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Normal vs cancer cells

What goes wrong?
How to treat?
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Chromosomic aberrations in cancer
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Measuring DNA copy number

Motivation
Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome
Very useful, in particular in cancer research to observe
systematically variants in DNA content
Progressively replaced by high throughput sequencing techniques
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Problem 1: find change-points in one (long) profile
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Problem 2: learn to discriminate profiles
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Problem 3: Find frequent breakpoints
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A collection of bladder tumour copy number profiles.
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Outline

1 Fast fused lasso for change-point detection

2 Fused SVM for discrimination of profiles

3 Group fused lasso for multiple frequent change-point detection
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Can we identify breakpoints and "smooth" each
profile?

0 100 200 300 400 500 600 700 800 900 1000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A classical multiple change-point detection problem
Should scale to lengths of order 106 ∼ 108
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An optimal solution
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For a signal Y ∈ Rp, define an optimal approximation β ∈ Rp with
k breakpoints as the solution of

min
β∈Rp

‖Y − β ‖2 such that
p−1∑

i=1

1 (βi+1 6= βi) ≤ k

This is an optimization problem over the
(p

k

)
partitions...

Dynamic programming finds the solution in O(p2k) in time and
O(p2) in memory
But: does not scale to p = 106 ∼ 108...
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Promoting sparsity with the `1 penalty

The `1 penalty (Tibshirani, 1996; Chen et al., 1998)
If R(β) is convex and "smooth", the solution of

min
β∈Rp

R(β) + λ

p∑

i=1

|βi |

is usually sparse.
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Promoting piecewise constant profiles penalty

The total variation / variable fusion penalty
If R(β) is convex and "smooth", the solution of

min
β∈Rp

R(β) + λ

p−1∑

i=1

|βi+1 − βi |

is usually piecewise constant (Rudin et al., 1992; Land and Friedman,
1996).

Proof:
Change of variable ui = βi+1 − βi , u0 = β1

We obtain a Lasso problem in u ∈ Rp−1

u sparse means β piecewise constant
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TV signal approximator

min
β∈Rp

‖Y − β ‖2 such that
p−1∑

i=1

|βi+1 − βi | ≤ µ

Adding additional constraints does not change the change-points:∑p
i=1 |βi | ≤ ν (Tibshirani et al., 2005; Tibshirani and Wang, 2008)∑p
i=1 β

2
i ≤ ν (Mairal et al. 2010)
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Solving TV signal approximator

min
β∈Rp

‖Y − β ‖2 such that
p−1∑

i=1

|βi+1 − βi | ≤ µ

QP with sparse linear constraints in O(p2) -> 135 min for p = 105

(Tibshirani and Wang, 2008)
Coordinate descent-like method O(p)? -> 3s s for p = 105

(Friedman et al., 2007)
For all µ with the LARS in O(pK ) (Harchaoui and Levy-Leduc,
2008)
For all µ in O(p ln p) (Hoefling, 2009)
For the first K change-points in O(p ln K ) (Bleakley and V., 2010)
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Solving TV signal approximator in O(p ln K )

Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)
TV signal approximator is a binary segmentation algorithm

2 Problem formulation

Let Y = (Y1, . . . , Yn) 2 Rn a signal that we wish to approximate by a piecewise-constant signal
µ = (µ1, . . . , µn). We consider the following formulation [2]:

min
µ1,...,µn

1

2

nX

i=1

(Yi � µi)
2 + �

n�1X

i=1

| µi+1 � µi | . (1)

As shown by [1, 4], from the solution of (1) we can easily deduce the solution of the FLSA:

min
µ1,...,µn

1

2

nX

i=1

(Yi � µi)
2 + �

n�1X

i=1

| µi+1 � µi | + �2

nX

i=1

| µi | , (2)

as well as the solution of the FLSA with quadratic penalty:

min
µ1,...,µn

1

2

nX

i=1

(Yi � µi)
2 + �

n�1X

i=1

| µi+1 � µi | + �2

nX

i=1

| µi | + �3

nX

i=1

µ2
i . (3)

In the sequel we therefore focus only on the problem (1). [1] proposed to solve it for each value of �
using a coordinate descent method. [2, 4] proposed a faster homotopy method to compute the solutions
of (1) for all values of � leading to up to k change points in O(nk), by reformulating it as a LASSO
problem and using the LARS algorithm. Below we show that we can get the same result much faster,
on average in O(n log k), by showing that (1) can in fact be formulated as an iterative dichotomic
segmentation method.

3 Dichotomic segmentation

A general dichotomic segmentation strategy requires:

• A representation of any intervals I of [1, n].

• A function to split any interval I = [u, v] of length > 1 into two intervals IL(I) = [u, k] and
IR(I) = [k + 1, v], and a function �(I) 2 R+ which represents the gain resulting from splitting I
into IL(I� and IR(I).

We will investigate different function IL(I), IR(I) and �(I). The dichotomic segmentation method,
presented in Algorithm 1, then proceeds as follows: starting from the full interval [i, n] as a trivial
partition of [1, n] into intervals, and then iteratively refine any partition P of [1, n] into p intervals
P = {I1, . . . , Ip} by splitting the interval I⇤ 2 P with maximal �(I⇤) into the two intervals IL(I⇤) and
IR(I⇤).

Algorithm 1 Greedy dichotomic segmentation
Require: k number of intervals, �(I) gain function to split an interval I into IL(I), IR(I)

1: I0 represents the interval [1, n]
2: P = {I0}
3: for i = 1 to k do
4: I⇤  arg max

I2P
� (I⇤)

5: P  P\ {I⇤}
6: P  P [ {IL (I⇤) , IR (I⇤)}
7: end for
8: return P

2Apparently greedy algorithm finds the global optimum!
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Solving TV signal approximator in O(p ln K )

Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)
TV signal approximator is a binary segmentation algorithm

Consequences:
Good news: very fast methods to find the global optimum of TV
approximator
Good news: we can analyze this greedy method by expressing the
solution as the global minimum of an objective function
Bad news: TV approximator is no more than a binary
segmentation method...

Extension to hierarchical clustering: ClusterPath (Hocking et al.,
ICML 2011)
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Technical details

Represent an interval [u + 1, v ] by a quadruplet I = (u, v , σu, σv )
where σu, σv ∈ {−1,0,1}
Let Fu =

∑u
i=1 Yu, and for u < k < v , σ ∈ {−1,1}

fI(k , σ) =

{
σAk/2 if σu = σv 6= 0 ,
Ak/ (σ − Bk ) otherwise ,

where

Ak = −Fk +
(v − k) Fu + (k − u) Fv

v − u
,

Bk =
(v − k)σu + (k − u)σv

v − u
.
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Technical details (cont.)

Then the functions γ(I), IL(I) and IR(I) are respectively given by:

γ(I) = max
k∈[u+1,v−1],σ∈{−1,1}

fI(k , σ) ,

(k∗, σ∗) = argmax
k∈[u+1,v−1],σ∈{−1,1}

fI(k , σ) ,

IL(I) = (u, k∗, σu, σ
∗) ,

IR(I) = (k∗, v , σ∗, σv ) .
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Proof (sketch)

Homotopy method (LARS)
Similar to Harchaoui and Levy-Leduc (2008), removing
superfluous computations
The next breakpoint in a segment, and the µ where it appears, is
independent of events in other segments
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Speed trial : 2 s. for K = 100, p = 107
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Application

[13:35 16/12/2010 Bioinformatics-btq635.tex] Page: 268 268–269

BIOINFORMATICS APPLICATIONS NOTE Vol. 27 no. 2 2011, pages 268–269
doi:10.1093/bioinformatics/btq635

Genome analysis Advance Access publication November 15, 2010

Control-free calling of copy number alterations in
deep-sequencing data using GC-content normalization
Valentina Boeva1,2,3,4,∗, Andrei Zinovyev1,2,3, Kevin Bleakley1,2,3, Jean-Philippe Vert1,2,3,
Isabelle Janoueix-Lerosey1,4, Olivier Delattre1,4 and Emmanuel Barillot1,2,3

1Institut Curie, 2INSERM, U900, Paris, F-75248, 3Mines ParisTech, Fontainebleau, F-77300 and 4INSERM, U830,
Paris, F-75248 France
Associate Editor: Alfonso Valencia

ABSTRACT
Summary: We present a tool for control-free copy number alteration
(CNA) detection using deep-sequencing data, particularly useful for
cancer studies. The tool deals with two frequent problems in the
analysis of cancer deep-sequencing data: absence of control sample
and possible polyploidy of cancer cells. FREEC (control-FREE Copy
number caller) automatically normalizes and segments copy number
profiles (CNPs) and calls CNAs. If ploidy is known, FREEC assigns
absolute copy number to each predicted CNA. To normalize raw
CNPs, the user can provide a control dataset if available; otherwise
GC content is used. We demonstrate that for Illumina single-end,
mate-pair or paired-end sequencing, GC-contentr normalization
provides smooth profiles that can be further segmented and analyzed
in order to predict CNAs.
Availability: Source code and sample data are available at
http://bioinfo-out.curie.fr/projects/freec/.
Contact: freec@curie.fr
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on June 8, 2010; revised on October 28, 2010; accepted
on November 9, 2010

1 INTRODUCTION
In many studies that apply deep sequencing to cancer genomes, one
has to calculate copy number profiles (CNPs) and predict regions
of gain and loss. There exist two frequent obstacles in the analysis
of cancer genomes: absence of an appropriate control sample for
normal tissue and possible polyploidy. Most current tools do not
take these points into account (Supplementary Table 1). For various
reasons, sequencing of an appropriate control sample is not always
possible. There is therefore a need for a bioinformatics tool able to
automatically detect copy number alterations (CNAs) without use of
a control dataset. Several programs have been published that allow
automatic calculation and analysis of CNPs (Chiang et al., 2009; Xie
and Tammi, 2009). However, both CNV-seq (Xie and Tammi, 2009)
and SegSeq (Chiang et al., 2009) need datasets for the given tumor
and its paired normal DNA. Moreover, both programs predict CNAs
without providing information about how many copies were lost or
gained. An interesting approach for predicting copy number variants
was suggested by Yoon et al. (2009), where GC content is used to
normalize data. However, to estimate the ‘normal’ copy number,

∗To whom correspondence should be addressed.

they rely on the assumption that there are similar percentages of
amplified and deleted regions, which is not true in general for cancer
cells. Moreover, their tool was designed to analyze normal human
genomes and is unable to take into account possible polyploidy.

Here, we propose an algorithm to call CNAs with or without a
control sample. The algorithm is implemented in the C++ program
FREEC (control-FREE Copy number caller). FREEC uses a sliding
window approach to calculate read count (RC) in non-overlapping
windows (raw CNP). Then, if a control sample is available, the
program normalizes raw CNP using the control profile. Otherwise,
the program calculates GC content in the same set of windows and
performs normalization by GC content. Since this removes a major
source of variability in raw CNPs (Chiang et al., 2009; Yoon et al.,
2009), the resulting normalized profile becomes sufficiently smooth
to apply segmentation. This is followed by the analysis of predicted
regions of gains and losses in order to assign copy numbers to these
regions.

2 METHODS
The algorithm includes several steps. First, it calculates the raw CNP
by counting reads in non-overlapping windows. If not provided by the
user, window size can be automatically selected using depth of coverage
information to optimize accuracy of CNA prediction. The second step is
profile normalization. If a control is not provided by the user, we compute
the GC-content profile. The normalization procedure of RC by GC content
(or by control RC) is described below. The third step is segmentation of
the normalized CNP. To do this, we implemented a LASSO-based algorithm
suggested by Harchaoui and Lévy-Leduc (2008). Segmentation provided
by this algorithm is robust against outliers, which makes it suitable for
segmentation of deep-sequencing CNPs. The last step involves analysis of
segmented profiles. This includes identification of regions of genomic gains
and losses and prediction of copy number changes in these regions.

To normalize a raw CNP, we fit the observed RC by the GC content
(or the control RC if it is available). We base our fitted model on several
assumptions: (i) the sample main ploidy P is provided, (ii) the observed RC
in P-copy regions (i.e. regions with copy number equal to P) can be modeled
as a polynomial of GC content (or of control RC), (iii) the observed RC in
a region with altered copy number is linearly proportional to the RC in
P-copy regions and (iv) the interval of measured GC contents (respectively
control RCs when a control dataset is available) in the main ploidy regions
must include the interval of all measured GC contents (respectively control
RC). The polynomial’s degree is a user-defined parameter with a default
value of three. We provide an initial estimate of the polynomial’s parameters
and then optimize these parameters by iteratively selecting data points
related to P-copy regions and making a least-square fit on these points only
(See Supplementary Methods for more details). The resulting polynomial

© The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
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Fig. 1. Normalization of CNPs using only information about average GC content in a window. (A–D) GC content versus RC in 50 kb windows for COLO-
829BL (normal diploid genome), COLO-829, NCI-H2171 and HCC1143, respectively. The result of the least-square fit for P-copy regions is shown in black.
Curves corresponding to other frequent copy numbers are shown in gray. Values of copy numbers are given at the right of each panel. Chromosomes X
and Y were not included. (E–H) GC-content normalized CNPs for chromosome 1 for COLO-829BL, COLO-829, NCI-H2171 and HCC1143, respectively.
Automatically predicted copy numbers are shown in black.

is then used to normalize the CNP (Fig. 1). The user has an option to
include mappability information into the normalization procedure (See
Supplementary Methods).

3 RESULTS
We applied the method to predict CNAs in mate-pair datasets for the
melanoma cell line COLO-829 and matched normal cell line COLO-
829BL (Pleasance et al., 2010), a paired-end dataset for the small-
cell lung cancer cell line NCI-H2171 (Campbell et al., 2008) and a
single-end dataset for the breast cancer cell line HCC1143 (Chiang
et al., 2009). All four samples were sequenced using the Illumina
Genome Analyzer platform. The number of reads in samples varied
from 14 to 20 million (Supplementary Table 2).

The polynomial fit by GC content explained well the observed
RC (Fig. 1A–D). Using CNPs normalized by GC content, we
identified regions of gain and loss in the four samples (Fig. 1E–H,
Supplementary Fig. 1–4). We also assessed true positive and false
positive rate for a normal diploid sample NA18507 (Alkan et al.,
2009; Bentley et al., 2008; Supplemenary Table 3).

We compared FREEC with three other existing tools: CNV-seq,
SegSeq and RDXplorer (Supplementary Tables 1 and 4). As well
as providing other additional functionalities, FREEC understands
more input formats than any other tool. It can be used to analyze
data produced for any organism and for polyploid genomes. Being
implemented in C++, FREEC shows excellent performance and
operating system portability.

4 CONCLUSION
We have presented a tool for automatic detection of CNAs and
calculation of CNAfrequency. FREEC provides more functionalities

than existing tools; in particular, it can deal with the situation
when no control experiment is available and when the genome
is polyploid, frequent problems in cancer studies. The main steps
are (i) normalization of the CNP using GC content (or control
CNP if available), (ii) segmentation of normalized profiles and
(iii) assignment of copy number changes to losses and gains. The
program is fast, accurate and freely available.

Funding: The Ligue Nationale contre le Cancer (V.B., A.Z., E.B.,
I.J.-L. and O.D. are members of a labeled team).

Conflict of Interest: none declared.
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Outline

1 Fast fused lasso for change-point detection

2 Fused SVM for discrimination of profiles

3 Group fused lasso for multiple frequent change-point detection
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Extension: cancer prognosis
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The problem
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x1, . . . , xn ∈ Rp the n profiles of length p
y1, . . . , yn ∈ [−1,1] the labels
We want to learn a function f : Rp → [−1,1]
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Prior knowledge

Sparsity : not all positions should be discriminative, and we want
to identify the predictive region (presence of oncogenes or tumor
suppressor genes?)
Piecewise constant : within a selected region, all probes should
contribute equally
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Fused lasso for supervised classification (Rapaport et
al., 2008)

Find a linear predictor f (Y ) = β>Y that best discriminates the
aggressive vs non-aggressive samples, subject to the constraints that
it should be sparse and piecewise constant:

min
β∈Rp

n∑

i=1

`
(

yi , β
>xi

)
+ λ1‖β ‖1 + λ2‖β ‖TV

where ` is, e.g., the hinge loss `(y , t) = max(1− yt ,0).

Implementation
When ` is the hinge loss (fused SVM), this is a linear program ->
up to p = 103 ∼ 104

When ` is convex and smooth (logistic, quadratic), efficient
implementation with proximal methods -> up to p = 108 ∼ 109
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Example: prognosis in melanoma
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Outline

1 Fast fused lasso for change-point detection

2 Fused SVM for discrimination of profiles

3 Group fused lasso for multiple frequent change-point detection
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Can we detect frequent breakpoints?
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A collection of bladder tumour copy number profiles.
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The problem
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"Optimal" segmentation by dynamic programming
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Define the "optimal" piecewise constant approximation Û ∈ Rp×n

of Y as the solution of

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑

i=1

1
(
Ui+1,• 6= Ui,•

)
≤ k

DP finds the solution in O(p2kn) in time and O(p2) in memory
But: does not scale to p = 106 ∼ 108...
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)
If groups of covariates are likely to be selected together, the
`1/`2-norm induces sparse solutions at the group level:

Ωgroup(w) =
∑

g

‖wg‖2

Ω(w1,w2,w3) = ‖(w1,w2)‖2 + ‖w3‖2
=
√

w2
1 + w2

2 +
√

w2
3
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GFLseg (Bleakley and V., 2011)

Replace

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑

i=1

1
(
Ui+1,• 6= Ui,•

)
≤ k

by

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑

i=1

wi‖Ui+1,• − Ui,•‖ ≤ µ

GFLseg = Group Fused Lasso segmentation

Questions
Practice: can we solve it efficiently?
Theory: does it recover the correct segmentation?
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GFLseg as a group Lasso problem

Make the change of variables:

γ = U1,• ,

βi,• = wi
(
Ui+1,• − Ui,•

)
for i = 1, . . . ,p − 1 .

TV approximator is then equivalent to the following group Lasso
problem (Yuan and Lin, 2006):

min
β∈R(p−1)×n

‖ Ȳ − X̄β ‖2 + λ

p−1∑

i=1

‖βi,• ‖ ,

where Ȳ is the centered signal matrix and X̄ is a particular
(p − 1)× (p − 1) design matrix.
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TV approximator implementation

min
β∈R(p−1)×n

‖ Ȳ − X̄β ‖2 + λ

p−1∑

i=1

‖βi,• ‖ ,

Theorem
The TV approximator can be solved efficiently:

approximately with the group LARS in O(npk) in time and O(np)
in memory
exactly with a block coordinate descent + active set method in
O(np) in memory
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Proof: computational tricks... (from Zaid Harchaoui)

Although X̄ is (p − 1)× (p − 1):
For any R ∈ Rp×n, we can compute C = X̄>R in O(np) operations
and memory
For any two subset of indices A =

(
a1, . . . ,a|A|

)
and

B =
(
b1, . . . ,b|B|

)
in [1,p − 1], we can compute X̄>•,AX̄•,B in

O (|A||B|) in time and memory
For any A =

(
a1, . . . ,a|A|

)
, set of distinct indices with

1 ≤ a1 < . . . < a|A| ≤ p − 1, and for any |A| × n matrix R, we can

compute C =
(

X̄>•,AX̄•,A
)−1

R in O(|A|n) in time and memory
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Speed trial

so the slope gives the exponent of the complexity (resp. n, p and k). For the weighted group fused LARS,
linearity is clearest for k, whereas for n and p, the curves are initially sub-linear, then slightly super-linear for
extremely large values of n and p. As these time trials reach out to the practical limits of current technology,
we see that this is not critical - on average, even the longest trials here took less than 200 seconds. The
weighted fused group Lasso results are perhaps more interesting, as it is harder to predict in advance the
practical time performance of the algorithm. Surprisingly, when increasing n (p and k fixed) or increasing
p (n and k fixed), the group fused Lasso eventually becomes as fast the iterative, deterministic group fused
LARS. This suggests that at the limits of current technology, if k is small (say, less than 10), the potentially
superior performance of the Lasso version (see later) may not even be punished by a slower run-time with
respect to the LARS version. We suggest that this may be due to the Lasso optimization problem becoming
relatively “easier” to solve when n or p increases, as we observed that the Lasso algorithm converged quickly
to its final set of change-points. The main difference between the Lasso and LARS performance appears
when the number of change-points increases: with respective empirical complexities cubic and linear in k,
as predicted by the theoretical analysis, Lasso is already 1,000 times slower than LARS when we seek 100
change-points.
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Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottom row). Left column: varying
n, with fixed p = 10 and k = 10; center column: varying p, with fixed n = 1000 and k = 10; right column:
varying k, with fixed n = 1000 and p = 10. Figure axes are log-log. Results are averaged over 100 trials.

6.2 Accuracy for detection of a single change-point

Next, we tested empirically the accuracy the group fused Lasso for detecting a single change-point. We
first generated multidimensional profiles of dimension p, with a single jump of height 1 at a position u, for
different values of p and u. We added to the signals an i.i.d. Gaussian noise with variance σ̃2

α = 10.78,
the critical value corresponding to α = 0.8 in Theorem 2. We ran 1000 trials for each value of u and p,
and recorded how often the group fused Lasso with or without weights correctly identified the change-point.
According to Theorem 2, we expect that, for the unweighted group fused Lasso, for 50 ≤ u < 80 there is
convergence in accuracy to 1 when p increases, and for u > 80, convergence in accuracy to zero. This is
indeed what is seen in Figure 3 (left panel), with u = 80 the limit case between the two different modes of
convergence. The center panel of Figure 3 shows that when the default weights (5) are added, convergence
in accuracy to 1 occurs across all u, as predicted by Theorem 3. In addition, the right-hand-side panel
of Figure 3 shows results for the same trials except that change-point locations can vary uniformly in the
interval u ± 2. We see that, as predicted by Theorem 4, the accuracy of the weighted group fused Lasso

12
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Consistency

Suppose a single change-point:
at position u = αp
with increments (βi)i=1,...,n s.t. β̄2 = limk→∞

1
n
∑n

i=1 β
2
i

corrupted by i.i.d. Gaussian noise of variance σ2

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2

4

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2

4

0 100 200 300 400 500 600 700 800 900 1000
−2

0

2

4

Does the TV approximator correctly estimate the first change-point as
p increases?
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Consistency of the unweighted TV approximator

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑

i=1

‖Ui+1,• − Ui,•‖ ≤ µ

Theorem
The unweighted TV approximator finds the correct change-point with
probability tending to 1 (resp. 0) as n→ +∞ if σ2 < σ̃2

α (resp.
σ2 > σ̃2

α), where

σ̃2
α = pβ̄2

(1− α)2(α− 1
2p )

α− 1
2 − 1

2p

.

correct estimation on [pε,p(1− ε)] with ε =
√

σ2

2pβ̄2 + o(p−1/2) .

wrong estimation near the boundaries
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Consistency of the weighted TV approximator

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑

i=1

wi‖Ui+1,• − Ui,•‖ ≤ µ

Theorem

The weighted TV approximator with weights

∀i ∈ [1,p − 1] , wi =

√
i(p − i)

p

correctly finds the first change-point with probability tending to 1 as
n→ +∞.

we see the benefit of increasing n
we see the benefit of adding weights to the TV penalty
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Proof sketch

The first change-point î found by TV approximator maximizes
Fi = ‖ ĉi,• ‖2, where

ĉ = X̄>Ȳ = X̄>X̄β∗ + X̄>W .

ĉ is Gaussian, and Fi is follows a non-central χ2 distribution with

Gi =
EFi

p
=

i(p − i)
pw2

i
σ2 +

β̄2

w2
i w2

u p2
×
{

i2 (p − u)2 if i ≤ u ,
u2 (p − i)2 otherwise.

We then just check when Gu = maxi Gi
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Consistency for a single change-point
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Figure 3: Single change-point accuracy for the group fused Lasso. Accuracy as a function of the number
of profiles p when the change-point is placed in a variety of positions u = 50 to u = 90 (left and centre
plots, resp. unweighted and weighted group fused Lasso), or: u = 50±2 to u = 90±2 (right plot, weighted
with varying change-point location), for a signal of length 100.

remains robust against fluctuations in the exact change-point location.

6.3 Accuracy for detecting multiple change-points

To investigate the potential for extending the results to the case of many shared change-points, we further
simulated profiles of length n = 100 with a change-point at all of positions 10, 20, . . . , 90. We consider
dimensions p between 1 and 500. Jumps at each change-point of each profile were drawn from a Gaussian
with mean 0 and variance 1; we then added centered Gaussian noise with σ2 ∈ {0.05, 0.2, 1} to each
position in each profile. For each value of p and σ2, we ran one hundred trials of both implementations, with
or without weights, and recorded the accuracy of each method, defined as the percentage of trials where the
first 9 change-points detected by the method are exactly the 9 true change-points. Results are presented in
Figure 4 (from left to right, resp. σ2 = 0.05, 0.2, 1). Clearly, the group fused Lasso outperforms the group
fused LARS, and the weighted version of each algorithm outperforms the unweighted version. Although
the group LARS is usually considered a reliable alternative to the exact group Lasso [21], this experiment
shows that the exact optimization by block coordinate descent may be worth the computational burden if
one is interested in accurate group selection. It also demonstrates that, as we conjectured in Section 5.3, the
group fused Lasso can consistently estimate multiple change-points as the number of profiles increases.

6.4 Application to gain and loss detection

We now consider a possible application of our method for the detection of regions with frequent gains
(positive values) and losses (negative values) among a set of DNA copy number profiles, measured by
array comparative genomic hybridization (aCGH) technology [27]. We propose a two-step strategy for
this purpose: first, find an adequate joint segmentation of the signals; then, check the presence of gain or

13
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Estimation of several change-points
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Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profiles p when
change-points are placed at the nine positions {10, 20, . . . , 90} and the variance σ2 of the centered Gaussian
noise is either 0.05 (left), 0.2 (center) and 1 (right). The profile length is 100.

loss on each interval of the segmentation by summarizing each profile by its average value on the interval.
Note that we do not assume that all profiles share exactly the same change-points, but merely see the joint
segmentation as an adaptive way to reduce the dimension and remove noise from data.

In practice, we used group fused LARS on each chromosome to identify a set of 100 candidate change-
points, and selected a subset of them by post-processing as described in Section 5.4. Then, in each piecewise-
constant interval between successive shared change-points, we calculate the mean of the positive segments
(shown in green in Figures 5(a) and 6(c)) and the mean of the negative segments (shown in red). The larger
the mean of the positive segments, the more likely we are to believe that a region harbors an important
common gain; the reasoning is analogous for important common losses and the mean of the negative seg-
ments. Obviously, many other statistical tests could be carried out to detect frequent gains and losses on
each segment, once the joint segmentation is performed.

We compare this method for detecting regions of gain and loss with the state-of-the-art H-HMMmethod
[27], which has been shown to outperform several other methods in this setting. As [27] have provided their
algorithm online with several of their data sets tested in their article, we implemented our method and theirs
(H-HMM) on their benchmark data sets.

In the first data set in [27], the goal is to recover two regions – one amplified, one deleted, that are shared
in 8 short profiles, though only 6 of the profiles exhibit each of the amplified or deleted regions. Performance
is measured by area under ROC curve (AUC), following [27]. Running H-HMMwith the default parameters,
we obtained an AUC (averaged over 10 trials) of 0.96± .01, taking on average 60.20 seconds. The weighted
group fused LARS, asked to select 100 breakpoints and followed by dynamic programming, took 0.06
seconds and had an AUC of 0.97. Thus, the performance of both methods was similar, though weighted
group fused LARS was around 1000 times faster.

The second data set was a cohort of lung cancer cell lines originally published in [28, 29]. As in [27], we
concentrated on the 18 NSCLC adenocarcinoma (NA) cell lines. Figure 5 shows the score statistics obtained
on Chromosome 8 when using either weighted group fused LARS or H-HMM.Weighted group fused LARS

14
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Application: detection of frequent abnormalities
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Conclusion

Convex norms with singularities at piecewise-constant profiles
Global optimum of fused lasso found by binary segmentation
Efficient proximal methods for optimization with general loss
functions (supervised classification, regression, ...)
Benefit of increasing the number of profiles

Some questions
Theoretical results for K change-points in n profiles of length p
What if just a few profiles have a change-point?
What about time series on a network?
How to choose the number of change-points?
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