Machine Learning for Personalized Medicine

Jean-Philippe Vert

DNA = 6 billions ACGT

Human genome project (1990-2003)

- Goal: sequence the $3,000,000,000$ base pairs of the human genome
- Consortium of 20 laboratories, 6 countries
- 13 years, $\$ 3,000,000,000$

A flood of omics data

Interactome

Mutations
Structural variations

Transcriptome

Epigenome

Phenome

Cancer: different views

Big data!

- http://aws.amazon.com/1000genomes/

P4. Medicine

- PREDICT • PREVENT • PERSONALIZE • PARTICIPATE

(等) (1) 18

Opportunities

Diagnosis

Response to drugs

Example:
 Pharmacogenomics / Toxicogenomics

Crowd-sourcing initiatives

DREAM8 challenge (jun-sep 2013)

Toxicogenetics Challenge Data

Chemical descriptors 10K attributes

156 chemicals

Our approach

Learning occurs...

... and it somehow worked

More to come!

Announcing the 2013 DREAM 8.5 Challenges

We are pleased to announce three new DREAM 8.5 challenges. Best performers in all DREAM 8.5 Challenges will be invited to present at the 2014 DREAM conference (date and location to be determined) with travel expenses covered by the organizers. We are also working to establish publishing partners for each of these challenges. The DREAM 8.5 Challenges are now open for registration, and will begin active problem-solving in late 2013 or early 2014.

Click on a link below to read the Challenge detail and register for a DREAM 8.5 Challenge.

Alzheimer's Disease Big Data DREAM Challenge \#1

In the first of what will be a series of Alzheimer's Disease (AD) Big Data Challenges, participants will utilize data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Data will consist of cognitive, imaging, biological, and whole genome sequencing data on cohorts of volunteers, who range from cognitively normal, mild cognitive impairment and dementia. Participants will analyze the data to solve two sub-challenges: (1) Build a model that best predicts change over time in AD cognitive scores using all available test and adjacent data, and (2) Build a model that best predicts discordance between biomarkers suggestive of amyloid perturbations and lack of cognitive impairment. These models will be used to better understand the biomolecular mechanisms leading to Alzheimer's disease, and ultimately to develop new therapies. We expect to announce a publishing partner for this Challenge shortly.

ICGC-TCGA-DREAM Somatic Mutation Calling Challenge

Working with technology partners Google and Annai, we will provide 9 terabytes of raw human sequence data derived from pairs of normal and tumor tissue (from prostate and pancreas). Approved participants will analyze the data to solve two sub-challenges: (1) build a model that accurately predicts cancer mutations that alter a single nucleotide in the genome (single nucleotide variants, SNVs) (2) Build a model that accurately predicts cancer mutations that alter the order of a large stretch of the genome (i.e. a structural variation, SV), such as a rearrangement, inversion or copy-number aberration. Improving the algorithms that correctly identify these variations is important because these variations provide key genetic data which can be used by predictive models to guide personalized cancer therapies. Nature Publishing Group enthusiastically welcomes the opportunity to consider for publication work that achieves best performance in this Challenge.

The Rheumatoid Arthritis Responder Challenge

Participants will have access to whole genome genotype data (2.2 million SNPs) and clinical data collected from 2,000 individuals with Rheumatoid Arthritis who have been treated with anti-TNF therapy. Up to one third of these patients fail to enter clinical remission. Participants will use these data to solve two sub-challenges: (1) Build a model that best predicts treatment response as measured by the change in disease activity score (DAS28) in response to anti-TNF therapy, and (2) Build a model that best predicts poor responders as defined by specific criteria (yet to be specified). The winning model will be the one that can predict the largest portion of this sample subset ($\sim 10 \%$ of the population) with a positive predictive value greater than a predetermined cutoff. These models could be used to ensure patients likely to anti-TNF therapy receive the treatment, while those who are unlikely to respond are shielded from harmful side-effects and directed to new treatment approaches. Nature Genetics will consider for p.

Thanks!

Reb Regars / Pitsburch Post-Gavelte

