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Normal vs cancer cells
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What goes wrong?
How to treat?
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Biology is now quantitative, "high-throughput"

DOE Joint Genome Institute
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Big data in biology

Cost per Genome
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@ "The $1,000 genome, the $1 million interpretation" (B. Kopf)
@ High-dimensional, heterogeneous, structured data. "Large p"

@ http://aws.amazon.com/1000genomes/
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http://aws.amazon.com/1000genomes/

In this talk

mMi/n R(w) + AQ(w)

where:
@ w is the hypothesis we want to infer from data

@ R(w) is a smooth convex "fitness" function
@ Q(w) is a non-smooth convex penalty, which favors particular
solution

0 Isoform detection from RNA-seq data

© Mapping DNA breakpoints in cancer genomes
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@ Isoform detection from RNA-seq data
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Central dogma
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Alternative splicing: 1 gene = many proteins
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The isoform identification and quantification problem
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Given a biological sample (e.g., cancer tissue), can we:
@ identify the isoform(s) of each gene present in the sample?
@ quantify their abundance?
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RNA-seq measures mRNA abundance by sequencing

short fragments
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RNA-seq and alternative splicing
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(Costa et al., 2011)
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From RNA-seq to isoforms
NN A

RNA sample

transcripts \/\
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l library preparation
reads T — = N
Transcripts De Novo Genome-based
Quantification using approaches Transcripts

annotations - OASES (schultz et al. 2012) Reconstruction

- RQuant (Bohnert et al. 2009)

- FluxCapacitor (Montgomery et al. 2010)
- ISoEM (Nicolae et al. 2011)

- eXpress (Roberts et al. 2013)

- Trinity (Grabherr et al. 2011)
- Kissplice (sacomoto et al. 2012)
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- Scripture (Guttman et al. 2010)
- Cufflinks (Trapnell et al. 2010)
- IsoLasso (Lietal. 2011a)

- NSMAP (xia et al. 2011)

- SLIDE (Li et al. 2011b)

- iReckon (Mezlini et al. 2012)

- FlipFlop
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The isoform deconvolution problem
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(Xia et al., 2011)
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More formally

e exons
¢ candidate isoforms (up to 2° — 1)

¢ € RS the vector of abundance of isoforms (unknown!)
U binary matrix:

exony --- exone junctionip --- junctione, e
isoform 1 e 1 1 e 1
isoforms 1 e 0 1 e 0
isoformg 0 e 1 0 e 0

UT ¢ the abundance of each exon/junction.

Goal: estimate ¢ from the observed reads on each exon/junction
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Isoform deconvolution with the Lasso

Estimate ¢ sparse by solving:

min R(U"¢) + Al ¢ |1

pERS

@ IsolLasso (Li et al., 2011)
@ NSMAP (Xia et al., 2011)
@ SLIDE (Lietal., 2011)

Works well BUT computationally challenging to enumerate all
candidate isoforms (up to 2°) for large genes!
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Fast isoform deconvolution with the Lasso

Theorem (Bernard, Mairal, Jacob and V., 2012)
The isoform deconvolution problem

min R(UT A
¢€ﬁ§i (U o)+ Al ol

can be solved in polynomial time in the number of exon.

Key ideas
@ U7 ¢ corresponds to a flow on the graph

@ Reformulation as a convex cost flow problem (Mairal and Yu,
2012)

© Recover isoforms by flow decomposition algorithm

"Feature selection on an exponential number of features in polynomial
time"
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From isoforms to flows
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@ Isoforms are paths
@ Linear combinations of isoforms are flows
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Isoform deconvolution as convex cost flow problem
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min R(UT A
¢E]'Ri (U )+ Aloll4

is equivalent to
min R(f) + Af;

f flow
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FlipFlop (Bernard, Jacob, Mairal and V., 2012)

min R(UT¢) + Al 6l
$ERS

@ Cufflink : a priori selection of isoforms (minimum graph cover)

@ IsolLasso : pre-filtering of candidate isoforms using various
heuristics

@ NSMAP, SLIDE : limit the maximum number of exons
@ FlipFlop : exact optimization without pre-filtering in polynomial
time
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Performance in isoform identification
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Simulated data (hg19, 1137 genes on chr1, 1million 75 bp single-end
reads by transcript levels).
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Speed trial
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e Mapping DNA breakpoints in cancer genomes
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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

@ Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research to observe
systematically variants in DNA content

Log-ratio
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Can we identify breakpoints and "smooth" each
profile?

& @0
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@ A classical multiple change-point detection problem
@ Should scale to lengths of order 108 ~ 10°
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Can we identify breakpoints and "smooth" each
profile?
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@ A classical multiple change-point detection problem
@ Should scale to lengths of order 108 ~ 10°
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An optimal solution

@ For a signal Y € RP, define an optimal approximation 8 € RP with
k breakpoints as the solution of

p—1
; 2 . .
min || Y~ 8" such that ’;1 (Biv1 # Bi) <k
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An optimal solution

@ For a signal Y € RP, define an optimal approximation 8 € RP with
k breakpoints as the solution of

p—1
; 2 . .
min || Y~ 8" such that ’;1 (Biv1 # Bi) <k

@ This is an optimization problem over the () partitions...
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An optimal solution

@ For a signal Y € RP, define an optimal approximation 8 € RP with
k breakpoints as the solution of

p—1
; 2 . .
min || Y~ 8" such that ’;1 (Biv1 # Bi) <k

@ This is an optimization problem over the () partitions...
@ Dynamic programming finds the solution in O(p?k) in time and
O(p?) in memory
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An optimal solution

@ For a signal Y € RP, define an optimal approximation 8 € RP with
k breakpoints as the solution of

p—1
; 2 . .
min || Y~ 8" such that ’;1 (Biv1 # Bi) <k

@ This is an optimization problem over the () partitions...

@ Dynamic programming finds the solution in O(p?k) in time and
O(p?) in memory

@ But: does not scale to p = 10% ~ 10°...
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Promoting sparsity with the ¢ penalty

The ¢4 penalty (Tibshirani, 1996; Chen et al., 1998)

If R(B) is convex and "smooth", the solution of

m|n R(3 +>\Z|ﬁ,

is usually sparse.

Geometric interpretation with p = 2
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Promoting piecewise constant profiles penalty

The total variation / variable fusion penalty

If R(B) is convex and "smooth", the solution of

mlnR +)\Z\B,+1 Bil

is usually piecewise constant (Rudin et al., 1992; Land and Friedman,
1996).

Proof:
@ Change of variable u; = 8j1 — Bi, Up = 54
@ We obtain a Lasso problem in u € RP~!
@ U sparse means 5 piecewise constant
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TV signal approximator

p—1
in|Y-3]|? h th 1= Bil <
min ||Y'— 8| such that ;mm Bil < p

Adding additional constraints does not change the change-points:
e > 7 .| 8| < v (Tibshirani et al., 2005; Tibshirani and Wang, 2008)
e P . 32 < v (Mairal et al. 2010)

Sige
2 1 0 1 2 3
p=
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Solving TV signal approximator

p—1
min || Y —3[* suchthat > [ 61— 6] <p
i=1

@ QP with sparse linear constraints in O(p?) -> 135 min for p = 10°
(Tibshirani and Wang, 2008)

@ Coordinate descent-like method O(p)? -> 3s s for p = 10°
(Friedman et al., 2007)

@ With the LARS in O(pk) (Harchaoui and Levy-Leduc, 2008)
@ Forall 1 in O(pIn p) (Hoefling, 2009)
@ For the first k change-points in O(pIn k) (Bleakley and V., 2010)
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Solving TV signal approximator in O(pIn k)

Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)

TV signal approximator performs "greedy" dichotomic segmentation

Algorithm 1 Greedy dichotomic segmentation
Require: & number of intervals, v(I) gain function to split an interval [ into I, (1), Ir(I)
1: Iy represents the interval [1,n]
. P=A{lp}
: fori=1tokdo
I* « argmaxy (I*)
IeP
P« P\{I"}
P PU{lL(I"), Ir(I")}
: end for
: return P

B oW

® N W

Apparently greedy algorithm finds the global optimum!
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Speed trial : 2 s. for k = 100, p = 107
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Extension 1: linear discrimination / regression
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Fused lasso for supervised classification

L

I
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@ Idea: find a linear predictor f(Y) = 3" Y that best discriminates
the aggressive vs non-aggressive samples, subject to the
constraints that it should be sparse and piecewise constant
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Fused lasso for supervised classification
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@ Idea: find a linear predictor f(Y) = 3" Y that best discriminates
the aggressive vs non-aggressive samples, subject to the
constraints that it should be sparse and piecewise constant

@ Mathematically:

min R(B) + M B 11 + Aol Bl7v
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Fused lasso for supervised classification

L
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@ Idea: find a linear predictor f(Y) = 3" Y that best discriminates
the aggressive vs non-aggressive samples, subject to the
constraints that it should be sparse and piecewise constant

@ Mathematically:

min R(B) + M B 11 + Aol Bl7v

@ Computationnally: proximal methods
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Prognosis in melanoma (Rapaport et al., 2008)
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Extension 2: finding multiple change points shared
several profiles

L L L L L L L
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Extension 2: finding multiple change points shared
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"Optimal" segmentation by dynamic programming

@ Define the "optimal" piecewise constant approximation UJ € RP*"
of Y as the solution of

p—1
min ||Y — U|[? such that 1(U1e # U) < k
UGRPX"H | 12_; ( i+1,0 7 Ui, ) =

@ DP finds the solution in O(p?kn) in time and O(p?) in memory
@ But: does not scale to p = 108 ~ 10°...
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the
¢4 /¢>-norm induces sparse solutions at the group level.

Qgroup Z I WQHZ

Q(wy, wa, wz) = [|(wq, we)l|2 + ||wsl|2

— /w2 2 /' w2
= W1—|—W2+ W3
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GFLseg (Bleakley and V., 2011)

Replace
p—1
min 1Y - U|? such that ;:1 (Uis1,0 # Uia) < k
by
p—1
ymin 1Y - U 1> suchthat > wj|U1.— Ul < 1

i=1

GFLseg = Group Fused Lasso segmentation
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GFLseg (Bleakley and V., 2011)

Replace
p—1
Jmin 1Y - U|? such that ;:1 (Uis1,0 # Uia) < k
by
p—1
Jmin ||V —U 1> suchthat > wj|U1.— Ul < 1

i=1

GFLseg = Group Fused Lasso segmentation

@ Practice: can we solve it efficiently?
@ Theory: does it recover the correct segmentation?
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GFLseg as a group Lasso problem

@ Make the change of variables:

Y= U1,07
Bie=W;(Ui1e—U) fori=1,....p—1.

@ TV approximator is then equivalent to the following group Lasso
problem (Yuan and Lin, 2006):

p—1
min || Y= X8+ X ol
,BGR(P—‘)X"H Bl ;Hﬁ/, I

where Y is the centered signal matrix and X is a particular
(p—1) x (p— 1) design matrix.
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TV approximator implementation

p—1

min [V = X312+ 2> [ Bie

—1
BERP—1)xn P

The TV approximator can be solved efficiently:
@ "approximately" with the group LARS in O(npk) in time and O(np)
in memory
@ "exactly" with a block coordinate descent + active set method in
O(np) in memory
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Proof: computational tricks... (from Zaid)

Although Xis (p — 1) x (p — 1):
@ Forany R € RP*", we can compute C = X R in O(np) operations
and memory

@ For any two subset of indices A= (ay,...,a)) and
B = (by,...,bg) in[1,p— 1], we can compute X, , X, g in
O(|A[|B]) in time and memory

@ Forany A= (a1, e a|A|), set of distinct indices with
1<a;<...<apu <p-1,andforany |A| x n matrix R, we can

_ _ —1
compute C = (X.TAX.,A> R in O(|A|n) in time and memory
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Speed trial

Length Nb profiles Nb change-points

time (s)

Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottom row). Left column: varying
n, with fixed p = 10 and k = 10; center column: varying p, with fixed n = 1000 and k& = 10; right column:
varying k, with fixed n = 1000 and p = 10. Figure axes are log-log. Results are averaged over 100 trials.
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Suppose a single change-point:
@ at position u = ap
@ with increments (3;)i—1, .p S.t. % = liMy_00 2 377 52
@ corrupted by i.i.d. Gaussian noise of variance ¢

o 100 200 300 400 500 600 700 800 900 1000

o 100 200 300 400 500 600 700 800 900 1000

] 100 200 40 500 600 700 800 900 1000

Does the TV approximator correctly estimate the first change-point as
p increases?
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Consistency of the unweighted TV approximator

p—1
min [|Y—U|? suchthat > [[U1.e— Ul < pe
i=1

UeRpxn

Theorem
The unweighted TV approximator finds the correct change-point with
probability tending to 1 (resp. 0) as n — +oo if 7% < 52 (resp.

02 > 52), where

i (1 —a)*(a—z)
55 = pB? —
o — 5 — Z) )
@ correct estimation on [pe, p(1 — €)] with € = 2;%2 +o(p~1/?).

@ wrong estimation near the boundaries

JP Vert (ParisTech ) Sparse methods in genomics 45 /52



Consistency of the weighted TV approximator

p—1
min ||Y — U|[? such that Wil|Uit1.e — Uil <
UeRpan | ; il Ui, ioll < 1t

Theorem

The weighted TV approximator with weights
Vie[t,p—1], w= @

correctly finds the first change-point with probability tending to 1 as
n— +oo.

@ we see the benefit of increasing n
@ we see the benefit of adding weights to the TV penalty
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Proof sketch

@ The first change-point i found by TV approximator maximizes
Fi = & | where

c=X"Y=X"Xg+X"W.

@ ¢is Gaussian, and F; is follows a non-central x? distribution with

. i(p— | 22 D N2 g
Gi:ﬁ:'(l) ) 2 p x{' (p—u)y ifi<u,

-+ . .
P pw? w2wip? ~ | w2 (p—i)® otherwise.

@ We then just check when G, = max; G;
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Consistency for a single change-point
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Figure 3: Single change-point accuracy for the group fused Lasso. Accuracy as a function of the number
of profiles p when the change-point is placed in a variety of positions v = 50 to u = 90 (left and centre
plots, resp. unweighted and weighted group fused Lasso), or: « = 50+2 to u = 90 £ 2 (right plot, weighted
with varying change-point location), for a signal of length 100.
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Estimation of several change-points
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Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profiles p when
change-points are placed at the nine positions {10, 20, ..., 90} and the variance o2 of the centered Gaussian
noise is either 0.05 (left), 0.2 (center) and 1 (right). The profile length is 100.
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Application: detection of frequent abnormalities

Log-ratio
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Conclusions

@ Convex sparsity-inducing penalties as a way to incorporate prior
knowledge
@ Specific implementations for specific problems:

e greedy dichotomic segmentation for fused lasso
o fast group Lasso for joint segmentation
e network flow optimization of lasso over the paths of a graph

@ Often, feature selection is consistent (although we pay a price
when features are very correlated), stability selection may help

@ Numerous applications in bioinformatics and beyond!
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