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0 Motivations

e Finding multiple change-points in a single profile

e Finding multiple change-points shared by many signals
e Learning molecular classifiers with network information

e Conclusion
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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

@ Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research to observe
systematically variants in DNA content
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Can we identify breakpoints and "smooth" each
profile?
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Can we detect frequent breakpoints?

L
800

_ L L L L
0 200 400 600 800

L L L L L L
1000 1200 1400 1600 1800 2000

00 600 800 1000 1200 1400 1600 1800 2000
051
o AN
. el
g
0 200 400 600 800 1000 1200 1400 1600 1800 2000

A collection of bladder tumour copy number profiles.
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DNA — RNA — protein

DNA
T
e
- &%\\a@-&‘a\% N Franseription

L Rt X

Fransiotion

@ CGH shows the (static) DNA

@ Cancer cells have also abnormal (dynamic) gene expression (=
transcription)
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Can we identify the cancer subtype? (diagnosis
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Can we predict the future evolution? (prognosis)
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e Finding multiple change-points in a single profile
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The problem
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@ Let Y € RP the signal
@ We want to find a piecewise constant approximation U € RP with
at most k change-points.
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An optimal solution?

@ We can define an "optimal" piecewise constant approximation
U € RP as the solution of

p—1
i _ 2 ) )
min || Y — U|[® such that > (Uit # Up) < k

i=1
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An optimal solution?

@ We can define an "optimal" piecewise constant approximation
U € RP as the solution of
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@ This is an optimization problem over the () partitions...
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An optimal solution?

@ We can define an "optimal" piecewise constant approximation
U € RP as the solution of

p—1
min || Y — U|[® such that > (Uit # Up) < k

i=1

@ This is an optimization problem over the () partitions...

@ Dynamic programming finds the solution in O(p?k) in time and
O(p?) in memory

@ But: does not scale to p = 108 ~ 10°...
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Promoting sparsity with the ¢ penalty

The ¢4 penalty (Tibshirani, 1996; Chen et al., 1998)

If R(B) is convex and "smooth", the solution of

m|n R(3 +>\Z|ﬁ,

is usually sparse.

Geometric interpretation with p = 2
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Promoting piecewise constant profiles penalty

The total variation / variable fusion penalty

If R(B) is convex and "smooth", the solution of

mlnR +)\Z\B,+1 Bil

is usually piecewise constant (Rudin et al., 1992; Land and Friedman,
1996).

Proof:
@ Change of variable u; = 8j1 — Bi, Up = 54
@ We obtain a Lasso problem in u € RP~!
@ U sparse means 5 piecewise constant
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TV signal approximator

p—1
in|Y-3]|? h th 1= Bil <
min ||Y'— 8| such that ;mm Bil < p

Adding additional constraints does not change the change-points:
e > 7 .| 8| < v (Tibshirani et al., 2005; Tibshirani and Wang, 2008)
e P . 32 < v (Mairal et al. 2010)
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Solving TV signal approximator

p—1
min || Y — 3||° such that 1= Bil <
min || Y- 5] ;mﬂ Bil <

@ QP with sparse linear constraints in O(p?) -> 135 min for p = 10°
(Tibshirani and Wang, 2008)

@ Coordinate descent-like method O(p)? -> 3s s for p = 10°
(Friedman et al., 2007)

@ For all  with the LARS in O(pK) (Harchaoui and Levy-Leduc,
2008)

@ Forall 1 in O(pIn p) (Hoefling, 2009)
@ For the first K change-points in O(pIn K) (Bleakley and V., 2010)
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TV signal approximator as dichotomic segmentation

Algorithm 1 Greedy dichotomic segmentation
Require: & number of intervals, (/) gain function to split an interval I into I7,(1), Ir(I)

1: Iy represents the interval [1,n]
. P=A{lp}
: fori=1tokdo

I* + argmax-~y (I*)

IeP

P« P\{I"}

P« PU{IL(I*),Ir(I*)}
end for
return P

B oW

TV signal approximator performs "greedy"” dichotomic segmentation

(V. and Bleakley, 2010, see also Hoefling, 2009)
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Speed trial : 2 s. for K = 100, p = 107
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e Finding multiple change-points shared by many signals

J.P Vert (ParisTech) Group lasso in genomics IMA 20/50



The problem
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@ Let Y € RP*" the nsignals of length p

@ We want to find a piecewise constant approximation {J € RP*"

with at most k change-points.
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"Optimal" segmentation by dynamic programming

@ Define the "optimal" piecewise constant approximation UJ € RP*"
of Y as the solution of

p—1
min ||Y — U|[? such that 1(U1e # U) < k
UGRPX"H | 12_; ( i+1,0 7 Ui, ) =

@ DP finds the solution in O(p?kn) in time and O(p?) in memory
@ But: does not scale to p = 108 ~ 10°...
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the
¢4 /¢>-norm induces sparse solutions at the group level.

Qgroup Z I WQHZ

Q(wy, wa, wz) = [|(wq, we)l|2 + ||wsl|2

— /w2 2 /' w2
= W1—|—W2+ W3
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TV approximator for many signals

@ Replace

p—1
min | Y—U|? suchthat > 1(Us1e# Uy.) <k

Uerpxm i1
by
p—1
min ||Y — U]|[? such that Wil|Ui 1 e — Ul <
UeRpXHH | > will Ui, ol < p

i=1

e Practice: can we solve it efficiently?

e Theory: does it benefit from increasing p (for n fixed)?
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TV approximator as a group Lasso problem

@ Make the change of variables:

Bie =W (Ut1e—Uy,) fori=1,....,p—1.

@ TV approximator is then equivalent to the following group Lasso
problem (Yuan and Lin, 2006):

p—1
min || Y= X8+ X ol
,BGR(P—‘)X"H Bl ;Hﬁ/, I

where Y is the centered signal matrix and X is a particular
(p—1) x (p— 1) design matrix.
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TV approximator implementation

p—1

min [V = X312+ 2> [ Bie

—1
BGR(P )xn i—1

The TV approximator can be solved efficiently:

@ approximately with the group LARS in O(npk) in time and O(np)
in memory

@ exactly with a block coordinate descent + active set method in
O(np) in memory
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Proof: computational tricks...

Although Xis (p — 1) x (p — 1):
@ Forany R € RP*", we can compute C = X R in O(np) operations
and memory

@ For any two subset of indices A= (ay,...,a)) and
B = (by,...,bg) in[1,p— 1], we can compute X, , X, g in
O(|A[|B]) in time and memory

@ Forany A= (a1, e a|A|), set of distinct indices with
1<a<...<apy <p-1,andforany |Al x nmatrix R, we can

_ _ —1
compute C = (X.TAX.,A> R in O(|A|n) in time and memory
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Speed trial

time (s)
3
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Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottom row). Left column: varying
n, with fixed p = 10 and k = 10; center column: varying p, with fixed n = 1000 and k£ = 10; right column:
varying k, with fixed n = 1000 and p = 10. Figure axes are log-log. Results are averaged over 100 trials.
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Consistency for a single change-point

Suppose a single change-point:
@ at position u = ap

@ with increments (3;)i—1, .p S.t. % = liMy_00 2 377 52
@ corrupted by i.i.d. Gaussian noise of variance ¢

o 100 200 300 400 500 600 700 800 900 1000

o 100 200 300 400 500 600 700 800 900 1000

] 100 200 40 500 600 700 800 900 1000

Does the TV approximator correctly estimate the first change-point as

p increases?
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Consistency of the unweighted TV approximator

p—1
min [|Y—U|? suchthat > [[U1.e— Ul < pe
i=1

UeRpxn

Theorem
The unweighted TV approximator finds the correct change-point with
probability tending to 1 (resp. 0) as n — +oo if 7® < 52 (resp.

02 > 52), where

i (1 —a)*(a—z)
55 = pB? —
o — 5 — Z) )
@ correct estimation on [pe, p(1 — €)] with € = 2;%2 +o(p~1/?).

@ wrong estimation near the boundaries
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Consistency of the weighted TV approximator

p—1
min ||Y — U|[? such that Wil|Uit1.e — Uil <
UeRpan | ; il Ui, ioll < 1t

Theorem

The weighted TV approximator with weights
Vie[t,p—1], w= @

correctly finds the first change-point with probability tending to 1 as
n— +oo.

@ we see the benefit of increasing n
@ we see the benefit of adding weights to the TV penalty
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Proof sketch

@ The first change-point i found by TV approximator maximizes
Fi = & | where

c=X"Y=X"Xg+X"W.

@ ¢is Gaussian, and F; is follows a non-central x? distribution with

. i(p— | 22 D N2 g
Gi:ﬁ:'(l) ) 2 p x{' (p—u)y ifi<u,

-+ . .
P pw? w2wip? ~ | w2 (p—i)® otherwise.

@ We then just check when G, = max; G;
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Consistency for a single change-point
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Figure 3: Single change-point accuracy for the group fused Lasso. Accuracy as a function of the number
of profiles p when the change-point is placed in a variety of positions v = 50 to u = 90 (left and centre
plots, resp. unweighted and weighted group fused Lasso), or: « = 50+2 to u = 90 £ 2 (right plot, weighted
with varying change-point location), for a signal of length 100.
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Estimation of more change-points?
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Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profiles p when
change-points are placed at the nine positions {10, 20, ..., 90} and the variance o2 of the centered Gaussian
noise is either 0.05 (left), 0.2 (center) and 1 (right). The profile length is 100.
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e Learning molecular classifiers with network information
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Molecular diagnosis / prognosis / theragnosis
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Gene networks, gene groups
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Structured feature selection

@ Basic biological functions usually involve the coordinated action of
several proteins:
e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways
@ How to perform structured feature selection, such that selected
genes
@ belong to only a few groups?
o form a small number of connected components on the graph?
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the
¢4 /¢>-norm induces sparse solutions at the group level.

Qgroup Z I WQHZ

Q(wy, wo, W) = |[(wyq, wa) |2+ wal|2
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Group lasso with overlapping groups

Idea 1: shrink groups to zero (Jenatton et al., 2009)
® Qgroup(W) = >4 || Wgl|2 sets groups to 0.
@ One variable is selected < all the groups to which it belongs are

selected.
G1 O
Cell
cycle
= §
G2 G2
IGF, lwg lla=[IWgzll2=0 -
%%
Qoo\q\o\\ /’%,;"o/ G3 O
S o“s 7
? o,
%

Removal of any group
containing a gene = the
weight of the gene is 0.
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Group lasso with overlapping groups

Idea 2: latent group Lasso (Jacob et al., 2009)

mvinZvaHQ v 0
A geg =+ v2 +
Qgtent (w) = w=Y" v " .
_ 9geg g9 0! T 3
supp (vg) C g. LI

| A\

Properties
@ Resulting support is a union of groups in G.

@ Possible to select one variable without selecting all the groups
containing it.

@ Equivalent to group lasso when there is no overlap

v
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Overlap and group unity balls

Balls for QY

group () (middle) and Q¢

latent

(+) (right) for the groups
G = {{1,2},{2,3}} where w; is represented as the vertical coordinate. Left:
group-lasso (G = {{1,2}, {3}}), for comparison.
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Theoretical results

Consistency in group support (Jacob et al., 2009)
@ Let w be the true parameter vector.
@ Assume that there exists a unique decomposition v, such that
W =34 Vgand Qe (W) = 3 [|Vg|lo.
@ Consider the regularized empirical risk minimization problem
(W) + )‘Qlatent ( )
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Theoretical results

Consistency in group support (Jacob et al., 2009)
@ Let w be the true parameter vector.
@ Assume that there exists a unique decomposition v, such that
W =34 Vgand Qe (W) = 3 [|Vg|lo.
@ Consider the regularized empirical risk minimization problem
(W) + )‘Qlatent ( )
Then
@ under appropriate mutual incoherence conditions on X,
@ as n— oo,
@ with very high probability,

the optimal solution w admits a unique decomposition (¥y)gecg such
that

{gegWgyéO}:{geg]Vg;éO}.

v
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Experiments

Synthetic data: overlapping groups

@ 10 groups of 10 variables with 2 variables of overlap between two
successive groups :{1,...,10},{9,...,18},...,{73,...,82}.

@ Support: union of 4th and 5th groups.

@ Learn from 100 training points.

10

I -
. —overlapping|
z lasso
x

RMSE
o v a0 ®

1 1.5 2
Iogz(k) \uge(l) log,,(n)

80

Frequency of selection of each variable with the lasso (left) and QY ()
(middle), comparison of the RMSE of both methods (right).
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Graph lasso

Qgroup (B) =D 1/B2+ 52,

INj

g _ T
QIatent (ﬁ) _ sup o 5
a€RPVinj|laf +af | <1
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Preliminary results

Breast cancer data

@ Gene expression data for 8, 141 genes in 295 breast cancer
tumors.

@ Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD I QLgATENT ()
ERROR 0.38+0.04 0.36+0.03
MEAN { PATH. 130 30

@ Graph on the genes.
METHOD 44 Qgrapn(-)
ERROR 0.39+0.04 0.36+0.01
Av. SIZE C.C. 1.03 1.30
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Lasso signature
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Graph Lasso signature
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e Conclusion

J.P Vert (ParisTech) Group lasso in genomics IMA 49 /50



Conclusions

@ Penalty design as a way to incorporate prior knowledge
@ Convex sparsity-inducing penalties are useful; efficient
implementations + consistency results

Kevin Bleakley (INRIA), Laurent Jacob (UC Berkeley) Guillaume
Obozinski (INRIA)
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