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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

@ Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research to observe
systematically variants in DNA content

Log-ratio
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Cancer prognosis: can we predict the future evolution?
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DNA — RNA — protein

DNA
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@ CGH shows the (static) DNA

@ Cancer cells have also abnormal (dynamic) gene expression (=
transcription)
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Tissue profiling with DNA chips

Prepare ¢cDNA'Probe’ Prepare'Microarray/

@ Gene expression measures for more than 10k genes

@ Measured typically on less than 100 samples of two (or more)
different classes (e.g., different tumors)
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Can we identify the cancer subtype? (diagnosis
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Can we predict the future evolution? (prognosis)
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Machine learning (pattern recognition / supervised

classification)
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@ Given a training set of labeled data with...
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Machine learning (pattern recognition / supervised

classification)
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@ Given a training set of labeled data with...
@ learn a discrimination rule...
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Machine learning (pattern recognition / supervised

classification)
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@ Given a training set of labeled data with...
@ learn a discrimination rule...
© ... in order to predict the label of new data

Jean-Philippe Vert (ParisTech) Machine learning in genomics



Machine learning (pattern recognition / supervised
classification)

@ Given a training set of labeled data with...
@ learn a discrimination rule...
© ... in order to predict the label of new data
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Machine learning in bioinformatics

Challenges

@ Few samples

@ High dimension
Structured data
Heterogeneous data
Prior knowledge

Genome annotation, systems Fast and scalable
biology, personalized medicine... implementations

Interpretable models
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Machine learning : tools and applications

Many applications

Multimedia, image, video, speech recognition, web, social network,
online advertising, finance, biology, chemistry

Many tools

Linear discriminant analysis, logistic regression, decision trees, neural
networks, support vector machines...

\
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ML with shrinkage estimators

@ Define a large family of "candidate classifiers", e.g., linear
predictors:
fs(x) = B"x for x € RP
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ML with shrinkage estimators

@ Define a large family of "candidate classifiers", e.g., linear
predictors:
fs(x) = B"x for x € RP

@ For any candidate classifier f3, quantify how "good" it is on the
training set with some empirical risk, e.g.:

R(8) = £ 3" (5 (x). ).
i=1
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ML with shrinkage estimators

@ Define a large family of "candidate classifiers", e.g., linear
predictors:
fs(x) = B"x for x € RP

@ For any candidate classifier f3, quantify how "good" it is on the
training set with some empirical risk, e.g.:

R(8) = £ 3" (5 (x). ).
i=1

© Choose $ that achieves the minimium empirical risk, subject to
some constraint:

mﬂinR(ﬁ) subjectto  Q(B8) < C.
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Why skrinkage classifiers?

min A(9)

subjectto  Q(p5) < C.

b*
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Why skrinkage classifiers?
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Why skrinkage classifiers?

@ "Increases bias and decreases variance"

@ Common choices are
o Q(B) =", B2 (ridge regression, SVM, ...)
e Q(B) =>""4185i| (lasso, boosting, ...)
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Including prior knowledge in the penalty?

mﬁin R(8) subjectto Q(B)<C.

est
b

b*
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Including prior knowledge in the penalty?

mﬁin R(8) subjectto Q(B)<C.

est
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Further benefit: sparsity-inducing penalties

(Lasso)

mmR +)\Z|ﬂ,

Geometric interpretation with p = 2
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9 Cancer prognosis from DNA copy number variations
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Chromosomic aberrations in cancer
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Cancer prognosis: can we predict the future evolution?
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CGH array classification

Prior knowledge

@ For a CGH profile x € RP, we focus on linear classifiers, i.e., the
sign of :

fs(x) = B x.

@ We expect S to be
@ sparse : not all positions should be discriminative
@ piecewise constant : within a selected region, all probes should

contribute equally

Log-ratio
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Promoting sparsity with the /1 penalty

The ¢4 penalty (Tibshirani, 1996; Chen et al., 1998)
The solution of

m|n R(3 +>\Z|ﬁ,

is usually sparse.

Geometric interpretation with p = 2
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Promoting piecewise constant profiles penalty

The variable fusion penalty (Land and Friedman, 1996)
The solution of

p—1
min R(B8) + A |Bis1 — il

BERP -
i=1

is usually piecewise constant.

Geometric interpretation with p = 2
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Fused Lasso signal approximator (Tibshirani et al.,

2005)

14 P p—1
[5251@7 ' (y/ 5/) +)\1 Z‘BI| +/\ZZ|5/+1 ﬁl|
i=1 i=1 i=1
@ First term leads to sparse solutions
@ Second term leads to piecewise constant solutions
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Fused lasso for supervised classification (Rapaport et

al., 2008)

n p p—1
. AT, . e — B
P £(yiBTx) + A ;!@H/\z;\ﬂm Bil .

where ¢ is, e.g., the hinge loss ¢(y, t) = max(1 — yt,0).
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Fused lasso for supervised classification (Rapaport et

al., 2008)

n p p—1
. AT, . e — B
P £(yiBTx) + A ;!@H/\z;\ﬁm Bil .

where ¢ is, e.g., the hinge loss ¢(y, t) = max(1 — yt,0).

Implementation

@ When 7 is the hinge loss (fused SVM), this is a linear program ->
up to p=10% ~ 10*

@ When 7 is convex and smooth (logistic, quadratic), efficient
implementation with proximal methods -> up to p = 108 ~ 10°
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Example: predicting metastasis in melanoma
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e Diagnosis and prognosis from gene expression data
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Prognosis

Ratio (log scalel
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Gene selection, molecular signature

The idea
@ We look for a limited set of genes that are sufficient for prediction.
@ Selected genes should inform us about the underlying biology

Jean-Philippe Vert (ParisTech) Machine learning in genomics



But... unstability of selected features

@ Wang dataset: n = 286, p = 8141

@ Pearson correlation with the output on 2 random subsamples of
143 samples:

Jean-Philippe Vert (ParisTech) Machine learning in genomics



Comparison of feature selection methods...
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Gene networks
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Gene networks and expression data

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways
@ We know these groups through functional groups and protein
networks
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Gene networks and expression data

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways
@ We know these groups through functional groups and protein
networks

v

Shrinkage estimators with prior knowledge

min A(8) + A2(5)

How to design penalties () to encode the following hypotheses:
@ Connected genes on a network should have similar weights

@ Select few genes that are connected or belong to same
predefined functional groups
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Hypothesis 1: connected genes on a network should

have similar weights

@ Smooth weights on the graph (or more generally graph kernels)

QB) =>_ (8- 5)?

ij
@ Gene selection + smooth on the graph
Q) = (8 - 5)° + Z EA
i~
@ Gene selection + Piecewise constant on the graph (total variation)

=>"|8- 5,\+Zm,

INj
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lllustration
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@ We are happy to see pathways appear.

@ However, in some cases, connected genes should have "opposite”
weights (inhibition, pathway branching, etc...)

@ How to capture pathways without constraints on the weight
similarities?
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the
¢4 /¢>-norm induces sparse solutions at the group level.

Qgroup(/B) = Z “ﬁQHZ
g9

Q(B1, B2, B3) = I(B1, B2)ll2 + || B3z

=\/B2+ 55+ 1063
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Group Lasso when groups overlap

When groups overlap, the group Lasso

Qgroup(/B) = Z [ By |
g

sets groups to 0 = the support of the solution is the complement of
a union of groups

Gl

=

(W, ll2=I|wgs [2=0

7% s
«&t”\oo %;?@cs e 0
080 /‘9%//
2
, ) Removal of any group
IGF selection = selection of o
containing a gene = the
unwanted groups

weight of the gene is 0.
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The latent group Lasso (Jacob et al., 2009)

T
Qiatent(B) = sup a B
a€RP Vg, || ag || <1

or, equivalently:

min > 15l " 2 o

PR N |

A =+ + L
Qiatent(B) = 8= Z Vg " -

geg O 0 v3

supp (vg) C g.

Properties
@ Resulting support is a union of groups in G.

@ Possible to select one variable without selecting all the groups
containing it.

@ Equivalent to group lasso when there is no overlap
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Group Lasso vs latent group Lasso

Balls for O, (-) (middle) and Qaen:- (right) for the groups

G = {{1,2},{2,3}} where ws is represented as the vertical coordinate.
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Theoretical results

Consistency in group support (Jacob et al., 2009)
@ Let w be the true parameter vector.

@ Assume that there exists a unique decomposition v, such that
W =23 g Vgand Qatent (W) = >_ [[Vg][2-

@ Consider the regularized empirical risk minimization problem
L( W) + )\Qlatent (W)
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Theoretical results

Consistency in group support (Jacob et al., 2009)
@ Let w be the true parameter vector.
@ Assume that there exists a unique decomposition v, such that
W =23 g Vgand Qatent (W) = >_ [[Vg][2-
@ Consider the regularized empirical risk minimization problem
L( W) + )\Qlatent (W)
Then
@ under appropriate mutual incoherence conditions on X,
@ as n— oo,
@ with very high probability,

the optimal solution w admits a unique decomposition (¥y)gecg such
that

{gegWgyéO}:{geg]Vg;éO}.
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Experiments

Synthetic data: overlapping groups

@ 10 groups of 10 variables with 2 variables of overlap between two
successive groups :{1,...,10},{9,...,18},...,{73,...,82}.

@ Support: union of 4th and 5th groups.

@ Learn from 100 training points.

I —_
z overlapping|
z lasso
T

RMSE
o N o » o ®

1 15 2
log,(A) log,(A) log, (M)

Frequency of selection of each variable with the lasso (left) and Qjatent ()
(middle), comparison of the RMSE of both methods (right).
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Graph lasso vs kernel on graph

@ Graph lasso:

Qroup(8) = Y /B2 + B2 o Quatet(8) = sup a'p
i~j a€RP :Vinj,\ JoZ +a2 <1
constrains the sparsity, not the values
@ Graph kernel
Qgraph kernel(ﬁ) = Z(ﬁ/ - Bj)2 .
inj

constrains the values (smoothness), not the sparsity
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Preliminary results

Breast cancer data

@ Gene expression data for 8, 141 genes in 295 breast cancer
tumors.

@ Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD 61 QLATENT ()
ERROR 0.38+0.04 0.36+0.03
MEAN f PATH. 130 30

@ Graph on the genes.
METHOD 44 Qgrapn(-)
ERROR 0.39+0.04 0.36 +0.01
AV. SIZE C.C. 1.03 1.30
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Classical lasso signature
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Graph Lasso signature

Ca0ortn1
PRKL
3
conez
ekavT
cenez
CDCASL — ORCGL  VEGFA — VEGFS
SLCI9A7 — PFONG  AREG — MMPY

Jean-Philippe Vert (ParisTech

peske

PovA
TroRL
~
en
\ |
s |
v

— BIG2 ALDH3AZ — CRorf3s

RADS1
" Rapso
7 e
T ™ GA1 — peee
GaroH —— WD
ek

Graps

sep1
AURKE — BIRCS  PSMD2 — ZBTBI6  PLP2 — BCAPSL  FADSI — FADS2

Machine learning in gen



e Conclusion
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Conclusion

@ Machine learning offers many powerful tools to learn predictive
models from large sets of complex data

@ Specific developments are required to solve complex problems
that arise in bio-informatics

@ Integration of prior knowledge in the penalization / regularization
function is an efficient approach to fight the curse of dimension

@ Requires interdisciplinary collaborations to incorporate expert
knowledge at the heart of learning algorithms

@ Many other applications not covered in this presentation!
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