Machine Learning for Personalized Genomics

Jean-Philippe Vert

Paris-Saclay Center for Data Science kick-off meeting LAL, Saclay, June 30, 2014

1 body = 100 trillions cells 1 cell = 6 billions ACGT in DNA

Human genome project (1990-2003)

- Goal: sequence the 3,000,000,000 base pairs of the human genome
- Consortium of 20 laboratories, 6 countries
- 13 years, \$3,000,000,000

The **second** revolution

A flood of omics data

Interactome

Mutations
Structural variations

Genome

Phenome

Transcriptome

Epigenome

All cancers are different

Cancer: different views

Big data!

http://aws.amazon.com/1000genomes/

Opportunities

New drug targets and therapies

By analyzing specificities of cancer cells at the molecular level

Precision medicine

 By developing predictive models for diagnosis, prognosis, response to drugs...

« Understanding cancer »

Finding « cancer genes »

Vogelstein et al. (Science, 2013) Cancer genome Landscapes

Opportunities

Diagnosis

Response to drugs

Supervised machine learning

Challenges

- High dimension
- Few examples
- Structured data
- Efficient algorithms
- Interpretability

Example: Breast cancer prognostic signature

Two signatures have less than 5% genes in common...

Prior knowledge: gene network

Can we « force » the signature to be « coherent » with a known network?

Example: the graph lasso

 Step 1: Using the network, define a subset of « candidate » signatures

• Step 2: Among the candidates, find the best signature to explain the data

Classical signature

The graph lasso signature

Example: Pharmacogenomics / Toxicogenomics

Crowd-sourcing initiatives

DREAM8 challenge (jun-sep 2013)

Toxicogenetics Challenge Data Chemical descriptors 10K attributes

156 chemicals

Our approach

Cell line descriptors (30 kernels)

Chemical descriptors (49 kernels)

- Descriptors of chemical structures
- Multitask kernels
- Empirical correlation
- Integrated kernel

Learning occurs...

Final submission (ranked 2nd)

Empirical kernel on drugs

Integrated kernel on cell lines

Conclusion

- Lots of data due to technological progress
- Opportunities: precision medicine, quantitative biology
- Challenges:
 « small N », weak
 signal, complex
 systems

