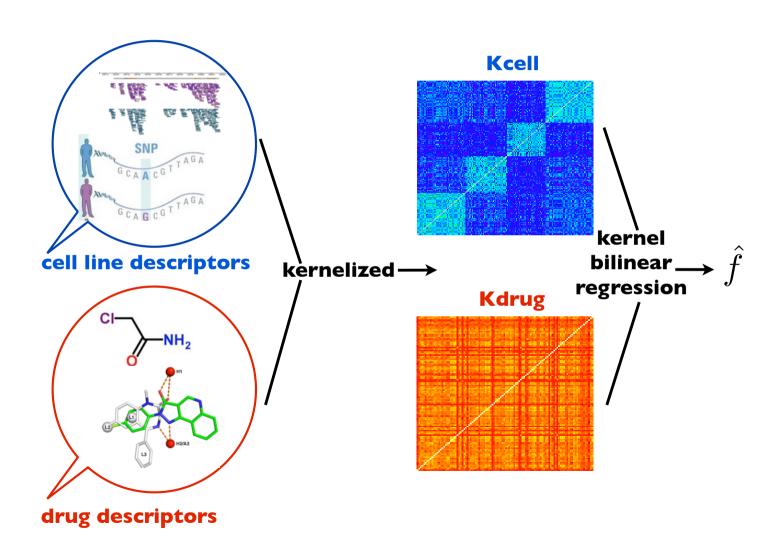
Toxicogenetics Challenge Data Chemical descriptors 10K attributes



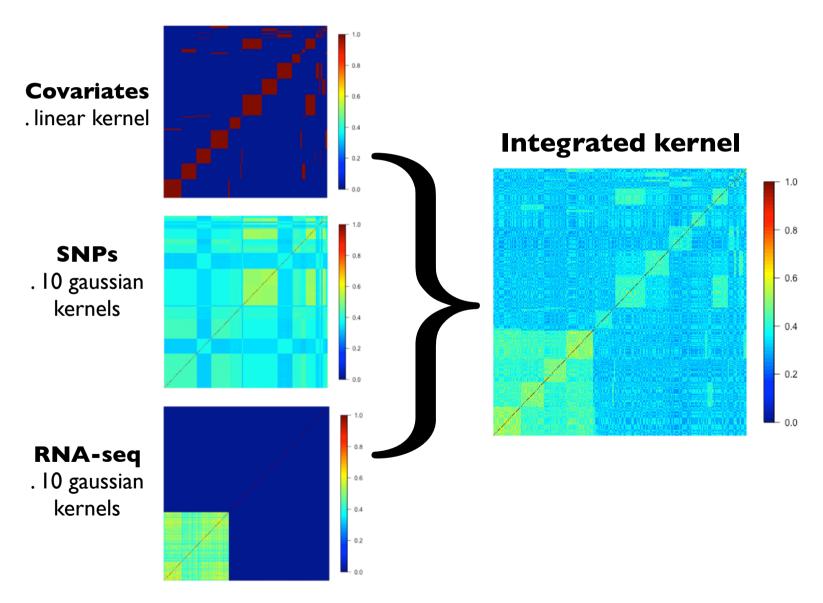


156 chemicals

Our approach

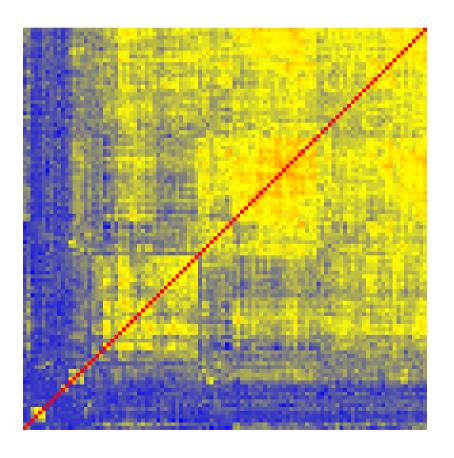


Cell line descriptors (30 kernels)

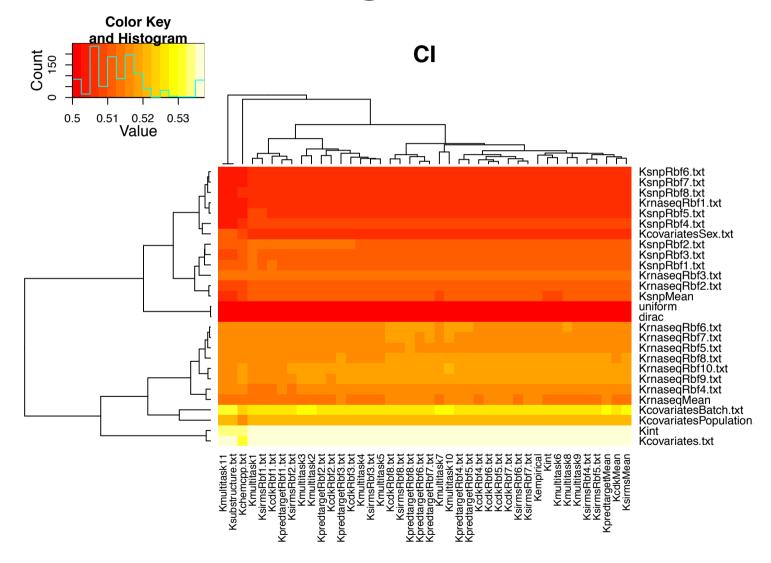


Chemical descriptors (49 kernels)

- Descriptors of chemical structures
- Multitask kernels
- Empirical correlation
- Integrated kernel

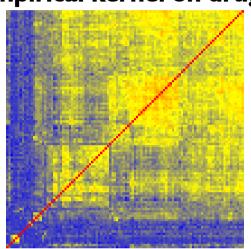


Learning occurs...

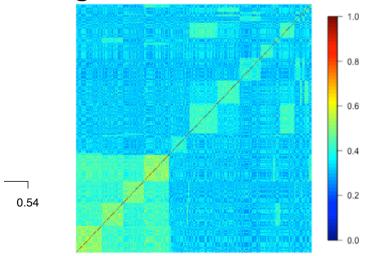


Final submission (ranked 2nd)

Empirical kernel on drugs



Integrated kernel on cell lines



Conclusion

- Lots of data due to technological progress
- Opportunities: precision medicine, quantitative biology
- Challenges:
 « small N », weak
 signal, complex
 systems

