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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

Motivation
Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome
Very useful, in particular in cancer research to observe
systematically variants in DNA content
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Cancer prognosis: can we predict the future evolution?

0 500 1000 1500 2000 2500
−0.5

0

0.5

0 500 1000 1500 2000 2500
−1

0

1

2

0 500 1000 1500 2000 2500
−2

−1

0

1

0 500 1000 1500 2000 2500
−2

0

2

4

0 500 1000 1500 2000 2500
−4

−2

0

2

0 500 1000 1500 2000 2500
−1

−0.5

0

0.5

0 500 1000 1500 2000 2500
−1

−0.5

0

0.5

0 500 1000 1500 2000 2500
−4

−2

0

2

0 500 1000 1500 2000 2500
−4

−2

0

2

0 500 1000 1500 2000 2500
−1

0

1

Aggressive (left) vs non-aggressive (right) melanoma
Jean-Philippe Vert (ParisTech) Machine learning in genomics Paris 2011 6 / 44



DNA→ RNA→ protein

CGH shows the (static) DNA
Cancer cells have also abnormal (dynamic) gene expression (=
transcription)
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Tissue profiling with DNA chips

Data
Gene expression measures for more than 10k genes
Measured typically on less than 100 samples of two (or more)
different classes (e.g., different tumors)
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Can we identify the cancer subtype? (diagnosis)
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Can we predict the future evolution? (prognosis)
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Pattern recognition, aka supervised classification
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Pattern recognition, aka supervised classification

Challenges
Few samples
High dimension
Structured data
Heterogeneous data
Prior knowledge
Fast and scalable
implementations
Interpretable models
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Shrinkage estimators

1 Define a large family of "candidate classifiers", e.g., linear
predictors:

fβ(x) = β>x for x ∈ Rp

2 For any candidate classifier fβ, quantify how "good" it is on the
training set with some empirical risk, e.g.:

R(β) =
1
n

n∑
i=1

l(fβ(xi), yi) .

3 Choose β that achieves the minimium empirical risk, subject to
some constraint:

min
β

R(β) subject to Ω(β) ≤ C .
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Why skrinkage classifiers?
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β
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b*
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Why skrinkage classifiers?

b*

b
est

b*
C

b
est

C

Bias

Variance

"Increases bias and decreases variance"
Common choices are

Ω(β) =
∑p

i=1 β
2
i (ridge regression, SVM, ...)

Ω(β) =
∑p

i=1 |βi | (lasso, boosting, ...)
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Including prior knowledge in the penalty?

min
β

R(β) subject to Ω(β) ≤ C .

b*
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CGH array classification

Prior knowledge
For a CGH profile x ∈ Rp, we focus on linear classifiers, i.e., the
sign of :

fβ(x) = β>x .

We expect β to be
sparse : not all positions should be discriminative
piecewise constant : within a selected region, all probes should
contribute equally
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Promoting sparsity with the `1 penalty

The `1 penalty (Tibshirani, 1996; Chen et al., 1998)
The solution of

min
β∈Rp

R(β) + λ

p∑
i=1

|βi |

is usually sparse.
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Promoting piecewise constant profiles penalty

The variable fusion penalty (Land and Friedman, 1996)
The solution of

min
β∈Rp

R(β) + λ

p−1∑
i=1

|βi+1 − βi |

is usually piecewise constant.
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Fused Lasso signal approximator (Tibshirani et al.,
2005)

min
β∈Rp

p∑
i=1

(yi − βi)
2 + λ1

p∑
i=1

|βi |+ λ2

p−1∑
i=1

|βi+1 − βi | .

First term leads to sparse solutions
Second term leads to piecewise constant solutions
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Fused lasso for supervised classification (Rapaport et
al., 2008)

min
β∈Rp

n∑
i=1

`
(

yi , β
>xi

)
+ λ1

p∑
i=1

|βi |+ λ2

p−1∑
i=1

|βi+1 − βi | .

where ` is, e.g., the hinge loss `(y , t) = max(1− yt ,0).

Implementation
When ` is the hinge loss (fused SVM), this is a linear program ->
up to p = 103 ∼ 104

When ` is convex and smooth (logistic, quadratic), efficient
implementation with proximal methods -> up to p = 108 ∼ 109
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Example: predicting metastasis in melanoma
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Extension: joint segmentation of many profiles
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Fused group Lasso signal approximator

min
β∈Rn×p

‖Y − β‖2 + λ

p−1∑
i=1

‖βi+1 − βi‖
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Molecular diagnosis / prognosis / theragnosis
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Gene selection, signature

The idea
We look for a limited set of genes that are sufficient for prediction.
Equivalently, the linear classifier will be sparse

Why?
Bet on sparsity: we believe the "true" model is sparse.
Interpretation: we will get a biological interpretation more easily by
looking at the selected genes.
Satistics: this is one way to constrain the solution and reduce the
complexity to allow learning.
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But...

Challenging the idea of gene signature
We often observe little stability in the genes selected...
Is gene selection the most biologically relevant hypothesis?
What about thinking instead of "pathways" or "modules"
signatures?
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Gene networks
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Graph based penalty

Prior hypothesis
Genes near each other on the graph should have similar weigths.

Two solutions (Rapaport et al., 2007, 2008)

Ωspectral(β) =
∑
i∼j

(βi − βj)
2 ,

Ωgraphfusion(β) =
∑
i∼j

|βi − βj |+
∑

i

|βi | .
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ClassifiersRapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8
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Classifiers
Spectral analysis of gene expression profiles using gene networks

 a)  b)
Fig. 5. Theglycolysis/gluconeogenesis pathways ofKEGGwithmapped coefficients of the decision function obtained by applying a customary

linear SVM (a) and using high-frequency eigenvalue attenuation (b). The pathways are mutually exclusive in a cell, as clearly highlighted by

our algorithm.

or under-expression of individual genes, which is the cost to

pay to obtain instead an interpretation in terms of more glo-

bal pathways. Constraining the classifier to rely on just a few

genes would have a similar effect of reducing the complexity

of the problem,butwould lead to amoredifficult interpretation

in terms of pathways.

An advantage of our approach over other pathway-based

clustering methods is that we consider the network modules

that naturally appear from spectral analysis rather than a histo-

rically defined separation of the network into pathways. Thus,

pathways cross-talking is taken into account, which is diffi-

cult to do using other approaches. It can however be noticed

that the implicit decomposition into pathways that we obtain

is biased by the very incomplete knowledge of the network

and that certain regions of the network are better understood,

leading to a higher connection concentration.

Like most approaches aiming at comparing expression data

with gene networks such as KEGG, the scope of this work

is limited by two important constraints. First the gene net-

work we use is only a convenient but rough approximation to

describe complex biochemical processes; second, the trans-

criptional analysis of a sample can not give any information

regarding post-transcriptional regulation and modifications.

Nevertheless, we believe that our basic assumptions remain

valid, in that we assume that the expression of the genes

belonging to the same metabolic pathways module are coor-

dinately regulated. Our interpretation of the results supports

this assumption.

Another important caveat is that we simplify the network

description as an undirected graph of interactions. Although

this would seem to be relevant for simplifying the descrip-

tion of metabolic networks, real gene regulation networks are

influenced by the direction, sign and importance of the interac-

tion. Although the incorporationof weights into the Laplacian

(equation 1) is straightforward and allows the extension of the

approach to weighted undirected graphs, the incorporation

of directions and signs to represent signalling or regulatory

pathways requires more work but could lead to important

advances for the interpretation of microarray data in cancer

studies, for example.

ACKNOWLEDGMENTS

This work was supported by the grant ACI-IMPBIO-2004-47

of the French Ministry for Research and New Technologies.
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Limits
Spectral analysis of gene expression profiles using gene networks
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leading to a higher connection concentration.

Like most approaches aiming at comparing expression data

with gene networks such as KEGG, the scope of this work

is limited by two important constraints. First the gene net-

work we use is only a convenient but rough approximation to

describe complex biochemical processes; second, the trans-

criptional analysis of a sample can not give any information
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Nevertheless, we believe that our basic assumptions remain

valid, in that we assume that the expression of the genes

belonging to the same metabolic pathways module are coor-

dinately regulated. Our interpretation of the results supports

this assumption.
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description as an undirected graph of interactions. Although
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We are happy to see pathways appear.
However, in some cases, connected genes should have "opposite"
weights (inhibition, pathway branching, etc...)
How to capture pathways without constraints on the weight
similarities?
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)
If groups of covariates are likely to be selected together, the
`1/`2-norm induces sparse solutions at the group level:

Ωgroup(w) =
∑

g

‖wg‖2

Ω(w1,w2,w3) = ‖(w1,w2)‖2+‖w3‖2
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Graph lasso

Hypothesis: selected genes should form connected components
on the graph
Two solutions (Jacob et al., 2009):

Ωgroup(β) =
∑
i∼j

√
β2

i + β2
j ,

Ωoverlap(β) = sup
α∈Rp:∀i∼j,‖α2

i +α
2
j ‖≤1

α>β .
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Overlap and group unity balls

Balls for ΩG
group (·) (middle) and ΩG

overlap (·) (right) for the groups
G = {{1,2}, {2,3}} where w2 is represented as the vertical coordinate.
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Summary: Graph lasso vs kernel

Graph lasso:

Ωgraph lasso(w) =
∑
i∼j

√
w2

i + w2
j .

constrains the sparsity, not the values
Graph kernel

Ωgraph kernel(w) =
∑
i∼j

(wi − wj)
2 .

constrains the values (smoothness), not the sparsity
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Preliminary results

Breast cancer data
Gene expression data for 8,141 genes in 295 breast cancer
tumors.
Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD `1 ΩG
OVERLAP (.)

ERROR 0.38± 0.04 0.36± 0.03
MEAN ] PATH. 130 30

Graph on the genes.

METHOD `1 Ωgraph(.)
ERROR 0.39± 0.04 0.36± 0.01
AV. SIZE C.C. 1.03 1.30
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Lasso signature
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Graph Lasso signature

Jean-Philippe Vert (ParisTech) Machine learning in genomics Paris 2011 41 / 44



Outline
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Conclusion

Many challenging problems for statistical learning in genomics
(high dimension, structure, noise...)
Integration of prior knowledge in the penalization / regularization
function is an efficient approach to fight the curse of dimension
Several computationally efficient approaches (structured LASSO,
kernels...)
Tight collaborations with domain experts can help develop specific
learning machines for specific data
Natural extensions for data integration
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