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@ Cancer have abnormal genomes
@ This leads to abnormal (dynamic) gene expression (RNA) }
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Tissue profiling with DNA chips
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@ Gene expression measures for more than 10k genes
@ Measured typically on less than a few 100’s samples
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Can we identify the cancer subtype? (diagnosis
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Can we predict the future evolution (prognosis), the

response to drugs (theragnosis)?
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Machine learning (a.k.a. pattern recognition,

supervised classification)
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@ Given a training set of labeled data with...
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Machine learning (a.k.a. pattern recognition,
supervised classification)
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@ Given a training set of labeled data with...
@ learn a discrimination rule...
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Machine learning (a.k.a. pattern recognition,
supervised classification)
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@ Given a training set of labeled data with...

@ learn a discrimination rule...
© ... in order to predict the label of new data
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Machine learning (a.k.a. pattern recognition,
supervised classification)

@ Given a training set of labeled data with...
@ learn a discrimination rule...
© ... in order to predict the label of new data
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Machine learning in bioinformatics

Challenges

@ Few samples

@ High dimension
Structured data
Heterogeneous data
Prior knowledge

Genome annotation, systems Fast and scalable
biology, personalized medicine... implementations

Interpretable models
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Gene selection, molecular signature

The idea
@ We look for a limited set of genes that are sufficient for prediction.
@ This should improve predictive accuracy (for statistical reasons)
@ Selected genes should inform us about the underlying biology
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But... unstability of selected features
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@ Can we go beyond generic methods, and design new methods
better adapted to this scenario (10* genes, 10% samples)?

@ How to include prior knowledge in the inference process?
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e Machine learning with shrinkage estimators
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ML with shrinkage estimators

@ Define a large family of "candidate classifiers", e.g., linear
predictors:
fs(x) = B"x for x € RP
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ML with shrinkage estimators

@ Define a large family of "candidate classifiers", e.g., linear
predictors:
fs(x) = B"x for x € RP

@ For any candidate classifier f3, quantify how "good" it is on the
training set with some empirical risk, e.g.:

R(8) = 7 S (fs() — i)
i=1
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ML with shrinkage estimators

@ Define a large family of "candidate classifiers", e.g., linear
predictors:
fs(x) = B"x for x € RP

@ For any candidate classifier f3, quantify how "good" it is on the
training set with some empirical risk, e.g.:

R(8) = 7 S (fs() — i)
i=1

© Choose $ that achieves the minimium empirical risk, subject to
some constraint:

mﬂinR(ﬁ) subjectto  Q(B8) < C.
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Why skrinkage classifiers?

mﬁin R(8) subjectto Q(B)<C.

b*
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Why skrinkage classifiers?

@ "Increases bias and decreases variance"

@ Common choices are
o Q(B) =", B2 (ridge regression, SVM, ...)
e Q(B) =>""4185i| (lasso, boosting, ...)
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Further benefit: sparsity-inducing penalties

(Lasso)

o
mﬂin R(B) st > [pil<C

i=1

Geometric interpretation with p = 2
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mﬁgn R(B)st. Q(B)<C

Geometric interpretation with p = 2

Shrinkage methods can:

@ Improve the accuracy of the model by better controlling the
bias/variance trade-off

© Further decrease the bias by including prior knowledge in the
penalty Q(3)

© Perform feature selection with non-smooth penalties

© Be efficiently implement with convex risk and penalty
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e Shrinkage methods for gene expression data
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Prior knowledge

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways

@ We know these functional groups and gene networks

Protein
King Cell

cycle

IGF,

%%,
o‘b\\é* KN %%
L2 s
N 5. 8,
®© %,

Jean-Philippe Vert (ParisTech) Machine learning in genomics ReaDilab 2011



Shrinkage estimators for gene expression data

mﬁgn R(B)st. Q(B)<C

How to design penalties () to encode the following hypotheses:

@ Connected genes on a network should have similar weights (with
or without gene selection)

@ Select few genes that are connected or belong to same
predefined functional groups (without constraint on the weights)
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Hypothesis 1: connected genes on a network should

have similar weights

@ Smooth weights on the graph (or more generally graph kernels)

QB) =>_ (8- 5)?

ij
@ Gene selection + smooth on the graph
Q) = (8 - 5)° + Z EA
i~
@ Gene selection + Piecewise constant on the graph (total variation)

=>"|8- 5,\+Zm,
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lllustration

N Glycan
biosynthesis

Glycolysis /
Gluconeogenesis

Porphyrin A Protein
and Sulfur
chlorophy metabolism

metabolism
Nitrogen,
Z asparagine
Riboflavin metabolism 0 & ) metabolism

Folate
biosynthesis

_/ polymerase
@ subunits

Biosynthesis of steroids, N

ergosterol metabolism

Lysine R®  Oxidative
biosynthesis phosphorylation,
\ TCA cycle

Phenylalanine, tyrosine and,
tryptophan biosynthesis Purine
metabolism

Jean-Philippe Vert (ParisTech) Machine learning in genomics ReaDilab 2011 22/36



@ We are happy to see pathways appear.

@ However, in some cases, connected genes should have "opposite”
weights (inhibition, pathway branching, etc...)

@ How to capture pathways without constraints on the weight
similarities?
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the
¢4 /¢>-norm induces sparse solutions at the group level.

Qgroup(/B) = Z “ﬁQHZ
g9

Groups {1,2} and {3}:

Qgroup(B1, B2, B3) = [|(B1, B2)ll2 + (| B3ll2

= /6% + 65 + | s
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Group Lasso when groups overlap

When groups overlap, the group Lasso

Qgroup(/B) = Z [ By |
g

sets groups to 0 = the support of the solution is the complement of
a union of groups
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The latent group Lasso (Jacob et al., 2009)

T
Qiatent(B) = sup a B
a€RP Vg, || ag || <1

or, equivalently:

min > 15l " 2 o

PR N |

A =+ + L
Qiatent(B) = 8= Z Vg " -

geg O 0 v3

supp (vg) C g.
Properties

@ Resulting support is a union of groups in G.

@ Possible to select one variable without selecting all the groups
containing it.

@ Equivalent to group lasso when there is no overlap
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Group Lasso vs latent group Lasso

Balls for O, (-) (middle) and Qaen:- (right) for the groups

G = {{1,2},{2,3}} where ws is represented as the vertical coordinate.
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Theoretical results

Consistency in group support (Jacob et al., 2009)
@ Let w be the true parameter vector.

@ Assume that there exists a unique decomposition v, such that
W =23 g Vgand Qatent (W) = >_ [[Vg][2-

@ Consider the regularized empirical risk minimization problem
L( W) + )\Qlatent (W)

Jean-Philippe Vert (ParisTech) Machine learning in genomics ReaDilab 2011 28/36



Theoretical results

Consistency in group support (Jacob et al., 2009)
@ Let w be the true parameter vector.
@ Assume that there exists a unique decomposition v, such that
W =23 g Vgand Qatent (W) = >_ [[Vg][2-
@ Consider the regularized empirical risk minimization problem
L( W) + )\Qlatent (W)
Then
@ under appropriate mutual incoherence conditions on X,
@ as n— oo,
@ with very high probability,

the optimal solution w admits a unique decomposition (¥y)gecg such
that

{gegWgyéO}:{geg]Vg;éO}.
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Experiments

Synthetic data: overlapping groups

@ 10 groups of 10 variables with 2 variables of overlap between two
successive groups :{1,...,10},{9,...,18},...,{73,...,82}.

@ Support: union of 4th and 5th groups.

@ Learn from 100 training points.
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Frequency of selection of each variable with the lasso (left) and Qjatent ()
(middle), comparison of the RMSE of both methods (right).
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Graph lasso vs kernel on graph

@ Graph lasso:

Qroup(8) = Y /B2 + B2 o Quatet(8) = sup a'p
i~j a€RP :Vinj,\ JoZ +a2 <1
constrains the sparsity, not the values
@ Graph kernel
Qgraph kernel(ﬁ) = Z(ﬁ/ - Bj)2 .
inj

constrains the values (smoothness), not the sparsity
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Preliminary results

Breast cancer data

@ Gene expression data for 8, 141 genes in 295 breast cancer
tumors.

@ Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD 61 QLATENT ()
ERROR 0.38+0.04 0.36+0.03
MEAN f PATH. 130 30

@ Graph on the genes.
METHOD 44 Qgrapn(-)
ERROR 0.39+0.04 0.36 +0.01
AV. SIZE C.C. 1.03 1.30
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Classical lasso signature
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Graph Lasso signature
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e Conclusion
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Conclusion

@ Integration of prior knowledge in the penalization / regularization
function is an efficient approach to fight the curse of dimension

@ Structured sparsity can be obtained with particular non-smooth
convex penalties

@ How to include more knowledge, e.g., dynamics of the systems?
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