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@ Inference of gene regulatory networks

e Diagnosis and prognosis from gene expression data
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@ Inference of gene regulatory networks
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Gene regulatory network (GRN) of E. coli
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Gene expression data
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GRN inference (de novo)

Given a set of gene expressions, infer the regulations. J
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GRN inference (de novo)

Given a set of gene expressions, infer the regulations. J

o, Alpha _cdelS cde8 Elu
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@ Model-based (dynamic systems)

@ (Dynamic) Bayesian networks
@ Similarity-based
@ Feature selection

Jean-Philippe Vert (ParisTech) Machine learning in bioinformatics ML for Neuroimagine 2011



Evaluation (DREAM challenge)
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@ Best results obtained by feature selection methods
Bootstrap-based methods (RF, stability selection)
Overall performance very disappointing (difficult problem...)
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Supervised inference

The problem

Given a set of gene expressions AND a set of known regulations, infer
missing regulations.
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Supervised inference

The problem

Given a set of gene expressions AND a set of known regulations, infer
missing regulations.

@ Local models: for each TF, learn to discriminate the regulated vs
non-regulated genes

@ Global models: learn to discriminate connected vs non-connected
TF-target pairs
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Example: one-class learning approach for local model

@ For agiven TF, let P C [1, n] be the set of genes known to be
regulated by it
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Example: one-class learning approach for local model

@ For agiven TF, let P C [1, n] be the set of genes known to be
regulated by it

@ From the expression profiles (X;);.p, estimate a score s(X) to
assess which expression profiles X are similar
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Example: one-class learning approach for local model

@ For agiven TF, let P C [1, n] be the set of genes known to be
regulated by it

@ From the expression profiles (X;);.p, estimate a score s(X) to
assess which expression profiles X are similar

@ Then classify the genes not in P by decreasing score

_ _ _ 0
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Validation

1 1
CLR
SIRENE
" 0.8 0.8 SIRENE-Bias
:g 0.6 5 0.6
"§ 0.4 § 0.4
g
0.2 CLR 0.2
SIRENE
SIRENE-Bias
0O 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8
Ratio of false positives Recall
Method Recall at 60% | Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Lessons learned

@ Many ways to formalize the GRN inference problem (structure
learning)

@ De novo inference is best solved by feature selection

@ Supervised inference better when the structure is partially known
@ Simple local models outperform structured output learning

@ Performance remains low. Still an open problem!
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e Diagnosis and prognosis from gene expression data

Jean-Philippe Vert (ParisTech) Machine learning in bioinformatics ML for Neuroimagine 2011 12/28



BIETe[gle[S

C-myb (U22376)
oicasome iota (X59417)

Inducible protcin (LATT38)
Dyncin light chain (U32944)
Topoisomerase 11§ Z15115)
IRF2 (X15949)
THRIER (X63469)
Acyl-Coenzyme A dehydrogenase (M91432)

Deotytyposios sytuse (U26266)
Op 18 (M.

Rabaptin-5 S ower 2

Hecroctromtin proin 25 (U35451)
117 rece

Ao desmiue (M13702)

Fumarylaceioacetate (M53150)

Adipsin (M81526)
Leplirecepor (V12670)

L
Azurocidin (M96326)
2 (U4675

Catalase (XO4085)

(ParisTech) Machine learning in bioinfo for Neuroimagine 2011



Prognosis
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Gene selection, molecular signature

The idea
@ We look for a limited set of genes that are sufficient for prediction.
@ Selected genes should inform us about the underlying biology
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But... unstability of molecular signatures

@ Wang dataset: n = 286, p = 8141

@ Pearson correlation with the output on 2 random subsamples of
143 samples:
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Comparison of feature selection methods...
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Haury et al. (2011)
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Gene networks
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Gene networks and expression data

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways
@ We know these groups through functional groups and protein
networks
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Gene networks and expression data

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways
@ We know these groups through functional groups and protein
networks

v

Shrinkage estimators with prior knowledge

min A(8) + A2(5)

How to design penalties () to encode the following hypotheses:
@ Connected genes on a network should have similar weights

@ Select few genes that are connected or belong to same
predefined functional groups
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Hypothesis 1: connected genes on a network should

have similar weights

@ Smooth weights on the graph

@ Gene selection + smooth on the graph
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@ Gene selection + Piecewise constant on the graph
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lllustration
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Hypotheses 2: select genes which are connected of

belong to the same functional groups

Q(B) = sup alB.
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Graph lasso vs kernel on graph

@ Graph lasso:
Qgraph lasso(W) = Z \ Wi2 + Wj2 :
i~j
constrains the sparsity, not the values

@ Graph kernel

Qgraph kernel(W) = Z(Wi - WI)2

i~of

constrains the values (smoothness), not the sparsity
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Preliminary results

Breast cancer data

@ Gene expression data for 8, 141 genes in 295 breast cancer
tumors.

@ Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD 2 Qerinr ()
ERROR 0.38+0.04 0.36+0.03
MEAN { PATH. 130 30

@ Graph on the genes.
METHOD 44 Qgrapn(-)
ERROR 0.39+0.04 0.36£0.01
Av. SIZE C.C. 1.03 1.30
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Classical lasso signature

EIF4G1 AREG — MMP9 — MMP7 UBE2A — RNF40  POLD1 — POLD4
S

PCSK6 —  BTG2 YWHAZ — ADRA2B  ADRBK1 ~ NEDD9  C200rfll ~ TAT PDE6B  TGFB2
MYCBP GRP. DLEU2  ALDH3A2  VEGFB  PSMD7  CXCLI3 FLT3 PPAT ULK1L
SLC16A3  AKRIC4 ~ BATF PLP2 SYTL2  CCNB2  SLC39A7  HYPK PDHB. UBD
FBXO2 E2F1 LRPS. PIK3CG  ZCCHC8 ~ NLRP2  ANKZF1  PRC1 cTsL2 TKL

PTPN3  CASC3  IGFBPS RTN3  DNAJB2  CDH19  GLRX2
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Graph Lasso signature
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Discussion

@ Very challenging problems: high dimensions, few samples,
complex problems (supervised classification, structure inference)

@ Methods that "work" in practice find the best trade-off between
model complexity ("bias") and ability to learn from data
("variance")

@ Methods that work in theory and on toy examples do not always
work on real data (and vice-versa)...

@ Shrinkage methods for structured sparsity is promising...
@ ... but difficult to reconcile accuracy and interpretation

@ Stability may be a useful empirical proxy to assess the trust we
can have in selected features
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