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Gene regulatory network (GRN) of E. coli
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Gene expression data
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GRN inference (de novo)

Given a set of gene expressions, infer the regulations.

How?
Model-based (dynamic systems)
(Dynamic) Bayesian networks
Similarity-based
Feature selection
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Evaluation (DREAM challenge)
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Best results obtained by feature selection methods
Bootstrap-based methods (RF, stability selection)
Overall performance very disappointing (difficult problem...)
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Supervised inference

The problem
Given a set of gene expressions AND a set of known regulations, infer
missing regulations.

How?
Local models: for each TF, learn to discriminate the regulated vs
non-regulated genes
Global models: learn to discriminate connected vs non-connected
TF-target pairs
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Example: one-class learning approach for local model

For a given TF, let P ⊂ [1,n] be the set of genes known to be
regulated by it
From the expression profiles (Xi)i∈P , estimate a score s(X ) to
assess which expression profiles X are similar
Then classify the genes not in P by decreasing score
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Validation
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Method Recall at 60% Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Lessons learned

Many ways to formalize the GRN inference problem (structure
learning)
De novo inference is best solved by feature selection
Supervised inference better when the structure is partially known
Simple local models outperform structured output learning
Performance remains low. Still an open problem!
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Diagnosis
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Prognosis
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Gene selection, molecular signature

The idea
We look for a limited set of genes that are sufficient for prediction.
Selected genes should inform us about the underlying biology
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But... unstability of molecular signatures

Wang dataset: n = 286, p = 8141
Pearson correlation with the output on 2 random subsamples of
143 samples:
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Comparison of feature selection methods...
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Haury et al. (2011)
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Gene networks
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Gene networks and expression data

Motivation
Basic biological functions usually involve the coordinated action of
several proteins:

Formation of protein complexes
Activation of metabolic, signalling or regulatory pathways

We know these groups through functional groups and protein
networks

Shrinkage estimators with prior knowledge

min
β

R(β) + λΩ(β)

How to design penalties Ω(β) to encode the following hypotheses:
1 Connected genes on a network should have similar weights
2 Select few genes that are connected or belong to same

predefined functional groups
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Hypothesis 1: connected genes on a network should
have similar weights

Smooth weights on the graph

Ω(β) =
∑
i∼j

(
βi − βj

)2

Gene selection + smooth on the graph

Ω(β) =
∑
i∼j

(
βi − βj

)2
+

p∑
i=1

|βi |

Gene selection + Piecewise constant on the graph

Ω(β) =
∑
i∼j

∣∣βi − βj
∣∣+

p∑
i=1

|βi |
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IllustrationRapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8
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Hypotheses 2: select genes which are connected of
belong to the same functional groups

1
2

3

Ω(β) = sup
α∈Rp:∀i∼j,‖α2

i +α
2
j ‖≤1

α>β .
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Graph lasso vs kernel on graph

Graph lasso:

Ωgraph lasso(w) =
∑
i∼j

√
w2

i + w2
j .

constrains the sparsity, not the values
Graph kernel

Ωgraph kernel(w) =
∑
i∼j

(wi − wj)
2 .

constrains the values (smoothness), not the sparsity
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Preliminary results

Breast cancer data
Gene expression data for 8,141 genes in 295 breast cancer
tumors.
Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD `1 ΩG
OVERLAP (.)

ERROR 0.38± 0.04 0.36± 0.03
MEAN ] PATH. 130 30

Graph on the genes.

METHOD `1 Ωgraph(.)
ERROR 0.39± 0.04 0.36± 0.01
AV. SIZE C.C. 1.03 1.30
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Classical lasso signature
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Graph Lasso signature
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Discussion

Very challenging problems: high dimensions, few samples,
complex problems (supervised classification, structure inference)
Methods that "work" in practice find the best trade-off between
model complexity ("bias") and ability to learn from data
("variance")
Methods that work in theory and on toy examples do not always
work on real data (and vice-versa)...
Shrinkage methods for structured sparsity is promising...
... but difficult to reconcile accuracy and interpretation
Stability may be a useful empirical proxy to assess the trust we
can have in selected features
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