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Normal vs cancer cells
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What goes wrong?
How to treat?
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Biology is now quantitative, "high-throughput"

DOE Joint Genome Institute
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Some challenges in bioinformatics

@ Signal processing, pattern detection and inference

o Which DNA modifications have happened in this cancer cell?
@ Predictive modeling with interpretable models

o Which cancers have a risk to relapse, and why?
@ Dig data, need for efficient algorithms

@ http://aws.amazon.com/1000genomes/

@ High-dimensional, structured data
@ Prior knowledge
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http://aws.amazon.com/1000genomes/

Learning with structured sparsity

mmi/n R(w) + AQ(w)

where:
@ w is the hypothesis we want to infer from data

@ R(w) is a smooth function, which quantifies how "good" w fits the
data

@ Q(w) is a non-smooth penalty, which favors particular solution

Particular choices of the penalty Q can lead to
@ Statistically sound procedures (consistency)
@ Intepretable models (sparsity)
@ Efficient algorithms (convex optimization)
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In this talk

0 Mapping DNA breakpoints in cancer genomes

e Isoform detection from RNA-seq data

e Learning molecular classifiers with network information
e Inference of gene regulatory networks

e Conclusion
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0 Mapping DNA breakpoints in cancer genomes
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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

@ Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research to observe
systematically variants in DNA content

Log-ratio

Chromogome
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Can we identify breakpoints and "smooth" each
profile?
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@ A classical multiple change-point detection problem
@ Should scale to lengths of order 108 ~ 10°
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@ A classical multiple change-point detection problem
@ Should scale to lengths of order 108 ~ 10°
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An optimal solution

@ For a signal Y € RP, define an optimal approximation 8 € RP with
k breakpoints as the solution of

2
E 1(
/ﬂ@ |'Y — 3] such that Uit # U))
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An optimal solution

@ For a signal Y € RP, define an optimal approximation 8 € RP with
k breakpoints as the solution of

2
E 1(
/ﬂ?p |'Y — 3] such that Uit # U))

@ This is an optimization problem over the () partitions...
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An optimal solution

@ For a signal Y € RP, define an optimal approximation 8 € RP with
k breakpoints as the solution of

2
h 51
lgn%RanY B1“ such that Ui # Up) <

@ This is an optimization problem over the () partitions...
@ Dynamic programming finds the solution in O(p?k) in time and
O(p?) in memory
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An optimal solution

@ For a signal Y € RP, define an optimal approximation 8 € RP with
k breakpoints as the solution of

2
E 1(
/ﬂ?p |'Y — 3] such that Uit # U))

@ This is an optimization problem over the () partitions...

@ Dynamic programming finds the solution in O(p?k) in time and
O(p?) in memory

@ But: does not scale to p = 10% ~ 10°...
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Promoting sparsity with the ¢ penalty

The ¢4 penalty (Tibshirani, 1996; Chen et al., 1998)

If R(B) is convex and "smooth", the solution of

m|n R(3 +>\Z|ﬁ,

is usually sparse.

Geometric interpretation with p = 2
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Promoting piecewise constant profiles penalty

The total variation / variable fusion penalty

If R(B) is convex and "smooth", the solution of

mlnR +)\Z\B,+1 Bil

is usually piecewise constant (Rudin et al., 1992; Land and Friedman,
1996).

Proof:
@ Change of variable u; = 8j1 — Bi, Up = 54
@ We obtain a Lasso problem in u € RP~!
@ U sparse means 5 piecewise constant
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TV signal approximator

p—1
in|Y-3]|? h th 1= Bil <
min ||Y'— 8| such that ;mm Bil < p

Adding additional constraints does not change the change-points:
e > 7 .| 8| < v (Tibshirani et al., 2005; Tibshirani and Wang, 2008)
e P . 32 < v (Mairal et al. 2010)

Sige
2 1 0 1 2 3
p=
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Solving TV signal approximator

p—1
min || Y — 3||° such that 1= Bil <
min || Y- 5] ;mﬂ Bil <

@ QP with sparse linear constraints in O(p?) -> 135 min for p = 10°
(Tibshirani and Wang, 2008)

@ Coordinate descent-like method O(p)? -> 3s s for p = 10°
(Friedman et al., 2007)

@ For all  with the LARS in O(pK) (Harchaoui and Levy-Leduc,
2008)

@ Forall 1 in O(pIn p) (Hoefling, 2009)
@ For the first K change-points in O(pIn K) (Bleakley and V., 2010)
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TV signal approximator as dichotomic segmentation

Algorithm 1 Greedy dichotomic segmentation

Require: & number of intervals, y(I) gain function to split an interval [ into Iy, (1), [r([)

1: Iy represents the interval [1,n]
. P={I}

: fori=1tokdo

I* + argmaxy (I*)

B owoR

P PU{lL(I*), I (")}
: end for
: return P

[ N e ]

Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)

TV signal approximator performs "greedy" dichotomic segmentation

JP Vert (ParisTech)
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TV signal approximator as dichotomic segmentation

Algorithm 1 Greedy dichotomic segmentation

Require: & number of intervals, y(I) gain function to split an interval [ into Iy, (1), [r([)
1: Iy represents the interval [1,n]

: P ={lp}

: fori=1tokdo

I* + argmaxy (I*)

B owoR

P PU{lL(I*), I (")}
end for
return P

® N L

Theorem (V. and Bleakley, 2010; see also Hoefling, 2009)

TV signal approximator performs "greedy" dichotomic segmentation

Apparently greedy algorithm finds the global optimum!
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Speed trial : 2 s. for K = 100, p = 107
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Extension: cancer prognosis
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Aggressive (left) vs non-aggressive (right) melanoma
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Fused lasso for supervised classification
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@ Idea: find a linear predictor f(Y) = 3" Y that best discriminates
the aggressive vs non-aggressive samples, subject to the
constraints that it should be sparse and piecewise constant
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Fused lasso for supervised classification

@ Idea: find a linear predictor f(Y) = 3" Y that best discriminates
the aggressive vs non-aggressive samples, subject to the
constraints that it should be sparse and piecewise constant

@ Mathematically:

min R(B) + Ml B v + Aol B 7v
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Fused lasso for supervised classification
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@ Idea: find a linear predictor f(Y) = 3" Y that best discriminates
the aggressive vs non-aggressive samples, subject to the
constraints that it should be sparse and piecewise constant

@ Mathematically:

min R(B) + Ml B v + Aol B 7v

@ Computationnally: this is convex optimization problem that can be
solved very efficiently with proximal optimization methods (V. and
Bleakley, 2012)
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Prognostic in melanoma (Rapaport et al., 2008)
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Extension: finding multiple change points shared by
several profiles
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"Optimal" segmentation by dynamic programming

@ Define the "optimal" piecewise constant approximation UJ € RP*"
of Y as the solution of

p—1
min ||Y — U|[? such that 1(U1e # U) < k
UGRPX"H | 12_; ( i+1,0 7 Ui, ) =

@ DP finds the solution in O(p?kn) in time and O(p?) in memory
@ But: does not scale to p = 108 ~ 10°...
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the
¢4 /¢>-norm induces sparse solutions at the group level.

Qgroup Z I WQHZ

Q(wy, wa, wz) = [|(wq, we)l|2 + ||wsl|2

— /w2 2 /' w2
= W1—|—W2+ W3
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GFLseg (Bleakley and V., 2011)

Replace
p—1
min 1Y - U|? such that ;:1 (Uis1,0 # Uia) < k
by
p—1
ymin 1Y - U 1> suchthat > wj|U1.— Ul < 1

i=1

GFLseg = Group Fused Lasso segmentation

24/ 81
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GFLseg (Bleakley and V., 2011)

Replace
p—1
Jmin 1Y - U|? such that ;:1 (Uis1,0 # Uia) < k
by
p—1
Jmin ||V —U 1> suchthat > wj|U1.— Ul < 1

i=1

GFLseg = Group Fused Lasso segmentation

@ Practice: can we solve it efficiently?
@ Theory: does it recover the correct segmentation?
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GFLseg as a group Lasso problem

@ Make the change of variables:

Y= U1,07
Bie=W;(Ui1e—U) fori=1,....p—1.

@ TV approximator is then equivalent to the following group Lasso
problem (Yuan and Lin, 2006):

p—1
min || Y= X8+ X ol
,BGR(P—‘)X"H Bl ;Hﬁ/, I

where Y is the centered signal matrix and X is a particular
(p—1) x (p— 1) design matrix.
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TV approximator implementation

p—1

min [V = X312+ 2> [ Bie

—1
BGR(P )xn i—1

The TV approximator can be solved efficiently:

@ approximately with the group LARS in O(npk) in time and O(np)
in memory

@ exactly with a block coordinate descent + active set method in
O(np) in memory
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Proof: computational tricks...

Although Xis (p — 1) x (p — 1):
@ Forany R € RP*", we can compute C = X R in O(np) operations
and memory

@ For any two subset of indices A= (ay,...,a)) and
B = (by,...,bg) in[1,p— 1], we can compute X, , X, g in
O(|A[|B]) in time and memory

@ Forany A= (a1, e a|A|), set of distinct indices with
1<a<...<apy <p-1,andforany |Al x nmatrix R, we can

_ _ —1
compute C = (X.TAX.,A> R in O(|A|n) in time and memory

JP Vert (ParisTech) IBIS 2012 27/ 81



Speed trial

time (s)
3
time (s)
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Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottom row). Left column: varying
n, with fixed p = 10 and k = 10; center column: varying p, with fixed n = 1000 and k£ = 10; right column:
varying k, with fixed n = 1000 and p = 10. Figure axes are log-log. Results are averaged over 100 trials.
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Suppose a single change-point:
@ at position u = ap
@ with increments (3;)i—1, .p S.t. % = liMy_00 2 377 52
@ corrupted by i.i.d. Gaussian noise of variance ¢

o 100 200 300 400 500 600 700 800 900 1000

o 100 200 300 400 500 600 700 800 900 1000

] 100 200 40 500 600 700 800 900 1000

Does the TV approximator correctly estimate the first change-point as
p increases?
JP Vert (ParisTech) IBIS 2012 29/81



Consistency of the unweighted TV approximator

p—1
min [|Y—U|? suchthat > [[U1.e— Ul < pe
i=1

UeRpxn

Theorem
The unweighted TV approximator finds the correct change-point with
probability tending to 1 (resp. 0) as n — +oo if 7® < 52 (resp.

02 > 52), where

i (1 —a)*(a—z)
55 = pB? —
o — 5 — Z) )
@ correct estimation on [pe, p(1 — €)] with € = 2;%2 +o(p~1/?).

@ wrong estimation near the boundaries
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Consistency of the weighted TV approximator

p—1
min ||Y — U|[? such that Wil|Uit1.e — Uil <
UeRpan | ; il Ui, ioll < 1t

Theorem

The weighted TV approximator with weights
Vie[t,p—1], w= @

correctly finds the first change-point with probability tending to 1 as
n— +oo.

@ we see the benefit of increasing n
@ we see the benefit of adding weights to the TV penalty
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Proof sketch

@ The first change-point i found by TV approximator maximizes
Fi = & | where

c=X"Y=X"Xg+X"W.

@ ¢is Gaussian, and F; is follows a non-central x? distribution with

Gi:ﬁ:"(l)—i)z 32 ><{iz(p—u)2 ifi<u,

-+ . .
P pw? w2wip? ~ | w2 (p—i)® otherwise.

@ We then just check when G, = max; G;
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Consistency for a single change-point
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Figure 3: Single change-point accuracy for the group fused Lasso. Accuracy as a function of the number
of profiles p when the change-point is placed in a variety of positions v = 50 to u = 90 (left and centre
plots, resp. unweighted and weighted group fused Lasso), or: « = 50+2 to u = 90 £ 2 (right plot, weighted
with varying change-point location), for a signal of length 100.
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Estimation of several change-points
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Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profiles p when
change-points are placed at the nine positions {10, 20, ..., 90} and the variance o2 of the centered Gaussian
noise is either 0.05 (left), 0.2 (center) and 1 (right). The profile length is 100.
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Application: detection of frequent abnormalities
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e Isoform detection from RNA-seq data
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Alternative splicing: 1 gene = many proteins
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measures RNA abundance

mMRNA

— —
— —_— or

RNA fragments l

— — — — ST library

l with adaptors

ATCACAGTGGGACTCCATAAATTTTTCT
CGAAGGACCAGCAGAAACGAGAGHENNN
GGACAGAGTCCCCAGCGGGCTGAAGGGE
ATGAAACATTAAAGTCAAACAATATGAA

|

Short sequence reads

ORF
Coding sequence

Exonic reads

poly(A) end reads

Mapped sequence reads
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RNA expression level
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Nature Reviews | Genetics
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RNA-seq and alternative splicing

B e

== [ntron

w Scquence read

B Signal from annoted exons

M Non-exonic signal

(Costa et al., 2011)
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The isoform deconvolution problem

Alignment usmg TcpHat

T Lt

D—D—D—D—v:#:l— :—D—D

Exons: 1 3 4 [ b4
(a) Abundance
tsoform 1 [ — 0 4
1 2 3 4 5 [ 7 8 9
—
tsoform 2 [ D—:l—:l—:l— B é,
1 2 3 4 5
otorm 3 [ 1:1 = 4:( Tm—m 4
1 2 6 1 8 9
soforn 4 [} — [ )
1 2 3 4 5 6 7 8 9
Length "1 I}_ é "L Is 15 "tr iB {9
#Reads X X, Xy X, Xy Xy Xy Xg Xy
(b)

(Xia et al., 2011)
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More formally

e exons
¢ candidate isoforms (up to 2° — 1)

¢ € RS the vector of abundance of isoforms (unknown!)
U binary matrix:

exony --- exone junctionip --- junctione, e
isoform 1 e 1 1 e 1
isoforms 1 e 0 1 e 0
isoformg 0 e 1 0 e 0

UT ¢ the abundance of each exon/junction.

Goal: estimate ¢ from the observed reads on each exon/junction
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Isoform deconvolution with the Lasso

Estimate ¢ sparse by solving:

min R(U"¢) + Al ¢ |1

pERS

@ IsolLasso (Li et al., 2011)
@ NSMAP (Xia et al., 2011)
@ SLIDE (Lietal., 2011)

Works well BUT computationally challenging to enumerate all
candidate isoforms (up to 2°) for large genes!
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Fast isoform deconvolution with the Lasso

Theorem (Bernard, Mairal, Jacob and V., 2012)
The isoform deconvolution problem

in R(UT A
¢r2;Rrg+ (U o)+ Aol

can be solved in polynomial time in the number of exon.

Key ideas

@ 1-to-1 correspondence between isoforms and paths on the
junction graph

@ U ¢ corresponds to a flow on the graph

© Reformulation as a convex cost flow problem (Mairal and Yu,
2012)
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Trick 2: Isoforms are paths of a graph

- - Splicing Graph
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Combinations of isoforms are flows
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Isoform deconvolution as convex cost flow problem
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in R(UT A
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min R(f) + \f;

fflow
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e Learning molecular classifiers with network information
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DNA — RNA — protein

DNA
T
e
- &%\\a@-&‘a\% N Franseription

L Rt X

Fransiotion

@ CGH shows the (static) DNA

@ Cancer cells have also abnormal (dynamic) gene expression (=
transcription)
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Breast cancer prognosis
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Gene selection, molecular signature

The idea
@ We look for a limited set of genes that are sufficient for prediction.
@ Selected genes should inform us about the underlying biology
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Lack of stability of signatures

B Single-run
0.2 ©Ensemble-mean||
>¢Ensemble—exp
eEnsembIe—ss
0.151 D¢ b
. ¢ Random @
E o T test
Na) Entropy ol
Z 0. phatt. ]
e Wilcoxon
RFE
0.057| « GFs (g’b ® ]
Lasso x <> ® O] Q
* E-Net
L= ‘ o P En 9o
0.56 0.58 0.6 0.62 0. 64 0. 66
AUC

Haury et al. (2011)
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Gene networks, gene groups
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Structured feature selection

@ Basic biological functions usually involve the coordinated action of
several proteins:
e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways
@ How to perform structured feature selection, such that selected
genes
@ belong to only a few groups?
o form a small number of connected components on the graph?
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the
¢4 /¢>-norm induces sparse solutions at the group level.

Qgroup Z I WQHZ

Q(wy, wo, W) = |[(wyq, wa) |2+ wal|2
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Group lasso with overlapping groups

Idea 1: shrink groups to zero (Jenatton et al., 2009)
® Qgroup(W) = >4 || Wgl|2 sets groups to 0.
@ One variable is selected < all the groups to which it belongs are

selected.
G1 O
Cell
cycle
= §
G2 G2
IGF, lwg lla=[IWgzll2=0 -
%%
Qoo\q\o\\ /’%,;"o/ G3 O
S o“s 7
? o,
%

Removal of any group
containing a gene = the
weight of the gene is 0.
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Group lasso with overlapping groups

Idea 2: latent group Lasso (Jacob et al., 2009)

min > voll " 0
A geg W = ]+ v2 +
Qgtent (W) = W = Z v L
T £.geG 9 ol M ,
supp (vg) < g | ojo| Y

@ Resulting support is a union of groups in G.

@ Possible to select one variable without selecting all the groups
containing it.

@ Equivalent to group lasso when there is no overlap

v
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Overlap and group unity balls

Balls for QY

group () (middle) and Q¢

latent

(+) (right) for the groups
G = {{1,2},{2,3}} where w; is represented as the vertical coordinate. Left:
group-lasso (G = {{1,2}, {3}}), for comparison.
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Theoretical results

Consistency in group support (Jacob et al., 2009)
@ Let w be the true parameter vector.
@ Assume that there exists a unique decomposition v, such that
W =34 Vgand Qe (W) = 3 [|Vg|lo.
@ Consider the regularized empirical risk minimization problem
(W) + )‘Qlatent ( )

v
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Theoretical results

Consistency in group support (Jacob et al., 2009)
@ Let w be the true parameter vector.
@ Assume that there exists a unique decomposition v, such that
W =34 Vgand Qe (W) = 3 [|Vg|lo.
@ Consider the regularized empirical risk minimization problem
(W) + )‘Qlatent ( )
Then
@ under appropriate mutual incoherence conditions on X,
@ as n— oo,
@ with very high probability,

the optimal solution w admits a unique decomposition (¥y)gecg such
that

{gegWgyéO}:{geg]Vg;éO}.

v
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Experiments

Synthetic data: overlapping groups

@ 10 groups of 10 variables with 2 variables of overlap between two
successive groups :{1,...,10},{9,...,18},...,{73,...,82}.

@ Support: union of 4th and 5th groups.

@ Learn from 100 training points.

10

I -
. —overlapping|
z lasso
x

RMSE
o v a0 ®

1 1.5 2
Iogz(k) \uge(l) log,,(n)

80

Frequency of selection of each variable with the lasso (left) and QY ()
(middle), comparison of the RMSE of both methods (right).
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Graph lasso

Qgroup (B) =D 1/B2+ 52,

INj

g _ T
QIatent (ﬁ) _ sup o 5
a€RPVinj|laf +af | <1

v
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Preliminary results

Breast cancer data

@ Gene expression data for 8, 141 genes in 295 breast cancer
tumors.

@ Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD I QLgATENT ()
ERROR 0.38+0.04 0.36+0.03
MEAN { PATH. 130 30

@ Graph on the genes.
METHOD 44 Qgrapn(-)
ERROR 0.39+0.04 0.36+0.01
Av. SIZE C.C. 1.03 1.30
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Lasso signature

EIF4G1 AREG — MMP9 — MMP7 UBE2A — RNF40  POLD1 — POLD4
S

PCSK6 —  BTG2 YWHAZ — ADRA2B  ADRBK1 ~ NEDD9  C200rfll ~ TAT PDE6B  TGFB2
MYCBP GRP. DLEU2  ALDH3A2  VEGFB  PSMD7  CXCLI3 FLT3 PPAT ULK1L
SLC16A3  AKRIC4 ~ BATF PLP2 SYTL2  CCNB2  SLC39A7  HYPK PDHB. UBD
FBXO2 E2F1 LRPS. PIK3CG  ZCCHC8 ~ NLRP2  ANKZF1  PRC1 cTsL2 TKL

PTPN3  CASC3  IGFBPS RTN3  DNAJB2  CDH19  GLRX2
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Graph Lasso signature
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@ Inference of gene regulatory networks
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Gene expression

Nucleus

Ribosome Cell membrane

Image adapted from: National Human Genome Research Institute.
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Gene expression regulation

gene requlatory sequences
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Gene regulatory network
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Gene regulatory network of E. coli
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Gene expression data

%, Alpha cdcl5 cdc28 Elu
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Reconstruction of gene regulatory network from

expression data
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De novo inference

The problem
Given a set of gene expressions, infer the regulations.
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De novo inference

The problem
Given a set of gene expressions, infer the regulations.

How?

@ Connect "similar genes": correlation, mutual-information...

@ Model-based approaches: dynamic systems, boolean networks,
state-space models, Bayesian networks

@ Sparse regression: regulators as the smallest set of TF necessary
to predict the expression of the target (GENIE, TIGRESS...)

v
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Predicting regulation by sparse regression

@ Let Y € R" the expression of a gene, and Xj, ..., X, € R" the
expression of all TFs. We look for a model

P
Y = Z BiX; + noise
=1
where (3 is sparse, i.e., only a few 3; are non-zero.

@ We can estimate the sparse regression model from a matrix of
expression data.

@ Non-zero §;’s correspond to predicted regulators.
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Feature selection with the lasso

P
. ) B |
fgg]llgp 1Y = XBI=+ Al 5]+ where|| 3|5 _Z‘@|

i=1

@ No explicit solution, but this is just a quadratic program (Tibshirani,
1996; Chen et al., 1998).

@ Efficient solution with the LARS (Efron et al., 2004)

@ When tis not too large, the solution will usually be sparse

Geometric interpretation with p = 2
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TIGRESS (Haury, Mordelet, Vera-Licona and V., 2012)

@ Fort=1to T do
@ Bootstrap a random sample S; from the training set
e Randomly reweight each feature (uniform on [a, 1])
o Select L features with the Lasso

@ The score of a feature is the number of times it was selected
among the T repeats (Meinshausen and Biihimann, 2010).

@ Rank features (TF-TG interactions) by decreasing area under the
score curve

over the Moot bootstraps

Frequency of selection

Number L of LARS steps
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Performance

Precision
© o o o o o o o
N o6 s o o N e o e

°
o

— TIGRESS-originall
— TIGRESS-area

°
o
N

0.1

0.2

0.4 0.6 0.8
FPR

TPR

DREAMS5: GENIE and TIGRESS ranked 1st and 2nd out or 29 on the

in silico challenge
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TIGRESS vs ...

’ Algorithm ‘ AUPR ‘ PAUPR ‘ AUROC ‘ PAUROC ‘
TIGRESS | 0.3152 | 8.01e-139 | 0.7829 | 5.43e-60
GENIE3 0.2915 | 2.91e-105 | 0.8155 | 2.30e-107
CLR 0.2654 | 1.82e-73 | 0.7817 | 1.41e-58
Pearson 0.1887 | 3.71e-13 | 0.7568 | 1.44e-32
ARACNE | 0.2758 | 1.73e-85 | 0.6715 | 9.82e-01

Lasso 0.2079 | 1.38e-23 | 0.7280 | 1.06e-12

Table: AUPR, AUROC and p-values obtained by several methods on the in
silico dataset.
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Influence of a and scoring method

0.32 AUPR

08 AURQC
J—\_‘
03 T

0.751
0.28
0'28.1 0.2 0.3 04 0.5a0.6 0.7 08 09 1 0'8.1 0.2 0.3 04 0'5(10'6 0.7 08 09 1
—Area
| ( ) —Original | ( )
-log, .(p —log, (P
140 10" AUPR 60 10*"AURQC
120 40t
100 201
0.1 0.2 0.3 0.4 0.%{0.6 0.7 0.8 09 1 0.1 0.2 0.3 04 O.%LO.G 0.7 0.8 09 1

DREAMS in silico network.
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e Conclusion
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Conclusions

@ Convex sparsity-inducing penalties as a way to incorporate prior
knowledge
@ Specific implementations for specific problems:
o greedy dichotomic segmentation for fused lasso
o fast group Lasso for joint segmentation
e network flow optimization of lasso over the paths of a graph
o efficient proximity operator computation of latent group lasso
@ Often, feature selection is consistent (although we pay a price
when features are very correlated), stability selection may help

@ Numerous applications in bioinformatics and beyond!
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