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(old) Central dogma
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Alternative splicing: 1 gene = many proteins

In human, 28k genes give 120k known transcripts (Pal et al., 2012)
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http://dx.doi.org/10.1016/j.pharmthera.2012.08.005


Importance of alternative splicing

(Pal et al., 2012)
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http://dx.doi.org/10.1016/j.pharmthera.2012.08.005


Opportunities for drug developments...

(Pal et al., 2012)
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http://dx.doi.org/10.1016/j.pharmthera.2012.08.005


The isoform identification and quantification problem

Given a biological sample (e.g., cancer tissue), can we:
1 identify the isoform(s) of each gene present in the sample?
2 quantify their abundance?
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RNA-seq measures mRNA abundance by sequencing
short fragments

(Wang et al., 2009)
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http://www.nature.com/nrg/journal/v10/n1/full/nrg2484.html


RNA-seq and alternative splicing

(Costa et al., 2011)
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From RNA-seq to isoforms

library preparation

RNA sample
transcripts

reads
50-200pb

?

De Novo 
approaches

- OASES (Schultz et al. 2012)

- Trinity (Grabherr et al. 2011)

- Kissplice (Sacomoto et al. 2012)

 

Transcripts 
Quantification using 

annotations
- RQuant (Bohnert et al. 2009)

- FluxCapacitor (Montgomery et al. 2010)

- IsoEM (Nicolae et al. 2011)

- eXpress (Roberts et al. 2013)

Genome-based 
Transcripts 

Reconstruction
- Scripture (Guttman et al. 2010)

- Cufflinks (Trapnell et al. 2010)

- IsoLasso (Li et al. 2011a)

- NSMAP (Xia et al. 2011)

- SLIDE (Li et al. 2011b)

- iReckon (Mezlini et al. 2012)

- FlipFlop
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De Novo methods

De Novo 
approaches

- OASES (Schultz et al. 2012)

- Trinity (Grabherr et al. 2011)

- Kissplice (Sacomoto et al. 2012)
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Genome-based methods

Genome-based 
Transcripts 

Reconstruction
- Scripture (Guttman et al. 2010)

- Cufflinks (Trapnell et al. 2010)

- IsoLasso (Li et al. 2011a)

- NSMAP (Xia et al. 2011)

- SLIDE (Li et al. 2011b)

- iReckon (Mezlini et al. 2012)

- FlipFlop
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Genome-based

Input: 
spliced alignment of reads 
against reference genome

Job: 
reconstruct transcripts
multi-assembly problem
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Isoforms are Paths in a GraphIsoforms are Paths in a Graph

• Cufflinks → overlap graph
• Scripture, IsoLasso → connectivity graph
• SLIDE, NSMAP, iReckon→ splicing graph
• FlipFlop → ‘customized’ splicing graph

1

2 3

4

5

(a) Splicing graph for a gene with 5 ex-
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(b) Graph G0 with junctions, source s and sink t nodes.

Figure 1: Illustration of the graph construction on a gene with 5 exons. The original splicing
graph is represented in (a). The 5 exons are represented as red circles and an arrow between two
nodes indicates a junction. The graph G0 in (b) includes junction nodes denoted by gray squares,
as well as source s and sink t nodes. When an exon is linked to the source, it means that it is
considered as a starting exon. Conversely, an exon linked to the sink is a stopping exon. There is
a one-to-one correspondence between (s, t)-paths in G0 (paths starting at s and ending at t) and
isoform candidates. For example, the path (s, 1, 1-4, 4, 4-5, 5, t) corresponds to isoform 1-4-5.

3.1 Isoform Detection as a Path Selection Problem

Remember that a graph G = (V, E) is composed of a finite set of vertices V and edges E ✓ V ⇥V .
A path is a sequence of vertices v1, . . . , vk 2 V such that (vi, vi+1) is an arc in E for all indices
1  i < k. A graph is a DAG if it contains no path (v1, . . . , vk) with v1 = vk. In other words, the
graph does not contain any cycle.

For a given gene, we construct the graph G = (V, E) whose vertex set V is the set of bins,
i.e., the set of exons and exon-exon junctions, and whose edges connect exon bins to junction bins
according to the following rule: connect exon e to the junction e-e0, and connect the junction e-e0

to the exon e0. Note that the set of exons (e1, . . . , en) is ordered, and that junctions only connect
exons in strictly increasing order, i.e., ei-ej is a junction only if i < j. The resulting graph G is
therefore a DAG, since any path must move along vertices with strictly increasing exons. This
graph is similar to the splicing graph (Heber et al., 2002), whose vertices are single exons and edges
are exon-exon junctions. For reasons that will become clear in the next section, we simply replace
each edge of the splicing graph by an exon-exon junction vertex.

We also consider two new vertices s and t respectively dubbed source and sink, which are used
to specify starting (TSS) and stopping exons (PAS). This leads to the definition of an extended
graph G0 = (V 0, E0) with V 0 = V [ {s, t} and E0 is obtained by adding to E all edges of the form
(s, e) where e 2 V is a bin corresponding to a starting exon, and (e, t) where e 2 V is a stopping
exon. This graph construction is illustrated in Figure 1.

Let us denote by P the set of paths in G0 starting from s and ending at t, which are called
(s, t)-paths. By construction, any path in P is a sequence (s, ei1 , ei1-ei2 , ei2 , . . . , eik�1

-eik , eik , t).
It corresponds to a candidate isoform (ei1 , ei2 , . . . , eik), in the sense that it passes exactly on the
bins contained in the isoform, ei1 is a starting exon, and eik is a stopping exon. Conversely, any
candidate isoform (ei1 , ei2 , . . . , eik) corresponds to the path (s, ei1 , ei1-ei2 , ei2 , . . . , eik�1

-eik , eik , t)
in P. We therefore have a one-to-one mapping between the set of candidate isoforms, on the
one hand, and P, on the other hand. Based on this one-to-one mapping, we can reformulate the
penalized maximum likelihood problem (1)-(2) as follows: we want to find nonnegative weights ✓p

5
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How to select a small number of paths?

n exons→∼ 2n paths/candidate isoforms
∼ 1000 candidates paths for 10 exons and ∼ 1000000 for 20 exons

Minimum Path Cover
Cufflinks, IsoLasso.

Regularization approaches
NSMAP, SLIDE, iReckon,
FlipFlop.
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Cufflink strategy

A two-step approach:
1 Find a set of minimal paths in the graph (independently from the

read abundance value) to identify a good set of isoforms
2 Estimate isoform abundance using read abundance
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junction (Supplementary Table 1). Of the splice junctions spanned 
by fragment alignments, 70% were present in transcripts annotated 
by the UCSC, Ensembl or VEGA groups (known genes).

To recover the minimal set of transcripts supported by our frag-
ment alignments, we designed a comparative transcriptome assem-
bly algorithm. Expressed sequence tag (EST) assemblers such as 
PASA introduced the idea of collapsing alignments to transcripts 
on the basis of splicing compatibility17, and Dilworth’s theorem18 
has been used to assemble a parsimonious set of haplotypes from 
virus population sequencing reads19. Cufflinks extends these ideas, 
reducing the transcript assembly problem to finding a maximum 
matching in a weighted4 bipartite graph that represents com-
patibilities17 among fragments (Fig. 1a–c and Supplementary 
Methods, section 4). Noncoding RNAs20 and microRNAs21 have 
been reported to regulate cell differentiation and development, and 
coding genes are known to produce noncoding isoforms as a means 
of regulating protein levels through nonsense-mediated decay22. 
For these biologically motivated reasons, the assembler does not 
require that assembled transcripts contain an open reading frame 
(ORF). As Cufflinks does not make use of existing gene annotations 

during assembly, we validated the transcripts by first comparing 
individual time point assemblies to existing annotations.

We recovered a total of 13,692 known isoforms and 12,712 new iso-
forms of known genes. We estimate that 77% of the reads originated 
from previously known transcripts (Supplementary Table 2). Of the 
new isoforms, 7,395 (58%) contain novel splice junctions, with the 
remainder being novel combinations of known splicing outcomes; 
11,712 (92%) have an ORF, 8,752 of which end at an annotated stop 
codon. Although we sequenced deeply by current standards, 73% of 
the moderately abundant transcripts (15–30 expected fragments per 
kilobase of transcript per million fragments mapped, abbreviated 
FPKM; see below for further explanation) detected at the 60-h time 
point with three lanes of GAII transcriptome sequencing were fully 
recovered with just a single lane. Because distinguishing a full-length 
transcript from a partially assembled fragment is difficult, we con-
servatively excluded from further analyses the novel isoforms that 
were unique to a single time point. Out of the new isoforms, 3,724 
were present in multiple time points, and 581 were present at all 
time points; 6,518 (51%) of the new isoforms and 2,316 (62%) of 
the multiple time point novel isoforms were tiled by high-identity 
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Figure 1 Overview of Cufflinks. (a) The algorithm takes as input cDNA 
fragment sequences that have been aligned to the genome by software 
capable of producing spliced alignments, such as TopHat. (b–e) With 
paired-end RNA-Seq, Cufflinks treats each pair of fragment reads as 
a single alignment. The algorithm assembles overlapping ‘bundles’ of 
fragment alignments (b,c) separately, which reduces running time and 
memory use, because each bundle typically contains the fragments from 
no more than a few genes. Cufflinks then estimates the abundances of 
the assembled transcripts (d,e). The first step in fragment assembly is 
to identify pairs of ‘incompatible’ fragments that must have originated 
from distinct spliced mRNA isoforms (b). Fragments are connected in an 
‘overlap graph’ when they are compatible and their alignments overlap 
in the genome. Each fragment has one node in the graph, and an edge, 
directed from left to right along the genome, is placed between each 
pair of compatible fragments. In this example, the yellow, blue and red 
fragments must have originated from separate isoforms, but any other 
fragment could have come from the same transcript as one of these 
three. Isoforms are then assembled from the overlap graph (c). Paths 
through the graph correspond to sets of mutually compatible fragments 
that could be merged into complete isoforms. The overlap graph here can 
be minimally ‘covered’ by three paths (shaded in yellow, blue and red), 
each representing a different isoform. Dilworth’s Theorem states that 
the number of mutually incompatible reads is the same as the minimum 
number of transcripts needed to ‘explain’ all the fragments. Cufflinks 
implements a proof of Dilworth’s Theorem that produces a minimal set 
of paths that cover all the fragments in the overlap graph by finding the 
largest set of reads with the property that no two could have originated 
from the same isoform. Next, transcript abundance is estimated  
(d). Fragments are matched (denoted here using color) to the transcripts 
from which they could have originated. The violet fragment could have 
originated from the blue or red isoform. Gray fragments could have come 
from any of the three shown. Cufflinks estimates transcript abundances 
using a statistical model in which the probability of observing each 
fragment is a linear function of the abundances of the transcripts from 
which it could have originated. Because only the ends of each fragment 
are sequenced, the length of each may be unknown. Assigning a fragment 
to different isoforms often implies a different length for it. Cufflinks 
incorporates the distribution of fragment lengths to help assign fragments 
to isoforms. For example, the violet fragment would be much longer, and 
very improbable according to the Cufflinks model, if it were to come from 
the red isoform instead of the blue isoform. Last, the program numerically 
maximizes a function that assigns a likelihood to all possible sets of 
relative abundances of the yellow, red and blue isoforms ( 1, 2, 3)  
(e), producing the abundances that best explain the observed fragments, 
shown as a pie chart.
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(Trapnell et al., 2010)
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Regularization approach

Suppose there are c candidate isoform (c large)
Let φ the unknown c-dimensional vector of abundance
Let L(φ) quantify whether φ explains well the observed read
counts (e.g., minus log-likelihood)
Regularization approach solve a problem:

min
φ

L(φ) such that φ is sparse.
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Pros and cons of both paradigms

Separate identification and abundance estimation
Find a small set of transcripts which covers all reads, then
estimate φ.
Cufflinks, Isolasso.

Pros : fast.
Cons : loss of power.

Simultaneous identification and abundance estimation
Estimate sparse φ over set of all possible transcripts.
NSMAP, SLIDE, iReckon, Flip-Flop

Pros : More powerful.
Cons : Exponential complexity (up to 2n − 1 candidates).
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Simultaneous identification and abundance
estimation : more power

(Li et al., 2011)
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The isoform deconvolution problem

(Xia et al., 2011)
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More formally

e exons, n "bins" (exons+junctions)
c candidate isoforms (up to 2e − 1)
φ ∈ Rc

+ the vector of abundance of isoforms (unknown!)
U binary matrix:


exon1 · · · exone junction1,2 · · · junctione1,e

isoform1 1 · · · 1 1 · · · 1
isoform2 1 · · · 0 1 · · · 0
... · · · · · ·
isoformc 0 · · · 1 0 · · · 0


U>φ the abundance of each exon/junction.

Goal: estimate φ from the observed reads on each exon/junction
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Regularization approach

The log likelihood of φ ∈ Rc only depends on the abundance of
each exon/junction in U>φ ∈ Rn

Example: Gaussian (IsoLasos, SLIDE) or Poisson (NSMAP,
FlipFlop) negative log-likelihood
Regularization-based approaches try to solve:

min
φ∈Rc

R(U>φ) such that φ is sparse,

where R : Rn → R is convex
This is generally a NP-hard problem, so we use a convex
relaxation akin to Lasso regression
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The Lasso idea

The `1 penalty (Tibshirani, 1996; Chen et al., 1998)
If R(β) is convex and "smooth", the solution of

min
β∈Rp

R(β) + λ

p∑
i=1

|βi |

is usually sparse.
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Lasso example

Typically solved in O(n3)
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Isoform deconvolution with the Lasso

Estimate φ sparse by solving (IsoLasso, NSMAP, SLIDE):

min
φ∈Rc

+

R(U>φ) + λ‖φ ‖1

Complexity O(c3) = O(23e)...

Works well BUT computationally challenging to work with all candidate
isoforms for large genes!
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Fast isoform deconvolution with the Lasso (FlipFlop)

Theorem (Bernard, Mairal, Jacob and V., 2012)
The isoform deconvolution problem

min
φ∈Rc

+

R(U>φ) + λ‖φ ‖1

can be solved in polynomial time in the number of exon.

Key ideas
1 U>φ corresponds to a flow on the graph
2 Reformulation as a convex cost flow problem (Mairal and Yu,

2012)
3 Recover isoforms by flow decomposition algorithm

"Feature selection on an exponential number of features in polynomial
time"
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Flow concept

A flow f is a nonnegative function on arcs that respects conservation
constraints (Kirchhoff’s law)
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Combinations of isoforms are flows

s

1 11

1

1 t

(a) Reads at every node corresponding to one isoform.
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(b) Reads at every node after adding another isoform.

Figure 2: Flow interpretation of isoforms using the same graph as in Figure 1. For simplification
purposes, the length of the di↵erent bins are assumed to be equal. In (a), one unit of flow is carried
along the path in red, corresponding to an isoform with abundance 1. In (b), another isoform with
abundance 3 is added, yielding additional read counts at every node.

problem (5) falls into the class of convex cost flow problems (Ahuja et al., 1993), for which e�-
cient algorithms exist.2 In our experiments, we implemented a variant of the scaling push-relabel
algorithm (Goldberg, 1997), which also appears under the name of "-relaxation method (Bertsekas,
1998). Note that the approach can be generalized to any concave likelihood function, including the
Gaussian model used by IsoLasso and SLIDE.

We remark that network flows have been used in several occasions in bioinformatics. For
example, the terminology of “flow” for RNA-Seq data appears in Montgomery et al. (2010); Singh
et al. (2011). The context of these two works is significantly di↵erent than ours since they neither
perform isoform detection, nor use any network flow algorithm. The work closest to ours in terms
of optimization is probably the genome assembly technique of Medvedev and Brudno (2009), who
solve minimum cost flow problems to find a genome maximizing a read-count likelihood. It however
neither involves RNA-Seq data, nor a similar type of graph as ours.

3.3 Flow Decomposition

We have seen that after solving (5) we need to decompose f? into (s, t)-path flows to obtain a
solution ✓? of (2). As illustrated in Figure 2, this corresponds to finding the two isoforms from 2(b).
Whereas the decomposition might not be ambiguous when f? is a sum of few (s, t)-path flows, it
is not unique in general. Our approach to flow decomposition consists of finding an (s, t)-path
carrying the maximum amount of flow (equivalently finding an isoform with maximum expression),
removing its contribution from the flow, and repeating until convergence. We remark that finding
(s, t)-path flows according to this criterion can be done e�ciently using dynamic programming,
similarly as for finding a shortest path in a directed acyclic graph (Ahuja et al., 1993).

3.4 Model Selection

The last problem we need to solve is model selection: even if we know how to solve (2) e�ciently,
we need to choose a regularization parameter �. For large values of �, (2) yields solutions involving
few expressed isoforms. As we decrease �, more isoforms have a non-zero estimated expression ✓j ,
leading to a better data fit but also leading to a more complex model. A classical way of balancing

2The function (5) can be decomposed into costs Cv(fv) over vertices v. The general convex cost flow objective
function is usually presented as a sum of costs Cuv(fuv) over arcs (u, v). It is however easy to show that costs over
vertices can be reduced to costs over arcs by a simple network transformation (see Ahuja et al., 1993, Section 2.4).
Note that all arcs have zero lower capacities and infinite upper capacities.

7

Linear combinations of isoforms ⇒ Flow value on every nodes
Flow value on every nodes ⇒

Flow Decomposition
(linear time algorithm)

Paths with given value/abundance

JP Vert (ParisTech) Flip-Flop Kyodai 27 / 36



From isoforms to flow (key trick!)
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removing its contribution from the flow, and repeating until convergence. We remark that finding
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few expressed isoforms. As we decrease �, more isoforms have a non-zero estimated expression ✓j ,
leading to a better data fit but also leading to a more complex model. A classical way of balancing

2The function (5) can be decomposed into costs Cv(fv) over vertices v. The general convex cost flow objective
function is usually presented as a sum of costs Cuv(fuv) over arcs (u, v). It is however easy to show that costs over
vertices can be reduced to costs over arcs by a simple network transformation (see Ahuja et al., 1993, Section 2.4).
Note that all arcs have zero lower capacities and infinite upper capacities.

7

U>φ ∈ Rn when φ ∈ Rc is the set of flows
Moreover, ||φ||1 = ft !

Therefore,
min
φ∈Rc

+

R(U>φ) + λ‖φ ‖1

is equivalent to
min
f flow

R(f ) + λft
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Summary

min
φ∈Rc

+

R(U>φ) + λ‖φ ‖1

Cufflink : a priori selection of isoforms (minimum graph cover)
IsoLasso : pre-filtering of candidate isoforms using various
heuristics
NSMAP, SLIDE : limit the maximum number of exons
FlipFlop : exact optimization without pre-filtering in polynomial
time, by solving a convex problem in the space of flows (dimension
n) and recovering path with the flow decomposition algorithm.
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Human Simulation: Precision/Recall
hg19, 1137 genes on chr1, 1million 75 bp single-end reads by transcript levels.
Simulator: http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html
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Performance increases with read length
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Performance increases with coverage

1 M (150bp) 5 M (150bp) 10 M (150bp)

25

50

75

100

40 60 80 40 60 80 40 60 80
PRECISION

R
E

C
A

L
L

IsoLasso
Cufflinks
FlipFlop
NSMAP

1 transcripts
2 transcripts
3−4 transcripts
5−7 transcripts
8−43 transcripts

JP Vert (ParisTech) Flip-Flop Kyodai 32 / 36



Extension to paired-end reads OK.

100 bp (400bp fragments, 1M reads) 125 bp (400bp fragments, 1M reads) 150 bp (400bp fragments, 1M reads) 175 bp (400bp fragments, 1M reads)
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Speed trial
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Conclusion

http://cbio.mines-paristech.fr/flipflop

Summmary
Transcript selection over all possible candidates is hard.
We show the problem is equivalent to a simpler one.
With our approach, the full problem is solved as quickly as the
more heuristic one (Cufflinks approach).

Future work
Some loose ends : GC content, decomposition, post-processing...
Ongoing : abundance estimation comparison.
Adapt framework to paired-end reads,
Applications : differential expression, classification, clustering.
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