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DNA→ RNA→ protein

Cancer have abnormal genomes
This leads to abnormal (dynamic) gene expression (RNA)
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Tissue profiling with DNA chips

Data
Gene expression measures for more than 10k genes
Measured typically on less than a few 100’s samples
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Can we identify the cancer subtype? (diagnosis)
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Can we predict the future evolution (prognosis), the
response to drugs (theragnosis)?
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Machine learning (a.k.a. pattern recognition,
supervised classification)

1 Given a training set of labeled data with...
2 learn a discrimination rule...
3 ... in order to predict the label of new data
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Machine learning in bioinformatics

Genome annotation, systems
biology, personalized medicine...

Challenges
Few samples
High dimension
Structured data
Heterogeneous data
Prior knowledge
Fast and scalable
implementations
Interpretable models
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Gene selection, molecular signature

The idea
We look for a limited set of genes that are sufficient for prediction.
This should improve predictive accuracy (for statistical reasons)
Selected genes should inform us about the underlying biology
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But... unstability of selected features
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Can we go beyond generic methods, and design new methods
better adapted to this scenario (104 genes, 102 samples)?
How to include prior knowledge in the inference process?
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ML with shrinkage estimators

1 Define a large family of "candidate classifiers", e.g., linear
predictors:

fβ(x) = β>x for x ∈ Rp

2 For any candidate classifier fβ, quantify how "good" it is on the
training set with some empirical risk, e.g.:

R(β) =
1
n

n∑
i=1

(fβ(xi)− yi)
2 .

3 Choose β that achieves the minimium empirical risk, subject to
some constraint:

min
β

R(β) subject to Ω(β) ≤ C .
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Why skrinkage classifiers?

min
β

R(β) subject to Ω(β) ≤ C .

b*
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Why skrinkage classifiers?

b*

b
est

b*
C

b
est

C

Bias

Variance

"Increases bias and decreases variance"
Common choices are

Ω(β) =
∑p

i=1 β
2
i (ridge regression, SVM, ...)

Ω(β) =
∑p

i=1 |βi | (lasso, boosting, ...)
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Further benefit: sparsity-inducing penalties

(Lasso)

min
β

R(β) s.t.
p∑

i=1

|βi | ≤ C
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Summary

min
β

R(β) s.t. Ω(β) ≤ C

Shrinkage methods can:
1 Improve the accuracy of the model by better controlling the

bias/variance trade-off
2 Further decrease the bias by including prior knowledge in the

penalty Ω(β)

3 Perform feature selection with non-smooth penalties
4 Be efficiently implement with convex risk and penalty
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Prior knowledge

Basic biological functions usually involve the coordinated action of
several proteins:

Formation of protein complexes
Activation of metabolic, signalling or regulatory pathways

We know these functional groups and gene networks
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Shrinkage estimators for gene expression data

min
β

R(β) s.t. Ω(β) ≤ C

How to design penalties Ω(β) to encode the following hypotheses:
1 Connected genes on a network should have similar weights (with

or without gene selection)
2 Select few genes that are connected or belong to same

predefined functional groups (without constraint on the weights)
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Hypothesis 1: connected genes on a network should
have similar weights

Smooth weights on the graph (or more generally graph kernels)

Ω(β) =
∑
i∼j

(
βi − βj

)2

Gene selection + smooth on the graph

Ω(β) =
∑
i∼j

(
βi − βj

)2
+

p∑
i=1

|βi |

Gene selection + Piecewise constant on the graph (total variation)

Ω(β) =
∑
i∼j

∣∣βi − βj
∣∣+

p∑
i=1

|βi |
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IllustrationRapaport et al

 

N

-

Glycan 
biosynthesis

   

Protein 
kinases

DNA  
and 
RNA 
polymerase 
subunits

Glycolysis / 
Gluconeogenesis 

Sulfur
metabolism

Porphyrin
and 
chlorophyll 
metabolism

Riboflavin metabolism

Folate
biosynthesis

Biosynthesis of steroids, 
ergosterol metabolism

 

Lysine
biosynthesis

Phenylalanine, tyrosine and
tryptophan biosynthesis Purine

metabolism

Oxidative 
phosphorylation, 
TCA cycle

Nitrogen,
asparagine
metabolism

Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8
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Limits
Spectral analysis of gene expression profiles using gene networks

 a)  b)
Fig. 5. Theglycolysis/gluconeogenesis pathways ofKEGGwithmapped coefficients of the decision function obtained by applying a customary

linear SVM (a) and using high-frequency eigenvalue attenuation (b). The pathways are mutually exclusive in a cell, as clearly highlighted by

our algorithm.

or under-expression of individual genes, which is the cost to

pay to obtain instead an interpretation in terms of more glo-

bal pathways. Constraining the classifier to rely on just a few

genes would have a similar effect of reducing the complexity

of the problem,butwould lead to amoredifficult interpretation

in terms of pathways.

An advantage of our approach over other pathway-based

clustering methods is that we consider the network modules

that naturally appear from spectral analysis rather than a histo-

rically defined separation of the network into pathways. Thus,

pathways cross-talking is taken into account, which is diffi-

cult to do using other approaches. It can however be noticed

that the implicit decomposition into pathways that we obtain

is biased by the very incomplete knowledge of the network

and that certain regions of the network are better understood,

leading to a higher connection concentration.

Like most approaches aiming at comparing expression data

with gene networks such as KEGG, the scope of this work

is limited by two important constraints. First the gene net-

work we use is only a convenient but rough approximation to

describe complex biochemical processes; second, the trans-

criptional analysis of a sample can not give any information

regarding post-transcriptional regulation and modifications.

Nevertheless, we believe that our basic assumptions remain

valid, in that we assume that the expression of the genes

belonging to the same metabolic pathways module are coor-

dinately regulated. Our interpretation of the results supports

this assumption.

Another important caveat is that we simplify the network

description as an undirected graph of interactions. Although

this would seem to be relevant for simplifying the descrip-

tion of metabolic networks, real gene regulation networks are

influenced by the direction, sign and importance of the interac-

tion. Although the incorporationof weights into the Laplacian

(equation 1) is straightforward and allows the extension of the

approach to weighted undirected graphs, the incorporation

of directions and signs to represent signalling or regulatory

pathways requires more work but could lead to important

advances for the interpretation of microarray data in cancer

studies, for example.
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We are happy to see pathways appear.
However, in some cases, connected genes should have "opposite"
weights (inhibition, pathway branching, etc...)
How to capture pathways without constraints on the weight
similarities?
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)
If groups of covariates are likely to be selected together, the
`1/`2-norm induces sparse solutions at the group level:

Ωgroup(β) =
∑

g

‖βg‖2

Groups {1,2} and {3}:

Ωgroup(β1, β2, β3) = ‖(β1, β2)‖2 + ‖β3‖2

=
√
β2

1 + β2
2 + |β3 |
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Group Lasso when groups overlap

When groups overlap, the group Lasso

Ωgroup(β) =
∑

g

‖βg ‖

sets groups to 0 =⇒ the support of the solution is the complement of
a union of groups

IGF selection⇒ selection of
unwanted groups

⇒
‖wg1‖2=‖wg3‖2=0

Removal of any group
containing a gene⇒ the
weight of the gene is 0.
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The latent group Lasso (Jacob et al., 2009)

Ωlatent (β) = sup
α∈Rp : ∀g,‖αg ‖≤1

α>β

or, equivalently:

Ωlatent (β)
∆
=



min
v

∑
g∈G
‖vg‖2

β =
∑
g∈G

vg

supp
(
vg
)
⊆ g.

Properties
Resulting support is a union of groups in G.
Possible to select one variable without selecting all the groups
containing it.
Equivalent to group lasso when there is no overlap
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Group Lasso vs latent group Lasso

Balls for ΩG
group (·) (middle) and Ωlatent · (right) for the groups

G = {{1,2}, {2,3}} where w2 is represented as the vertical coordinate.
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Theoretical results

Consistency in group support (Jacob et al., 2009)
Let w̄ be the true parameter vector.
Assume that there exists a unique decomposition v̄g such that
w̄ =

∑
g v̄g and Ωlatent (w̄) =

∑
‖v̄g‖2.

Consider the regularized empirical risk minimization problem
L(w) + λΩlatent (w).

Then
under appropriate mutual incoherence conditions on X ,
as n→∞,
with very high probability,

the optimal solution ŵ admits a unique decomposition (v̂g)g∈G such
that {

g ∈ G|v̂g 6= 0
}

=
{

g ∈ G|v̄g 6= 0
}
.
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Experiments

Synthetic data: overlapping groups
10 groups of 10 variables with 2 variables of overlap between two
successive groups :{1, . . . ,10}, {9, . . . ,18}, . . . , {73, . . . ,82}.
Support: union of 4th and 5th groups.
Learn from 100 training points.

Frequency of selection of each variable with the lasso (left) and Ωlatent (.)

(middle), comparison of the RMSE of both methods (right).
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Graph lasso vs kernel on graph

Graph lasso:

Ωgroup(β) =
∑
i∼j

√
β2

i + β2
j or Ωlatent (β) = sup

α∈Rp : ∀i∼j,
√
α2

i +α2
j ≤1

α>β

constrains the sparsity, not the values
Graph kernel

Ωgraph kernel(β) =
∑
i∼j

(βi − βj)
2 .

constrains the values (smoothness), not the sparsity
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Preliminary results

Breast cancer data
Gene expression data for 8,141 genes in 295 breast cancer
tumors.
Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD `1 ΩLATENT (.)
ERROR 0.38± 0.04 0.36± 0.03
MEAN ] PATH. 130 30

Graph on the genes.

METHOD `1 Ωgraph(.)
ERROR 0.39± 0.04 0.36± 0.01
AV. SIZE C.C. 1.03 1.30
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Classical lasso signature
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Graph Lasso signature
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Conclusion

Integration of prior knowledge in the penalization / regularization
function is an efficient approach to fight the curse of dimension
Structured sparsity can be obtained with particular non-smooth
convex penalties
How to include more knowledge, e.g., dynamics of the systems?
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