The group fused Lasso
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Normal vs cancer cells
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What goes wrong?
How to treat?

JP Vert (Mines ParisTech) GFLseg 2/47



Chromosomic aberrations in cancer
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Measuring DNA copy number

@ Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research to observe
systematically variants in DNA content

@ Progressively replaced by high throughput sequencing techniques)
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Problem 1: find change-points in one (long) profile
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Problem 2: learn to discriminate profiles
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Aggressive (left) vs non-aggressive (right) melanoma
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Problem 3:

Find frequent breakpoints
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A collection of bladder tumour copy number profiles.
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0 Fast fused lasso for change-point detection
e Fused SVM for discrimination of profiles

e Group fused lasso for multiple frequent change-point detection
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0 Fast fused lasso for change-point detection
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Can we identify breakpoints and "smooth" each
profile?
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@ A classical multiple change-point detection problem
@ Should scale to lengths of order 108 ~ 108
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An optimal solution

@ For a signal Y € RP, define an optimal approximation 8 € RP with
k breakpoints as the solution of

p—1
; 2 . .
min || Y~ 8" such that ’;1 (Biv1 # Bi) <k
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Promoting sparsity with the ¢ penalty

The ¢4 penalty (Tibshirani, 1996; Chen et al., 1998)

If R(B) is convex and "smooth", the solution of

m|n R(3 +>\Z|ﬁ,

is usually sparse.

Geometric interpretation with p = 2
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Promoting piecewise constant profiles penalty

The total variation / variable fusion penalty

If R(B) is convex and "smooth", the solution of

mlnR +)\Z\B,+1 Bil

is usually piecewise constant (Rudin et al., 1992; Land and Friedman,
1996).

Proof:
@ Change of variable u; = 8j1 — Bi, Up = 54
@ We obtain a Lasso problem in u € RP~!
@ U sparse means 5 piecewise constant
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TV signal approximator

p—1
in|Y-3]|? h th 1= Bil <
min ||Y'— 8| such that ;mm Bil < p

Adding additional constraints does not change the change-points:
e > 7 .| 8| < v (Tibshirani et al., 2005; Tibshirani and Wang, 2008)
e P . 32 < v (Mairal et al. 2010)
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Solving TV signal approximator

p—1
min || Y — 3||° such that 1= Bil <
min || Y- 5] ;mﬂ Bil <

@ QP with sparse linear constraints in O(p?) -> 135 min for p = 10°
(Tibshirani and Wang, 2008)

@ Coordinate descent-like method O(p)? -> 3s s for p = 10°
(Friedman et al., 2007)

@ For all  with the LARS in O(pK) (Harchaoui and Levy-Leduc,
2008)

@ Forall 1 in O(pIn p) (Hoefling, 2009)
@ For the first K change-points in O(pIn K) (Bleakley and V., 2010)
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Solving TV signal approximator in O(pIn K)

Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)

TV signal approximator is a binary segmentation algorithm

Algorithm 1 Greedy dichotomic segmentation
Require: & number of intervals, () gain function to split an interval [ into Iy, (1), [r([)
1: Ip represents the interval [1,n]
: P ={l}
: fori=1tokdo
I* + argmaxy (I*)
IeP
P« P\{I*}
P+ POl (I*),Ir (I")}
: end for
: return P

B owoR

[ N o ]

Apparently greedy algorithm finds the global optimum!
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Solving TV signal approximator in O(pIn K)

Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)

TV signal approximator is a binary segmentation algorithm

Consequences:

@ Good news: very fast methods to find the global optimum of TV
approximator

@ Good news: we can analyze this greedy method by expressing the
solution as the global minimum of an objective function

@ Bad news: TV approximator is no more than a binary
segmentation method...

Extension to hierarchical clustering: ClusterPath (Hocking et al.,
ICML 2011)
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Technical details

@ Represent an interval [u + 1, v] by a quadruplet | = (u, v, o4, 0v)
where 0,0, € {—1,0,1}
o LletF,=Y,Ys,andforu<k<v,oce{-1,1}

oAx/2 ifoy,=0,#0,
filk,o) = )
Ax/ (o0 — Bx) otherwise ,
where
Ak:—Fk+(V_k)F“+(k_U)FV,
v—u
(v—-Kou+(k—u)oy

By =

vV—u
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Technical details (cont.)

Then the functions ~(/), I.(/) and Ig(/) are respectively given by:

= fi(k
7() kE[U+1,VrD%?§'E{—1,1} I( 70)’

(k*,0") = argmax fi(k,o),
kelu+1,v—1],0e{-1,1}
IL(/) = (U’ k*7UU7U*) )
Ir(h) = (k*,v,0% 0y) .
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Proof (sketch)

@ Homotopy method (LARS)

@ Similar to Harchaoui and Levy-Leduc (2008), removing
superfluous computations

@ The next breakpoint in a segment, and the p where it appears, is
independent of events in other segments
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Speed trial : 2 s. for K = 100, p = 107

Speed for K=1, 10, 1e2, 1e3, 1e4, 1e5
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Application

Vol. 27 no. 2 2011, 268-269
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Genome analysis Advance Access publication November 15, 2010

Control-free calling of copy number alterations in
deep-sequencing data using GC-content normalization

Valentina Boeva'-2:3-4* Andrei Zinovyev'2:3, Kevin Bleakley'-23, Jean-Philippe Vert':2:3,
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e Fused SVM for discrimination of profiles
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Extension: cancer prognosis
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Aggressive (left) vs non-aggressive (right) melanoma
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The problem
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@ Xq,...,Xn € RP the n profiles of length p
@ Yi,...,¥n € [—1,1] the labels
@ We want to learn a function f : R° — [—1,1]
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Prior knowledge

@ Sparsity : not all positions should be discriminative, and we want
to identify the predictive region (presence of oncogenes or tumor
suppressor genes?)

@ Piecewise constant : within a selected region, all probes should
contribute equally

. l "
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Fused lasso for supervised classification (Rapaport et

al., 2008)

Find a linear predictor f(Y) = 8" Y that best discriminates the
aggressive vs non-aggressive samples, subject to the constraints that
it should be sparse and piecewise constant:

n
/5291@9’ ‘ ¢ (}/iaBTXi) + X[ 811+ Xl Bl 7v
j=

where ¢ is, e.g., the hinge loss ¢(y, t) = max(1 — yt,0).

JP Vert (Mines ParisTech) GFLseg 27/ 47



Fused lasso for supervised classification (Rapaport et

al., 2008)

Find a linear predictor f(Y) = 8" Y that best discriminates the
aggressive vs non-aggressive samples, subject to the constraints that
it should be sparse and piecewise constant:

n
/3"51@9’ ‘ ¢ (WyﬁTXi) + X[ 811+ Xl Bl 7v
j=

where ¢ is, e.g., the hinge loss ¢(y, t) = max(1 — yt,0).

Implementation

@ When 7 is the hinge loss (fused SVM), this is a linear program ->
uptop=10%~10*

@ When 7 is convex and smooth (logistic, quadratic), efficient
implementation with proximal methods -> up to p = 108 ~ 10°
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Example: prognosis in melanoma
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e Group fused lasso for multiple frequent change-point detection

JP Vert (Mines ParisTech) GFLseg 29/47



Can we detect frequent breakpoints?
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A collection of bladder tumour copy number profiles.

JP Vert (Mines ParisTech) GFLseg

30/47



The problem
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The problem
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"Optimal" segmentation by dynamic programming

@ Define the "optimal" piecewise constant approximation UJ € RP*"
of Y as the solution of

p—1
min ||Y — U|[? such that 1(U1e # U) < k
UGRPX"H | 12_; ( i+1,0 7 Ui, ) =

@ DP finds the solution in O(p?kn) in time and O(p?) in memory
@ But: does not scale to p = 108 ~ 108...
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the
¢4 /¢>-norm induces sparse solutions at the group level.

Qgroup Z I WQHZ

Q(wy, wa, wz) = [|(wq, we)l|2 + ||wsl|2

— /w2 2 /' w2
= W1—|—W2+ W3
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GFLseg (Bleakley and V., 2011)

Replace
p—1
min 1Y - U|? such that ;:1 (Uis1,0 # Uia) < k
by
p—1
ymin 1Y - U 1> suchthat > wj|U1.— Ul < 1

i=1

GFLseg = Group Fused Lasso segmentation

34/47
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GFLseg (Bleakley and V., 2011)

Replace
p—1
Jmin 1Y - U|? such that ;:1 (Uis1,0 # Uia) < k
by
p—1
Jmin ||V —U 1> suchthat > wj|U1.— Ul < 1

i=1

GFLseg = Group Fused Lasso segmentation

@ Practice: can we solve it efficiently?
@ Theory: does it recover the correct segmentation?
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GFLseg as a group Lasso problem

@ Make the change of variables:

Y= U1,07
Bie=W;(Ui1e—U) fori=1,....p—1.

@ TV approximator is then equivalent to the following group Lasso
problem (Yuan and Lin, 2006):

p—1
min || Y= X8+ X ol
,BGR(P—‘)X"H Bl ;Hﬁ/, I

where Y is the centered signal matrix and X is a particular
(p—1) x (p— 1) design matrix.
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TV approximator implementation

p—1

min [V = X312+ 2> [ Bie

—1
BGR(P )xn i—1

The TV approximator can be solved efficiently:

@ approximately with the group LARS in O(npk) in time and O(np)
in memory

@ exactly with a block coordinate descent + active set method in
O(np) in memory
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Proof: computational tricks... (from Zaid Harchaoui)

Although Xis (p — 1) x (p — 1):
@ Forany R € RP*", we can compute C = X R in O(np) operations
and memory

@ For any two subset of indices A= (ay,...,a)) and
B = (by,...,bg) in[1,p— 1], we can compute X, , X, g in
O(|A[|B]) in time and memory

@ Forany A= (a1, e a|A|), set of distinct indices with
1<a<...<apy <p-1,andforany |Al x nmatrix R, we can

_ _ —1
compute C = (X.TAX.,A> R in O(|A|n) in time and memory
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Speed trial

time (s)
3
time (s)
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Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottom row). Left column: varying
n, with fixed p = 10 and k = 10; center column: varying p, with fixed n = 1000 and k£ = 10; right column:
varying k, with fixed n = 1000 and p = 10. Figure axes are log-log. Results are averaged over 100 trials.
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Suppose a single change-point:
@ at position u = ap
@ with increments (3;)i—1, .p S.t. % = liMy_00 2 377 52
@ corrupted by i.i.d. Gaussian noise of variance ¢

o 100 200 300 400 500 600 700 800 900 1000

o 100 200 300 400 500 600 700 800 900 1000

] 100 200 40 500 600 700 800 900 1000

Does the TV approximator correctly estimate the first change-point as
p increases?
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Consistency of the unweighted TV approximator

p—1
min [|Y—U|? suchthat > [[U1.e— Ul < pe
i=1

UeRpxn

Theorem
The unweighted TV approximator finds the correct change-point with
probability tending to 1 (resp. 0) as n — +oo if 7® < 52 (resp.

02 > 52), where

i (1 —a)*(a—z)
55 = pB? —
o — 5 — Z) )
@ correct estimation on [pe, p(1 — €)] with € = 2;%2 +o(p~1/?).

@ wrong estimation near the boundaries
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Consistency of the weighted TV approximator

p—1
min ||Y — U|[? such that Wil|Uit1.e — Uil <
UeRpan | ; il Ui, ioll < 1t

Theorem

The weighted TV approximator with weights
Vie[t,p—1], w= @

correctly finds the first change-point with probability tending to 1 as
n— +oo.

@ we see the benefit of increasing n
@ we see the benefit of adding weights to the TV penalty
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Proof sketch

@ The first change-point i found by TV approximator maximizes
Fi = & | where

c=X"Y=X"Xg+X"W.

@ ¢is Gaussian, and F; is follows a non-central x? distribution with

Gi:ﬁ:"(l)—i)z 32 ><{iz(p—u)2 ifi<u,

-+ . .
P pw? w2wip? ~ | w2 (p—i)® otherwise.

@ We then just check when G, = max; G;
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Consistency for a single change-point
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Figure 3: Single change-point accuracy for the group fused Lasso. Accuracy as a function of the number
of profiles p when the change-point is placed in a variety of positions v = 50 to u = 90 (left and centre
plots, resp. unweighted and weighted group fused Lasso), or: « = 50+2 to u = 90 £ 2 (right plot, weighted
with varying change-point location), for a signal of length 100.
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Estimation of several change-points
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Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profiles p when
change-points are placed at the nine positions {10, 20, ..., 90} and the variance o2 of the centered Gaussian
noise is either 0.05 (left), 0.2 (center) and 1 (right). The profile length is 100.
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Application: detection of frequent abnormalities

Log-ratio
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Conclusion

@ Convex norms with singularities at piecewise-constant profiles
@ Global optimum of fused lasso found by binary segmentation

@ Efficient proximal methods for optimization with general loss
functions (supervised classification, regression, ...)

@ Benefit of increasing the number of profiles

Some questions
@ Theoretical results for K change-points in n profiles of length p
@ What if just a few profiles have a change-point?
@ What about time series on a network?
@ How to choose the number of change-points?
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