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Feature selection with the lasso

The `1 penalty (Tibshirani, 1996; Chen et al., 1998)
If R(β) is convex and "smooth", the solution of

min
β∈Rp

R(β) + λ

p∑
i=1

|βi |

is usually sparse.
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Structured feature selection with the group lasso

The `1/`2 penalty (Bach et al., 2004; Yuan & Lin, 2006)
Let G = {g1,g2, . . .} be a partition of [1,p] into disjoint groups. If R(β)
is convex and "smooth", the solution of

min
β∈Rp

R(β) + λ
∑
g∈G
‖βg‖

is usually group sparse.

Ω(β1, β2, β3) = ‖(β1, β2)‖2 + ‖β3‖2
=
√
β2

1 + β2
2 +

√
β2

3
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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

Motivation
Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome
Very useful, in particular in cancer research to observe
systematically variants in DNA content
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Can we detect frequent breakpoints?
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A collection of bladder tumour copy number profiles.
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The problem
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Let Y ∈ Rp×n the n signals of length p
We want to find a piecewise constant approximation Û ∈ Rp×n

with at most k change-points.
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"Optimal" segmentation by dynamic programming
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Define the "optimal" piecewise constant approximation Û ∈ Rp×n

of Y as the solution of

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑
i=1

1
(
Ui+1,• 6= Ui,•

)
≤ k

DP finds the solution in O(p2kn) in time and O(p2) in memory
But: does not scale to p = 106 ∼ 109...

J.P Vert (ParisTech) Structured feature selection for genomic data Sapporo 2012 11 / 40



GFLseg (Bleakley and V., 2011)

Replace

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑
i=1

1
(
Ui+1,• 6= Ui,•

)
≤ k

by

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑
i=1

wi‖Ui+1,• − Ui,•‖ ≤ µ

Questions
Practice: can we solve it efficiently?

Theory: does it benefit from increasing p (for n fixed)?
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TV approximator as a group Lasso problem

Make the change of variables:

γ = U1,• ,

βi,• = wi
(
Ui+1,• − Ui,•

)
for i = 1, . . . ,p − 1 .

TV approximator is then equivalent to the following group Lasso
problem (Yuan and Lin, 2006):

min
β∈R(p−1)×n

‖ Ȳ − X̄β ‖2 + λ

p−1∑
i=1

‖βi,• ‖ ,

where Ȳ is the centered signal matrix and X̄ is a particular
(p − 1)× (p − 1) design matrix.
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TV approximator implementation

min
β∈R(p−1)×n

‖ Ȳ − X̄β ‖2 + λ

p−1∑
i=1

‖βi,• ‖ ,

Theorem
The TV approximator can be solved efficiently:

approximately with the group LARS in O(npk) in time and O(np)
in memory
exactly with a block coordinate descent + active set method in
O(np) in memory
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Proof: computational tricks...

Although X̄ is (p − 1)× (p − 1):
For any R ∈ Rp×n, we can compute C = X̄>R in O(np) operations
and memory
For any two subset of indices A =

(
a1, . . . ,a|A|

)
and

B =
(
b1, . . . ,b|B|

)
in [1,p − 1], we can compute X̄>•,AX̄•,B in

O (|A||B|) in time and memory
For any A =

(
a1, . . . ,a|A|

)
, set of distinct indices with

1 ≤ a1 < . . . < a|A| ≤ p − 1, and for any |A| × n matrix R, we can

compute C =
(

X̄>•,AX̄•,A
)−1

R in O(|A|n) in time and memory
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Speed trial

so the slope gives the exponent of the complexity (resp. n, p and k). For the weighted group fused LARS,
linearity is clearest for k, whereas for n and p, the curves are initially sub-linear, then slightly super-linear for
extremely large values of n and p. As these time trials reach out to the practical limits of current technology,
we see that this is not critical - on average, even the longest trials here took less than 200 seconds. The
weighted fused group Lasso results are perhaps more interesting, as it is harder to predict in advance the
practical time performance of the algorithm. Surprisingly, when increasing n (p and k fixed) or increasing
p (n and k fixed), the group fused Lasso eventually becomes as fast the iterative, deterministic group fused
LARS. This suggests that at the limits of current technology, if k is small (say, less than 10), the potentially
superior performance of the Lasso version (see later) may not even be punished by a slower run-time with
respect to the LARS version. We suggest that this may be due to the Lasso optimization problem becoming
relatively “easier” to solve when n or p increases, as we observed that the Lasso algorithm converged quickly
to its final set of change-points. The main difference between the Lasso and LARS performance appears
when the number of change-points increases: with respective empirical complexities cubic and linear in k,
as predicted by the theoretical analysis, Lasso is already 1,000 times slower than LARS when we seek 100
change-points.
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Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottom row). Left column: varying
n, with fixed p = 10 and k = 10; center column: varying p, with fixed n = 1000 and k = 10; right column:
varying k, with fixed n = 1000 and p = 10. Figure axes are log-log. Results are averaged over 100 trials.

6.2 Accuracy for detection of a single change-point

Next, we tested empirically the accuracy the group fused Lasso for detecting a single change-point. We
first generated multidimensional profiles of dimension p, with a single jump of height 1 at a position u, for
different values of p and u. We added to the signals an i.i.d. Gaussian noise with variance σ̃2

α = 10.78,
the critical value corresponding to α = 0.8 in Theorem 2. We ran 1000 trials for each value of u and p,
and recorded how often the group fused Lasso with or without weights correctly identified the change-point.
According to Theorem 2, we expect that, for the unweighted group fused Lasso, for 50 ≤ u < 80 there is
convergence in accuracy to 1 when p increases, and for u > 80, convergence in accuracy to zero. This is
indeed what is seen in Figure 3 (left panel), with u = 80 the limit case between the two different modes of
convergence. The center panel of Figure 3 shows that when the default weights (5) are added, convergence
in accuracy to 1 occurs across all u, as predicted by Theorem 3. In addition, the right-hand-side panel
of Figure 3 shows results for the same trials except that change-point locations can vary uniformly in the
interval u ± 2. We see that, as predicted by Theorem 4, the accuracy of the weighted group fused Lasso

12
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Consistency for a single change-point

Suppose a single change-point:
at position u = αp
with increments (βi)i=1,...,n s.t. β̄2 = limk→∞

1
n
∑n

i=1 β
2
i

corrupted by i.i.d. Gaussian noise of variance σ2
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Does the TV approximator correctly estimate the first change-point as
p increases?

J.P Vert (ParisTech) Structured feature selection for genomic data Sapporo 2012 17 / 40



Consistency of the unweighted TV approximator

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑
i=1

‖Ui+1,• − Ui,•‖ ≤ µ

Theorem
The unweighted TV approximator finds the correct change-point with
probability tending to 1 (resp. 0) as n→ +∞ if σ2 < σ̃2

α (resp.
σ2 > σ̃2

α), where

σ̃2
α = pβ̄2

(1− α)2(α− 1
2p )

α− 1
2 − 1

2p

.

correct estimation on [pε,p(1− ε)] with ε =
√

σ2

2pβ̄2 + o(p−1/2) .

wrong estimation near the boundaries
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Consistency of the weighted TV approximator

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑
i=1

wi‖Ui+1,• − Ui,•‖ ≤ µ

Theorem

The weighted TV approximator with weights

∀i ∈ [1,p − 1] , wi =

√
i(p − i)

p

correctly finds the first change-point with probability tending to 1 as
n→ +∞.

we see the benefit of increasing n
we see the benefit of adding weights to the TV penalty
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Consistency for a single change-point
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Figure 3: Single change-point accuracy for the group fused Lasso. Accuracy as a function of the number
of profiles p when the change-point is placed in a variety of positions u = 50 to u = 90 (left and centre
plots, resp. unweighted and weighted group fused Lasso), or: u = 50±2 to u = 90±2 (right plot, weighted
with varying change-point location), for a signal of length 100.

remains robust against fluctuations in the exact change-point location.

6.3 Accuracy for detecting multiple change-points

To investigate the potential for extending the results to the case of many shared change-points, we further
simulated profiles of length n = 100 with a change-point at all of positions 10, 20, . . . , 90. We consider
dimensions p between 1 and 500. Jumps at each change-point of each profile were drawn from a Gaussian
with mean 0 and variance 1; we then added centered Gaussian noise with σ2 ∈ {0.05, 0.2, 1} to each
position in each profile. For each value of p and σ2, we ran one hundred trials of both implementations, with
or without weights, and recorded the accuracy of each method, defined as the percentage of trials where the
first 9 change-points detected by the method are exactly the 9 true change-points. Results are presented in
Figure 4 (from left to right, resp. σ2 = 0.05, 0.2, 1). Clearly, the group fused Lasso outperforms the group
fused LARS, and the weighted version of each algorithm outperforms the unweighted version. Although
the group LARS is usually considered a reliable alternative to the exact group Lasso [21], this experiment
shows that the exact optimization by block coordinate descent may be worth the computational burden if
one is interested in accurate group selection. It also demonstrates that, as we conjectured in Section 5.3, the
group fused Lasso can consistently estimate multiple change-points as the number of profiles increases.

6.4 Application to gain and loss detection

We now consider a possible application of our method for the detection of regions with frequent gains
(positive values) and losses (negative values) among a set of DNA copy number profiles, measured by
array comparative genomic hybridization (aCGH) technology [27]. We propose a two-step strategy for
this purpose: first, find an adequate joint segmentation of the signals; then, check the presence of gain or

13
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Estimation of more change-points?
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Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profiles p when
change-points are placed at the nine positions {10, 20, . . . , 90} and the variance σ2 of the centered Gaussian
noise is either 0.05 (left), 0.2 (center) and 1 (right). The profile length is 100.

loss on each interval of the segmentation by summarizing each profile by its average value on the interval.
Note that we do not assume that all profiles share exactly the same change-points, but merely see the joint
segmentation as an adaptive way to reduce the dimension and remove noise from data.

In practice, we used group fused LARS on each chromosome to identify a set of 100 candidate change-
points, and selected a subset of them by post-processing as described in Section 5.4. Then, in each piecewise-
constant interval between successive shared change-points, we calculate the mean of the positive segments
(shown in green in Figures 5(a) and 6(c)) and the mean of the negative segments (shown in red). The larger
the mean of the positive segments, the more likely we are to believe that a region harbors an important
common gain; the reasoning is analogous for important common losses and the mean of the negative seg-
ments. Obviously, many other statistical tests could be carried out to detect frequent gains and losses on
each segment, once the joint segmentation is performed.

We compare this method for detecting regions of gain and loss with the state-of-the-art H-HMMmethod
[27], which has been shown to outperform several other methods in this setting. As [27] have provided their
algorithm online with several of their data sets tested in their article, we implemented our method and theirs
(H-HMM) on their benchmark data sets.

In the first data set in [27], the goal is to recover two regions – one amplified, one deleted, that are shared
in 8 short profiles, though only 6 of the profiles exhibit each of the amplified or deleted regions. Performance
is measured by area under ROC curve (AUC), following [27]. Running H-HMMwith the default parameters,
we obtained an AUC (averaged over 10 trials) of 0.96± .01, taking on average 60.20 seconds. The weighted
group fused LARS, asked to select 100 breakpoints and followed by dynamic programming, took 0.06
seconds and had an AUC of 0.97. Thus, the performance of both methods was similar, though weighted
group fused LARS was around 1000 times faster.

The second data set was a cohort of lung cancer cell lines originally published in [28, 29]. As in [27], we
concentrated on the 18 NSCLC adenocarcinoma (NA) cell lines. Figure 5 shows the score statistics obtained
on Chromosome 8 when using either weighted group fused LARS or H-HMM.Weighted group fused LARS

14
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Application: detection of frequent abnormalities
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DNA→ RNA→ protein

CGH shows the (static) DNA
Cancer cells have also abnormal (dynamic) gene expression (=
transcription)
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Breast cancer prognosis
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Gene selection, molecular signature

The idea
We look for a limited set of genes that are sufficient for prediction.
Selected genes should inform us about the underlying biology
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Lack of stability of signatures
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Gene networks, gene groups
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Structured feature selection

Basic biological functions usually involve the coordinated action of
several proteins:

Formation of protein complexes
Activation of metabolic, signalling or regulatory pathways

How to perform structured feature selection, such that selected
genes

belong to only a few groups?
form a small number of connected components on the graph?
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Group lasso with overlapping groups

Idea 1: shrink groups to zero (Jenatton et al., 2009)
Ωgroup(w) =

∑
g ‖wg‖2 sets groups to 0.

One variable is selected⇔ all the groups to which it belongs are
selected.

IGF selection⇒ selection of
unwanted groups

⇒
‖wg1‖2=‖wg3‖2=0

Removal of any group
containing a gene⇒ the
weight of the gene is 0.
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Group lasso with overlapping groups

Idea 2: latent group Lasso (Jacob et al., 2009)

ΩGlatent (w)
∆
=


min

v

∑
g∈G
‖vg‖2

w =
∑

g∈G vg

supp
(
vg
)
⊆ g.

Properties
Resulting support is a union of groups in G.
Possible to select one variable without selecting all the groups
containing it.
Equivalent to group lasso when there is no overlap
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Overlap and group unity balls

Balls for ΩG
group (·) (middle) and ΩG

latent (·) (right) for the groups
G = {{1,2}, {2,3}} where w2 is represented as the vertical coordinate. Left:

group-lasso (G = {{1,2}, {3}}), for comparison.
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Theoretical results

Consistency in group support (Jacob et al., 2009)
Let w̄ be the true parameter vector.
Assume that there exists a unique decomposition v̄g such that
w̄ =

∑
g v̄g and ΩGlatent (w̄) =

∑ ‖v̄g‖2.
Consider the regularized empirical risk minimization problem
L(w) + λΩGlatent (w).

Then
under appropriate mutual incoherence conditions on X ,
as n→∞,
with very high probability,

the optimal solution ŵ admits a unique decomposition (v̂g)g∈G such
that {

g ∈ G|v̂g 6= 0
}

=
{

g ∈ G|v̄g 6= 0
}
.
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Experiments

Synthetic data: overlapping groups
10 groups of 10 variables with 2 variables of overlap between two
successive groups :{1, . . . ,10}, {9, . . . ,18}, . . . , {73, . . . ,82}.
Support: union of 4th and 5th groups.
Learn from 100 training points.

Frequency of selection of each variable with the lasso (left) and ΩG
latent (.)

(middle), comparison of the RMSE of both methods (right).
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Graph lasso

Two solutions

ΩGgroup (β) =
∑
i∼j

√
β2

i + β2
j ,

ΩGlatent (β) = sup
α∈Rp:∀i∼j,‖α2

i +α2
j ‖≤1

α>β .
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Preliminary results

Breast cancer data
Gene expression data for 8,141 genes in 295 breast cancer
tumors.
Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD `1 ΩG
LATENT (.)

ERROR 0.38± 0.04 0.36± 0.03
MEAN ] PATH. 130 30

Graph on the genes.

METHOD `1 Ωgraph(.)
ERROR 0.39± 0.04 0.36± 0.01
AV. SIZE C.C. 1.03 1.30
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Lasso signature

J.P Vert (ParisTech) Structured feature selection for genomic data Sapporo 2012 37 / 40



Graph Lasso signature
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Outline

1 Lasso background
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Conclusions

Convex sparsity-inducing penalties are useful; efficient
implementations + consistency results
Penalty design as a way to incorporate prior knowledge

Kevin Bleakley (INRIA), Laurent Jacob (UC Berkeley) Guillaume
Obozinski (INRIA), Anne-Claire Haury (ParisTech)
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