Structured feature selection for genomic dataa

Jean-Philippe Vert

Mines ParisTech / Curie Institute / Inserm

8th World Congress in Probability and Statistics, Istanbul, July 9-14, 2012

Outline

On chromosome abnormalities in cancer

Gene selection with prior information

Conclusion

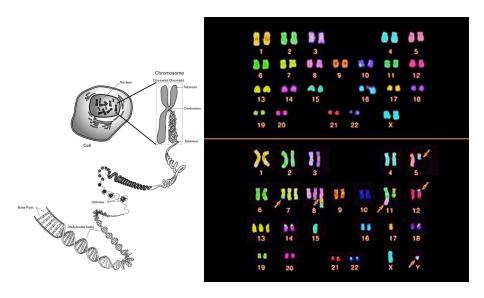
Outline

On chromosome abnormalities in cancer

Gene selection with prior information

3 Conclusion

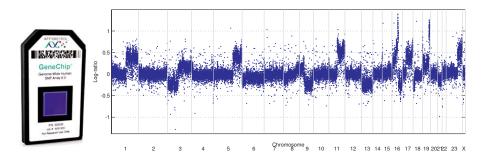
Chromosomic aberrations in cancer



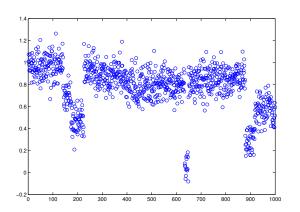
Comparative Genomic Hybridization (CGH)

Motivation

- Comparative genomic hybridization (CGH) data measure the DNA copy number along the genome
- Very useful, in particular in cancer research to observe systematically variants in DNA content

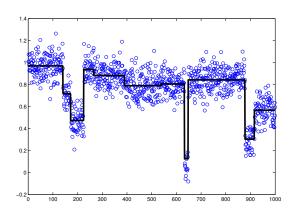


Can we identify breakpoints and "smooth" each profile?

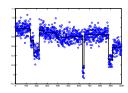


- A classical multiple change-point detection problem
- ullet Should scale to lengths of order 10⁶ \sim 10⁹

Can we identify breakpoints and "smooth" each profile?



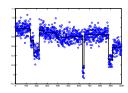
- A classical multiple change-point detection problem
- ullet Should scale to lengths of order $10^6\sim 10^9$



• For a signal $Y \in \mathbb{R}^p$, define an optimal approximation $\beta \in \mathbb{R}^p$ with k breakpoints as the solution of

$$\min_{\beta \in \mathbb{R}^p} \| Y - \beta \|^2$$
 such that $\sum_{i=1}^{p-1} \mathbf{1} (U_{i+1} \neq U_i) \leq k$

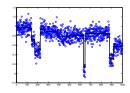
- This is an optimization problem over the $\binom{\rho}{k}$ partitions.
- Dynamic programming finds the solution in $O(p^2k)$ in time and $O(p^2)$ in memory
- But: does not scale to $p = 10^6 \sim 10^9$.



• For a signal $Y \in \mathbb{R}^p$, define an optimal approximation $\beta \in \mathbb{R}^p$ with k breakpoints as the solution of

$$\min_{eta \in \mathbb{R}^p} \| \ Y - eta \|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} \mathbf{1} \left(U_{i+1} \neq U_i \right) \leq k$$

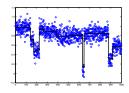
• This is an optimization problem over the $\binom{p}{k}$ partitions...



• For a signal $Y \in \mathbb{R}^p$, define an optimal approximation $\beta \in \mathbb{R}^p$ with k breakpoints as the solution of

$$\min_{eta \in \mathbb{R}^p} \| Y - eta \|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} \mathbf{1} \left(U_{i+1} \neq U_i \right) \leq k$$

- This is an optimization problem over the $\binom{p}{k}$ partitions...
- Dynamic programming finds the solution in $O(p^2k)$ in time and $O(p^2)$ in memory
- But: does not scale to $p = 10^6 \sim 10^9...$



• For a signal $Y \in \mathbb{R}^p$, define an optimal approximation $\beta \in \mathbb{R}^p$ with k breakpoints as the solution of

$$\min_{eta \in \mathbb{R}^p} \| Y - eta \|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} \mathbf{1} \left(U_{i+1} \neq U_i \right) \leq k$$

- This is an optimization problem over the $\binom{p}{k}$ partitions...
- Dynamic programming finds the solution in $O(p^2k)$ in time and $O(p^2)$ in memory
- But: does not scale to $p = 10^6 \sim 10^9...$

Promoting sparsity with the ℓ_1 penalty

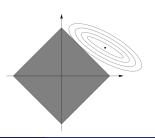
The ℓ_1 penalty (Tibshirani, 1996; Chen et al., 1998)

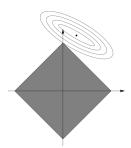
If $R(\beta)$ is convex and "smooth", the solution of

$$\min_{\beta \in \mathbb{R}^p} R(\beta) + \lambda \sum_{i=1}^p |\beta_i|$$

is usually sparse.

Geometric interpretation with p=2





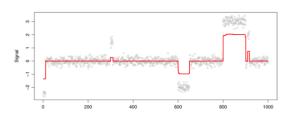
Promoting piecewise constant profiles with

Total variation (Rudin et al., 1992; Land and Friedman, 1996):

$$\|\beta\|_{TV} = \|\nabla\beta\|_1 = \sum_{i=1}^{p-1} |\beta_{i+1} - \beta_i|$$

Fused lasso (Tibshirani et al., 2005; Tibshirani and Wang, 2008)

$$\min_{\beta \in \mathbb{R}^p} \| Y - \beta \|^2 + \lambda_1 \| \beta \|_1 + \lambda_2 \| \beta \|_{TV}$$



TV signal approximator as dichotomic segmentation

Algorithm 1 Greedy dichotomic segmentation

```
Require: k number of intervals, \gamma(I) gain function to split an interval I into I_L(I), I_R(I)

1: I_0 represents the interval [1,n]

2: \mathcal{P} = \{I_0\}

3: for i=1 to k do

4: I^* \leftarrow \arg\max_{I \in \mathcal{P}} \gamma(I^*)

5: \mathcal{P} \leftarrow \mathcal{P} \setminus \{I^*\}

6: \mathcal{P} \leftarrow \mathcal{P} \cup \{I_L(I^*), I_R(I^*)\}

7: end for

8: return \mathcal{P}
```

Theorem

TV signal approximator performs "greedy" dichotomic segmentation.

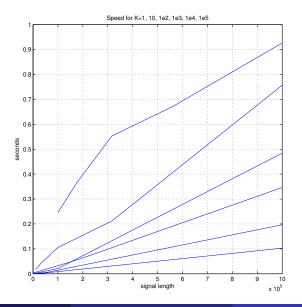
(V. and Bleakley, 2010; see also Hoefling, 2009)

Solving TV signal approximator

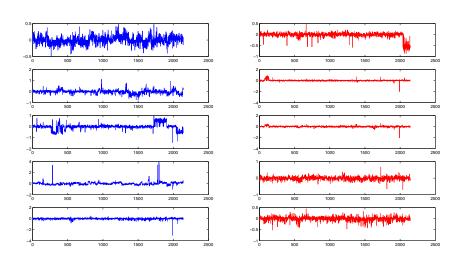
$$\min_{\beta \in \mathbb{R}^{p}} \| \mathbf{Y} - \beta \|^{2} + \lambda_{1} \| \beta \|_{1} + \lambda_{2} \| \beta \|_{TV}$$

- QP with sparse linear constraints in $O(p^2)$ -> 135 min for $p = 10^5$ (Tibshirani and Wang, 2008)
- Coordinate descent-like method O(p)? -> 3s s for $p = 10^5$ (Friedman et al., 2007)
- For all λ with the LARS in O(pK) (Harchaoui and Levy-Leduc, 2008)
- For all λ in $O(p \ln p)$ (Hoefling, 2009)
- For the first K change-points in $O(p \ln K)$ (Bleakley and V., 2010)

Speed trial : 2 s. for K = 100, $p = 10^7$

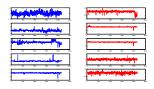


Extension: cancer prognosis



Aggressive (left) vs non-aggressive (right) melanoma

Fused lasso for supervised classification

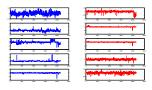


- Idea: find a linear predictor $f(Y) = \beta^{\top} Y$ that best discriminates the aggressive vs non-aggressive samples, subject to the constraints that it should be sparse and piecewise constant
- Mathematically:

$$\min_{\beta \in \mathbb{R}^p} R(\beta) + \lambda_1 \|\beta\|_1 + \lambda_2 \|\beta\|_{TV}$$

 Computationnally: this is convex optimization problem that can be solved very efficiently with proximal optimization methods (V. and Bleakley, 2012)

Fused lasso for supervised classification

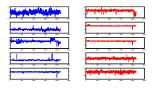


- Idea: find a linear predictor $f(Y) = \beta^{\top} Y$ that best discriminates the aggressive vs non-aggressive samples, subject to the constraints that it should be sparse and piecewise constant
- Mathematically:

$$\min_{\beta \in \mathbb{R}^p} R(\beta) + \lambda_1 \|\beta\|_1 + \lambda_2 \|\beta\|_{TV}$$

 Computationnally: this is convex optimization problem that can be solved very efficiently with proximal optimization methods (V. and Bleakley, 2012)

Fused lasso for supervised classification

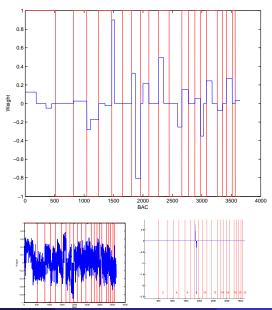


- Idea: find a linear predictor $f(Y) = \beta^{\top} Y$ that best discriminates the aggressive vs non-aggressive samples, subject to the constraints that it should be sparse and piecewise constant
- Mathematically:

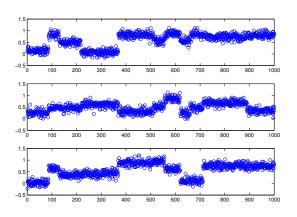
$$\min_{\beta \in \mathbb{R}^p} R(\beta) + \lambda_1 \|\beta\|_1 + \lambda_2 \|\beta\|_{TV}$$

 Computationnally: this is convex optimization problem that can be solved very efficiently with proximal optimization methods (V. and Bleakley, 2012)

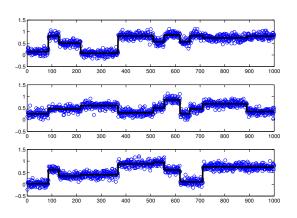
Prognostic in melanoma (Rapaport et al., 2008)



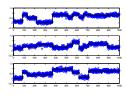
Extension: finding multiple change points shared by several profiles



Extension: finding multiple change points shared by several profiles



"Optimal" segmentation by dynamic programming



• Define the "optimal" piecewise constant approximation $\hat{U} \in \mathbb{R}^{p \times n}$ of Y as the solution of

$$\min_{U \in \mathbb{R}^{p \times n}} \parallel Y - U \parallel^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} \mathbf{1} \left(U_{i+1,ullet}
eq U_{i,ullet}
ight) \leq k$$

- DP finds the solution in $O(p^2kn)$ in time and $O(p^2)$ in memory
- But: does not scale to $p = 10^6 \sim 10^9...$

GFLseg (Bleakley and V., 2011)

Replace

$$\min_{U \in \mathbb{R}^{p \times n}} \| Y - U \|^2$$
 such that $\sum_{i=1}^{p-1} \mathbf{1} \left(U_{i+1, \bullet} \neq U_{i, \bullet} \right) \leq k$

by

$$\min_{\boldsymbol{U} \in \mathbb{R}^{p \times n}} \| \boldsymbol{Y} - \boldsymbol{U} \|^2 \quad \text{such that} \quad \sum_{i=1}^{p-1} w_i \| \boldsymbol{U}_{i+1,\bullet} - \boldsymbol{U}_{i,\bullet} \| \leq \mu$$

Theorem

This is a group lasso problem!

- The estimated segmentation converges to the true segmentation when the number of profiles increases (if the noise is not too large)
- We can solve it efficiently in O(npk)

Speed trial

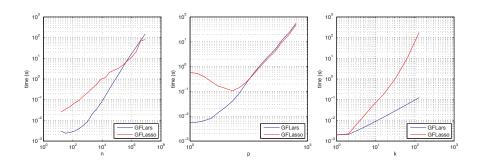


Figure 2: **Speed trials for group fused LARS (top row) and Lasso (bottom row).** Left column: varying n, with fixed p=10 and k=10; center column: varying p, with fixed n=1000 and k=10; right column: varying k, with fixed n=1000 and p=10. Figure axes are log-log. Results are averaged over 100 trials.

Consistency for a single change-point

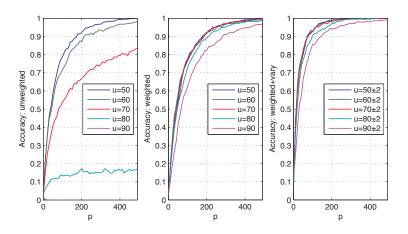


Figure 3: Single change-point accuracy for the group fused Lasso. Accuracy as a function of the number of profiles p when the change-point is placed in a variety of positions u=50 to u=90 (left and centre plots, resp. unweighted and weighted group fused Lasso), or: $u=50\pm 2$ to $u=90\pm 2$ (right plot, weighted with varying change-point location), for a signal of length 100.

Consistency for many change-points

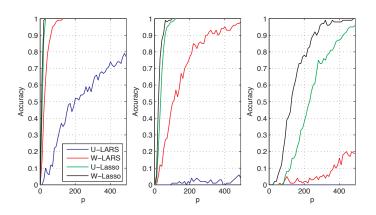
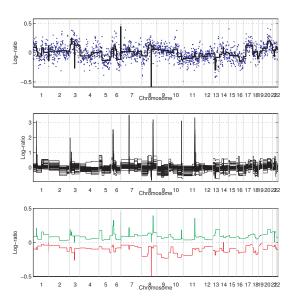


Figure 4: **Multiple change-point accuracy.** Accuracy as a function of the number of profiles p when change-points are placed at the nine positions $\{10,20,\ldots,90\}$ and the variance σ^2 of the centered Gaussian noise is either 0.05 (left), 0.2 (center) and 1 (right). The profile length is 100.

Application: detection of frequent abnormalities



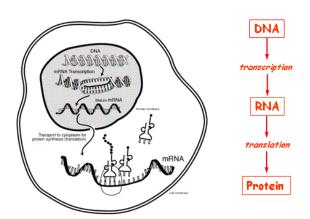
Outline

On chromosome abnormalities in cancer

Gene selection with prior information

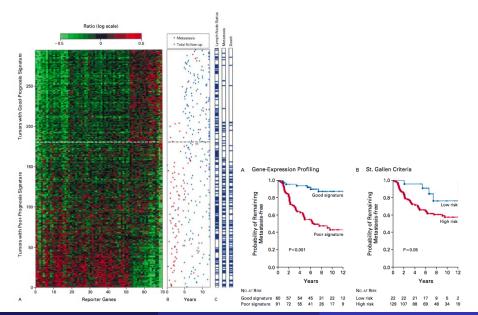
3 Conclusion

$\mathsf{DNA} \to \mathsf{RNA} \to \mathsf{protein}$



- CGH shows the (static) DNA
- Cancer cells have also abnormal (dynamic) gene expression (= transcription)

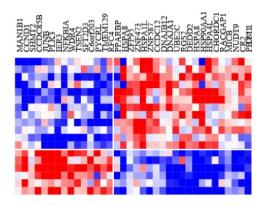
Breast cancer prognosis



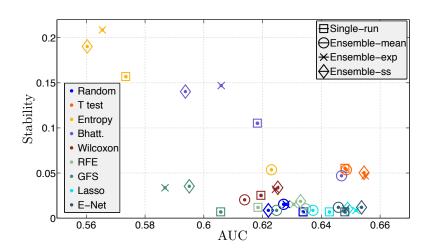
Gene selection, molecular signature

The idea

- We look for a limited set of genes that are sufficient for prediction.
- Selected genes should inform us about the underlying biology

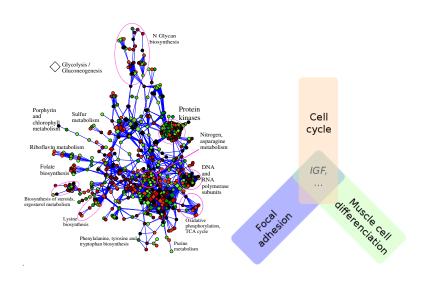


Lack of stability of signatures



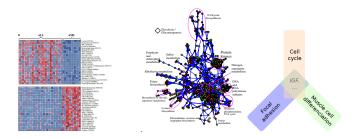
Haury et al. (2011)

Gene networks, gene groups



Structured feature selection

- Basic biological functions usually involve the coordinated action of several proteins:
 - Formation of protein complexes
 - Activation of metabolic, signalling or regulatory pathways
- How to perform structured feature selection, such that selected genes
 - belong to only a few groups?
 - form a small number of connected components on the graph?

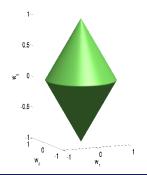


Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the ℓ_1/ℓ_2 -norm induces sparse solutions at the group level:

$$\Omega_{group}(w) = \sum_{g} \|w_g\|_2$$



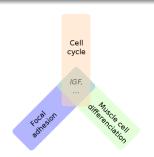
$$\Omega(\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3) = \|(\mathbf{w}_1, \mathbf{w}_2)\|_2 + \|\mathbf{w}_3\|_2$$

Group lasso with overlapping groups

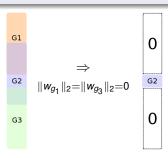
Idea 1: shrink groups to zero (Jenatton et al., 2009)

- $\Omega_{group}(w) = \sum_{g} \|w_g\|_2$ sets groups to 0.
- One variable is selected

 all the groups to which it belongs are selected.



IGF selection ⇒ selection of unwanted groups



Removal of *any* group containing a gene ⇒ the weight of the gene is 0.

Group lasso with overlapping groups

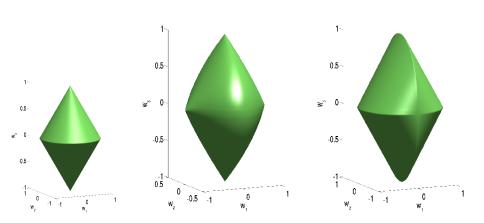
Idea 2: latent group Lasso (Jacob et al., 2009)

$$\Omega_{ ext{latent}}^{\mathcal{G}}\left(w
ight) riangleq egin{cases} \min \sum_{g \in \mathcal{G}} \|v_g\|_2 \ w = \sum_{g \in \mathcal{G}} v_g \ \operatorname{supp}\left(v_g
ight) \subseteq g. \end{cases}$$

Properties

- Resulting support is a union of groups in G.
- Possible to select one variable without selecting all the groups containing it.
- Equivalent to group lasso when there is no overlap

Overlap and group unity balls



Balls for $\Omega^{\mathcal{G}}_{\mathsf{group}}(\cdot)$ (middle) and $\Omega^{\mathcal{G}}_{\mathsf{latent}}(\cdot)$ (right) for the groups $\mathcal{G} = \{\{1,2\},\{2,3\}\}$ where w_2 is represented as the vertical coordinate. Left: group-lasso $(\mathcal{G} = \{\{1,2\},\{3\}\})$, for comparison.

Theoretical results

Consistency in group support (Jacob et al., 2009)

- Let \bar{w} be the true parameter vector.
- Assume that there exists a unique decomposition \bar{v}_g such that $\bar{w} = \sum_g \bar{v}_g$ and $\Omega_{\mathrm{latent}}^{\mathcal{G}}\left(\bar{w}\right) = \sum \|\bar{v}_g\|_2$.
- Consider the regularized empirical risk minimization problem $L(w) + \lambda \Omega_{\text{latent}}^{\mathcal{G}}(w)$.

Then

- under appropriate mutual incoherence conditions on *X*,
- as $n \to \infty$,
- with very high probability,

the optimal solution \hat{w} admits a unique decomposition $(\hat{v}_g)_{g \in \mathcal{G}}$ such that

$$ig\{g\in\mathcal{G}|\hat{v}_g
eq0ig\}=ig\{g\in\mathcal{G}|ar{v}_g
eq0ig\}$$
 .

Theoretical results

Consistency in group support (Jacob et al., 2009)

- Let \bar{w} be the true parameter vector.
- Assume that there exists a unique decomposition \bar{v}_g such that $\bar{w} = \sum_g \bar{v}_g$ and $\Omega_{\mathrm{latent}}^{\mathcal{G}}\left(\bar{w}\right) = \sum \|\bar{v}_g\|_2$.
- Consider the regularized empirical risk minimization problem $L(w) + \lambda \Omega_{\text{latent}}^{\mathcal{G}}(w)$.

Then

- under appropriate mutual incoherence conditions on *X*,
- as $n \to \infty$,
- with very high probability,

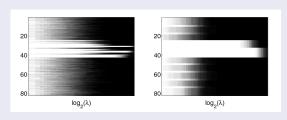
the optimal solution \hat{w} admits a unique decomposition $(\hat{v}_g)_{g\in\mathcal{G}}$ such that

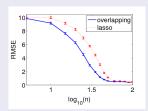
$$\left\{g\in\mathcal{G}|\hat{v}_g
eq 0
ight\}=\left\{g\in\mathcal{G}|ar{v}_g
eq 0
ight\}.$$

Experiments

Synthetic data: overlapping groups

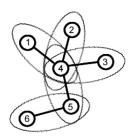
- 10 groups of 10 variables with 2 variables of overlap between two successive groups $\{1,\ldots,10\},\{9,\ldots,18\},\ldots,\{73,\ldots,82\}.$
- Support: union of 4th and 5th groups.
- Learn from 100 training points.





Frequency of selection of each variable with the lasso (left) and $\Omega^{\mathcal{G}}_{\text{latent}}$ (.) (middle), comparison of the RMSE of both methods (right).

Graph lasso



Two solutions

$$\Omega_{\mathsf{group}}^{\mathcal{G}}\left(eta
ight) = \sum_{i \sim j} \sqrt{eta_i^2 + eta_j^2} \,,$$

$$\Omega_{\mathsf{latent}}^{\mathcal{G}}\left(\beta\right) = \sup_{\alpha \in \mathbb{R}^p: \forall i \sim j, \|\alpha_i^2 + \alpha_j^2\| \leq 1} \alpha^\top \beta \ .$$

Preliminary results

Breast cancer data

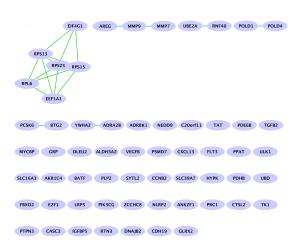
- Gene expression data for 8, 141 genes in 295 breast cancer tumors.
- Canonical pathways from MSigDB containing 639 groups of genes, 637 of which involve genes from our study.

METHOD	ℓ_1	$\Omega_{LATENT}^{\mathcal{G}}\left(. ight)$
ERROR	$\textbf{0.38} \pm \textbf{0.04}$	$\textbf{0.36} \pm \textbf{0.03}$
MEAN ♯ PATH.	130	30

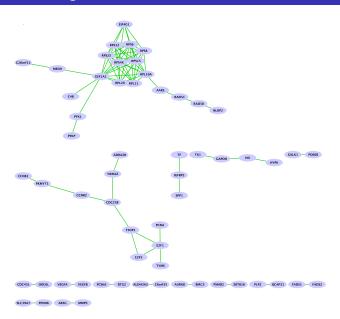
Graph on the genes.

METHOD	ℓ_1	$\Omega_{graph}(.)$
ERROR	$\textbf{0.39} \pm \textbf{0.04}$	$\textbf{0.36} \pm \textbf{0.01}$
AV. SIZE C.C.	1.03	1.30

Lasso signature



Graph Lasso signature



Outline

On chromosome abnormalities in cancer

Gene selection with prior information

Conclusion

Conclusions

- Feature / pattern selection in high dimension is central for many applications
- Convex sparsity-inducing penalties are useful; efficient implementations + consistency results

Kevin Bleakley (INRIA), Laurent Jacob (UC Berkeley) Guillaume Obozinski (INRIA), Anne-Claire Haury (ParisTech)

