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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)
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Can we detect frequent breakpoints?
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A collection of bladder tumour copy number profiles.
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Can we detect discriminative patterns?
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Aggressive (left) vs non-aggressive (right) melanoma.
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DNA→ RNA→ protein

CGH shows the (static) DNA
Cancer cells have also abnormal (dynamic) gene expression (=
transcription)
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Tissue profiling with DNA chips

Data
Gene expression measures for more than 10k genes
Measured typically on less than 100 samples of two (or more)
different classes (e.g., different tumors)
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Tissue classification from microarray data

Goal
Design a classifier to
automatically assign a
class to future samples
from their expression
profile
Interpret biologically the
differences between the
classes

Difficulty
Large dimension
Few samples
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Can we detect predictive molecular signatures?
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Gene expression regulation
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Gene regulatory network
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Gene regulatory network (GRN) of E. coli
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Can we reconstruct the GRN from expression data?
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Summary
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Many problems...
Classification accuracy is not all, interpretation is necessary
Common topic: detect predictive variables / patterns
Need for efficient and scalable algorithms
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Classification and regression

Input
X the space of patterns (typically, X = Rp)
Y the space of response or labels

Classification or pattern recognition : Y = {−1,1}
Regression : Y = R

S = {(x1, y1) , . . . , (xn, yn)} a training set in (X × Y)n

Output
A function f : X → Y to predict the output associated to any new
pattern x ∈ X by f (x)

J.P Vert (ParisTech) Feature selection Paris 7 Point de vue 18 / 100



Feature selection

Estimate a function f (x) that only depends on a subset S ⊂ [1,p] of
the variables.

Why?
Statistics: a way to control the complexity of the search space,
can improve accuracy by reducing the estimation error. Especially
relevant in high dimension, and if we believe that there exist good
sparse models.
Interpretation: the selected variables in S are interesting to
understand the physical/biological structure of the problem, and
suggest further investigations
Practical: a small set S can lead to cheap implementations of the
predictor, e.g., dedicated chips for prognosis.
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Best subset selection

In best subset selection, we must solve the problem:

min R(fβ) s.t. ‖β ‖0 ≤ k

for k = 1, . . . ,p, and R is an empirical risk.
The state-of-the-art is branch-and-bound optimization, known as
leaps and bound for least squares (Furnival and Wilson, 1974).
This is usually a NP-hard problem, feasible for p as large as 30 or
40
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Efficient feature selection

To work with more variables, we must use different methods. The
state-of-the-art is split among

1 Filter methods : the predictors are preprocessed and ranked from
the most relevant to the less relevant. The subsets are then
obtained from this list, starting from the top.

2 Wrapper method: here the feature selection is iterative, and uses
a learning algorithm in the inner loop

3 Embedded methods : here the feature selection is part of the
learning algorithm itself

Additionnally, ensemble feature learning has been proposed as a
useful meta-method for feature selection.
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Filter methods

Associate a score S(i) to each feature i , then rank the features by
decreasing score.
Many scores / criteria can be used

Loss of the ERM trained on a single feature
Statistical tests (Fisher, T-test)
Other performance criteria of the ERM restricted to a single feature
(AUC, ...)
Information theoretical criteria (mutual information...)

Pros
Simple, scalable, good empirical success

Cons
Selection of redundant features
Some variables useless alone can become useful together
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Wrapper methods

The idea
A greedy approach to

min Rn(fβ) s.t. ‖β ‖0 ≤ k

For a given set of seleted features, we know how to minimize
Rn(f )

We iteratively try to find a good set of features, by
adding/removing features which contribute most to decrease the
risk (using ERM as an internal loop)
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Two flavors of wrapper methods

Forward stepwise selection
Start from no features
Sequentially add into the model the feature that most improves the
fit

Backward stepwise selection (if n>p)
Start from all features
Sequentially removes from the model the feature that least
degrades the fit

Other variants
Hybrid stepwise selection strategies that consider both forward and
backward moves at each stage, and make the "best" move
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Embedded methods

Decision trees
Sparsity-inducing convex penalties, e.g.

min R(fβ) s.t. ‖β ‖1 ≤ k
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Ensemble feature selection

1 For t = 1, . . . ,T , randomly subsample samples and/or variables
2 For each t , select a subset of variables St

3 Aggregate all St to obtain the final list of variables

Examples:
Random forests
Stability selection
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Summary

A well-studied problem, with many solutions that vary in
computational complexity and theoretical guarantees
Feature selection in the "small n large p" setting has been studied
a lot recently, mostly for embedded methods (lasso...) and largely
motivated by applications in biology
Ensemble feature selection has been put forward recently (stability
selection, bolasso...), but limited theoretical results and validations
The theoretical validity of different methods on real data is often
hard to check
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Prognostic molecular signatures
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Prognostic molecular signatures

Two signatures in clinical trial for breast cancer (70 and 76 genes)
Only 3 genes in common... Why?

Different cohorts of patients?
Different technologies and experimental protocols?
Different algorithm for feature selection?
Other?
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Unstability of molecular signatures

Wang dataset: n = 286, p = 8141
Pearson correlation with the output on 2 random subsamples of
143 samples:
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Comparison of feature selection methods
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Lessons learned...

Difficult problem!
Unstability mostly due to statistical issues
Filter methods (t-test) current method of choice
Ensemble feature selection not really useful
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The problem

Predict the GRN from a matrix X ∈ Rn×p of expression data.
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Predict regulations between "dependent" genes

If A regulates B, we expect their expressions to be dependent across
experiments

Detect the dependency by various measures, e.g., Euclidean distance,
correlation, mutual information...
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Validation

Application: E coli regulatory network : 154 TF targeting 1164 genes
through 3293 regulations
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GRN inference by feature selection

The dynamic equation of the mRNA concentration of a gene is of
the form:

dX
dt

= f (X ,R)

where R represent the set of concentrations of transcription
factors that regulate X .
At steady state, dX/dt = 0 = f (X ,R)

If we linearize f (X ,R) = 0 we get linear relation of the form

X =
∑
i∈R

βiXi

This suggests to look for transcription factors whose expression is
sufficient to explain the expression of X across different
experiments.
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Validation
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RF (Huynh-Thu et al., 2010) and Lasso+stability selection (Haury et
al., 2011) ranked 1st and 2nd at the 2010 DREAM5 in silico network
inference challence
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Lessons learned...

Again, very difficult problem! (recall around 10% in the best
case...)
State-of-the-art express GRN network as feature selection
(perhaps not the best idea?)
Ensemble feature selection seems to work best
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The problem
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Let Y ∈ Rp the signal
We want to find a piecewise constant approximation Û ∈ Rp with
at most k change-points.
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An optimal solution?

0 100 200 300 400 500 600 700 800 900 1000
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

We can define an "optimal" piecewise constant approximation
Û ∈ Rp as the solution of

min
U∈Rp

‖Y − U ‖2 such that
p−1∑
i=1

1 (Ui+1 6= Ui) ≤ k

This is an optimization problem over the
(p

k

)
partitions...

Dynamic programming finds the solution in O(p2k) in time and
O(p2) in memory
But: does not scale to p = 106 ∼ 109...
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Promoting sparsity with the `1 penalty

The `1 penalty (Tibshirani, 1996; Chen et al., 1998)
If R(β) is convex and "smooth", the solution of

min
β∈Rp

R(β) + λ

p∑
i=1

|βi |

is usually sparse.
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Efficienty computation of the regularization path

min
β∈Rp

‖Y − Xβ‖2 + λ

p∑
i=1

|βi | (1)

No explicit solution, but this is just a quadratic program.
LARS (Efron et al., 2004) provides a fast algorithm to compute the
solution for all λ’s simultaneously (regularization path)
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Promoting piecewise constant profiles penalty

The total variation / variable fusion penalty
If R(β) is convex and "smooth", the solution of

min
β∈Rp

R(β) + λ

p−1∑
i=1

|βi+1 − βi |

is usually piecewise constant (Rudin et al., 1992; Land and Friedman,
1996).

Proof:
Change of variable ui = βi+1 − βi , u0 = β1

We obtain a Lasso problem in u ∈ Rp−1

u sparse means β piecewise constant
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TV signal approximator

min
β∈Rp

‖Y − β ‖2 such that
p−1∑
i=1

|βi+1 − βi | ≤ µ

Adding additional constraints does not change the change-points:∑p
i=1 |βi | ≤ ν (Tibshirani et al., 2005; Tibshirani and Wang, 2008)∑p
i=1 β

2
i ≤ ν (Mairal et al. 2010)
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Solving TV signal approximator

min
β∈Rp

‖Y − β ‖2 such that
p−1∑
i=1

|βi+1 − βi | ≤ µ

QP with sparse linear constraints in O(p2) -> 135 min for p = 105

(Tibshirani and Wang, 2008)
Coordinate descent-like method O(p)? -> 3s s for p = 105

(Friedman et al., 2007)
For all µ with the LARS in O(pK ) (Harchaoui and Levy-Leduc,
2008)
For all µ in O(p ln p) (Hoefling, 2009)
For the first K change-points in O(p ln K ) (Bleakley and V., 2010)

J.P Vert (ParisTech) Feature selection Paris 7 Point de vue 48 / 100



Greedy dichotomic segmentation

Require: k number of intervals, γ(I) gain function to split an interval I
into IL(I), IR(I)

1: I0 represents the interval [1,p]
2: P = {I0}
3: for i = 1 to k do
4: I∗ ← arg max

I∈P
γ (I∗)

5: P ← P\{I∗}
6: P ← P ∪ {IL (I∗) , IR (I∗)}
7: end for
8: return P
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From greedy segmentation to TV approximator

Theorem
TV approximator is a greedy dichotomic segmentation.

Consequences:
Good: very fast methods for TV approximator
Good: we can analyze this greedy method by expressing the
solution as the global minimum of an objective function
Bad: TV approximator is no more than a greedy method...
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Technical details

Represent an interval [u + 1, v ] by a quadruplet I = (u, v , σu, σv )
where σu, σv ∈ {−1,0,1}
Let Fu =

∑u
i=1 Yu, and for u < k < v , σ ∈ {−1,1}

fI(k , σ) =

{
σAk/2 if σu = σv 6= 0 ,
Ak/ (σ − Bk ) otherwise ,

where

Ak = −Fk +
(v − k) Fu + (k − u) Fv

v − u
,

Bk =
(v − k)σu + (k − u)σv

v − u
.
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Technical details (cont.)

Then the functions γ(I), IL(I) and IR(I) are respectively given by:

γ(I) = max
k∈[u+1,v−1],σ∈{−1,1}

fI(k , σ) ,

(k∗, σ∗) = argmax
k∈[u+1,v−1],σ∈{−1,1}

fI(k , σ) ,

IL(I) = (u, k∗, σu, σ
∗) ,

IR(I) = (k∗, v , σ∗, σv ) .
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Proof (sketch)

Homotopy method (LARS)
Similar to Harchaoui and Levy-Leduc (2008), removing
superfluous computations
The next breakpoint in a segment, and the µ where it appears, is
independent of events in other segments

J.P Vert (ParisTech) Feature selection Paris 7 Point de vue 53 / 100



Speed trial : 2 s. for K = 100, p = 107
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The problem
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Let Y ∈ Rp×n the n signals of length p
We want to find a piecewise constant approximation Û ∈ Rp×n

with at most k change-points.

J.P Vert (ParisTech) Feature selection Paris 7 Point de vue 56 / 100



The problem

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

1

1.5

Let Y ∈ Rp×n the n signals of length p
We want to find a piecewise constant approximation Û ∈ Rp×n
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"Optimal" segmentation by dynamic programming
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Define the "optimal" piecewise constant approximation Û ∈ Rp×n

of Y as the solution of

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑
i=1

1
(
Ui+1,• 6= Ui,•

)
≤ k

DP finds the solution in O(p2kn) in time and O(p2) in memory
But: does not scale to p = 106 ∼ 109...
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)
If groups of covariates are likely to be selected together, the
`1/`2-norm induces sparse solutions at the group level:

Ωgroup(w) =
∑

g

‖wg‖2

Ω(w1,w2,w3) = ‖(w1,w2)‖2 + ‖w3‖2

=
√

w2
1 + w2

2 +
√

w2
3
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TV approximator for many signals

Replace

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑
i=1

1
(
Ui+1,• 6= Ui,•

)
≤ k

by

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑
i=1

wi‖Ui+1,• − Ui,•‖ ≤ µ

Questions
Practice: can we solve it efficiently?

Theory: does it benefit from increasing p (for n fixed)?
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TV approximator as a group Lasso problem

Make the change of variables:

γ = U1,• ,

βi,• = wi
(
Ui+1,• − Ui,•

)
for i = 1, . . . ,p − 1 .

TV approximator is then equivalent to the following group Lasso
problem (Yuan and Lin, 2006):

min
β∈R(p−1)×n

‖ Ȳ − X̄β ‖2 + λ

p−1∑
i=1

‖βi,• ‖ ,

where Ȳ is the centered signal matrix and X̄ is a particular
(p − 1)× (p − 1) design matrix.
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TV approximator implementation

min
β∈R(p−1)×n

‖ Ȳ − X̄β ‖2 + λ

p−1∑
i=1

‖βi,• ‖ ,

Theorem
The TV approximator can be solved efficiently:

approximately with the group LARS in O(npk) in time and O(np)
in memory
exactly with a block coordinate descent + active set method in
O(np) in memory
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Proof: computational tricks...

Although X̄ is (p − 1)× (p − 1):
For any R ∈ Rp×n, we can compute C = X̄>R in O(np) operations
and memory
For any two subset of indices A =

(
a1, . . . ,a|A|

)
and

B =
(
b1, . . . ,b|B|

)
in [1,p − 1], we can compute X̄>•,AX̄•,B in

O (|A||B|) in time and memory
For any A =

(
a1, . . . ,a|A|

)
, set of distinct indices with

1 ≤ a1 < . . . < a|A| ≤ p − 1, and for any |A| × n matrix R, we can

compute C =
(

X̄>•,AX̄•,A
)−1

R in O(|A|n) in time and memory
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Consistency for a single change-point

Suppose a single change-point:
at position u = αp
with increments (βi)i=1,...,n s.t. β̄2 = limk→∞

1
n
∑n

i=1 β
2
i

corrupted by i.i.d. Gaussian noise of variance σ2
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Does the TV approximator correctly estimate the first change-point as
p increases?
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Consistency of the unweighted TV approximator

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑
i=1

‖Ui+1,• − Ui,•‖ ≤ µ

Theorem
The unweighted TV approximator finds the correct change-point with
probability tending to 1 (resp. 0) as n→ +∞ if σ2 < σ̃2

α (resp.
σ2 > σ̃2

α), where

σ̃2
α = pβ̄2

(1− α)2(α− 1
2p )

α− 1
2 −

1
2p

.

correct estimation on [pε,p(1− ε)] with ε =
√

σ2

2pβ̄2 + o(p−1/2) .

wrong estimation near the boundaries
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Consistency of the weighted TV approximator

min
U∈Rp×n

‖Y − U ‖2 such that
p−1∑
i=1

wi‖Ui+1,• − Ui,•‖ ≤ µ

Theorem

The weighted TV approximator with weights

∀i ∈ [1,p − 1] , wi =

√
i(p − i)

p

correctly finds the first change-point with probability tending to 1 as
n→ +∞.

we see the benefit of increasing n
we see the benefit of adding weights to the TV penalty
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Proof sketch

The first change-point î found by TV approximator maximizes
Fi = ‖ ĉi,• ‖2, where

ĉ = X̄>Ȳ = X̄>X̄β∗ + X̄>W .

ĉ is Gaussian, and Fi is follows a non-central χ2 distribution with

Gi =
EFi

p
=

i(p − i)
pw2

i
σ2 +

β̄2

w2
i w2

u p2
×

{
i2 (p − u)2 if i ≤ u ,
u2 (p − i)2 otherwise.

We then just check when Gu = maxi Gi
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Consistent estimation of more change-points?
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p = 100, k = 10, β̄2 = 1, σ2 ∈ {0.05; 0.2; 1}
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Outline

1 Motivations

2 Feature selection

3 Issues in gene selection from expression data

4 Issues in gene network inference

5 Finding multiple change-points in a single profile

6 Finding multiple change-points shared by many signals

7 Supervised classification of genomic profiles

8 Learning molecular classifiers with network information

9 Conclusion
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The problem
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x1, . . . , xn ∈ Rp the n profiles of length p
y1, . . . , yn ∈ [−1,1] the labels
We want to learn a function f : Rp → [−1,1]
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Prior knowledge

Sparsity : not all positions should be discriminative, and we want
to identify the predictive region (presence of oncogenes or tumor
suppressor genes?)
Piecewise constant : within a selected region, all probes should
contribute equally
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Fused Lasso signal approximator (Tibshirani et al.,
2005)

min
β∈Rp

p∑
i=1

(yi − βi)
2 + λ1

p∑
i=1

|βi |+ λ2

p−1∑
i=1

|βi+1 − βi | .

First term leads to sparse solutions
Second term leads to piecewise constant solutions
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Fused lasso for supervised classification (Rapaport et
al., 2008)

min
β∈Rp

n∑
i=1

`
(

yi , β
>xi

)
+ λ1

p∑
i=1

|βi |+ λ2

p−1∑
i=1

|βi+1 − βi | .

where ` is, e.g., the hinge loss `(y , t) = max(1− yt ,0).

Implementation
When ` is the hinge loss (fused SVM), this is a linear program ->
up to p = 103 ∼ 104

When ` is convex and smooth (logistic, quadratic), efficient
implementation with proximal methods -> up to p = 108 ∼ 109
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Example: predicting metastasis in melanoma
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Molecular diagnosis / prognosis / theragnosis
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Gene networks
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Gene networks and expression data

Motivation
Basic biological functions usually involve the coordinated action of
several proteins:

Formation of protein complexes
Activation of metabolic, signalling or regulatory pathways

Many pathways and protein-protein interactions are already known
Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge

J.P Vert (ParisTech) Feature selection Paris 7 Point de vue 77 / 100



Graph-based penalty

min
β

R(β) + λΩG(β)

Hypothesis
We would like to design penalties ΩG(β) to promote one of the
following hypothesis:

Hypothesis 1: genes near each other on the graph should have
similar weights (but we do not try to select only a few genes), i.e.,
the classifier should be smooth on the graph
Hypothesis 2: genes selected in the signature should be
connected to each other, or be in a few known functional groups,
without necessarily having similar weights.
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Graph based penalty

Prior hypothesis
Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)

Ωspectral(β) =
∑
i∼j

(βi − βj)
2 ,

min
β∈Rp

R(β) + λ
∑
i∼j

(βi − βj)
2 .
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Graph Laplacian

Definition
The Laplacian of the graph is the matrix L = D − A.

1

2

3

4

5

L = D − A =


1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 1 1
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Spectral penalty as a kernel

Theorem
The function f (x) = β>x where b is solution of

min
β∈Rp

1
n

n∑
i=1

l
(
β>xi , yi

)
+ λ

∑
i∼j

(
βi − βj

)2

is equal to g(x) = γ>Φ(x) where γ is solution of

min
γ∈Rp

1
n

n∑
i=1

l
(
γ>Φ(xi), yi

)
+ λγ>γ ,

and where
Φ(x)>Φ(x ′) = x>KGx ′

for KG = L∗, the pseudo-inverse of the graph Laplacian.
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ClassifiersRapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8
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Classifier
Spectral analysis of gene expression profiles using gene networks

 a)  b)
Fig. 5. Theglycolysis/gluconeogenesis pathways ofKEGGwithmapped coefficients of the decision function obtained by applying a customary

linear SVM (a) and using high-frequency eigenvalue attenuation (b). The pathways are mutually exclusive in a cell, as clearly highlighted by

our algorithm.

or under-expression of individual genes, which is the cost to

pay to obtain instead an interpretation in terms of more glo-

bal pathways. Constraining the classifier to rely on just a few

genes would have a similar effect of reducing the complexity

of the problem,butwould lead to amoredifficult interpretation

in terms of pathways.

An advantage of our approach over other pathway-based

clustering methods is that we consider the network modules

that naturally appear from spectral analysis rather than a histo-

rically defined separation of the network into pathways. Thus,

pathways cross-talking is taken into account, which is diffi-

cult to do using other approaches. It can however be noticed

that the implicit decomposition into pathways that we obtain

is biased by the very incomplete knowledge of the network

and that certain regions of the network are better understood,

leading to a higher connection concentration.

Like most approaches aiming at comparing expression data

with gene networks such as KEGG, the scope of this work

is limited by two important constraints. First the gene net-

work we use is only a convenient but rough approximation to

describe complex biochemical processes; second, the trans-

criptional analysis of a sample can not give any information

regarding post-transcriptional regulation and modifications.

Nevertheless, we believe that our basic assumptions remain

valid, in that we assume that the expression of the genes

belonging to the same metabolic pathways module are coor-

dinately regulated. Our interpretation of the results supports

this assumption.

Another important caveat is that we simplify the network

description as an undirected graph of interactions. Although

this would seem to be relevant for simplifying the descrip-

tion of metabolic networks, real gene regulation networks are

influenced by the direction, sign and importance of the interac-

tion. Although the incorporationof weights into the Laplacian

(equation 1) is straightforward and allows the extension of the

approach to weighted undirected graphs, the incorporation

of directions and signs to represent signalling or regulatory

pathways requires more work but could lead to important

advances for the interpretation of microarray data in cancer

studies, for example.
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Other penalties with kernels

Φ(x)>Φ(x ′) = x>KGx ′

with:
KG = (c + L)−1 leads to

Ω(β) = c
p∑

i=1

β2
i +

∑
i∼j

(
βi − βj

)2
.

The diffusion kernel:

KG = expM(−2tL) .

penalizes high frequencies of β in the Fourier domain.
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Other penalties without kernels

Gene selection + Piecewise constant on the graph

Ω(β) =
∑
i∼j

∣∣βi − βj
∣∣+

p∑
i=1

|βi |

Gene selection + smooth on the graph

Ω(β) =
∑
i∼j

(
βi − βj

)2
+

p∑
i=1

|βi |
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How to select jointly genes belonging to predefined
pathways?
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)
If groups of covariates are likely to be selected together, the
`1/`2-norm induces sparse solutions at the group level:

Ωgroup(w) =
∑

g

‖wg‖2

Ω(w1,w2,w3) = ‖(w1,w2)‖2+‖w3‖2
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What if a gene belongs to several groups?

Issue of using the group-lasso
Ωgroup(w) =

∑
g ‖wg‖2 sets groups to 0.

One variable is selected⇔ all the groups to which it belongs are
selected.

IGF selection⇒ selection of
unwanted groups

⇒
‖wg1‖2=‖wg3‖2=0

Removal of any group
containing a gene⇒ the
weight of the gene is 0.
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Overlap norm (Jacob et al., 2009)

An idea
Introduce latent variables vg :


min
w ,v

L(w) + λ
∑
g∈G
‖vg‖2

w =
∑

g∈G vg

supp
(
vg
)
⊆ g.

Properties
Resulting support is a union of groups in G.
Possible to select one variable without selecting all the groups
containing it.
Equivalent to group lasso when there is no overlap
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A new norm

Overlap norm
min
w ,v

L(w) + λ
∑
g∈G
‖vg‖2

w =
∑

g∈G vg

supp
(
vg
)
⊆ g.

= min
w

L(w) + λΩoverlap(w)

with

Ωoverlap(w)
∆
=


min

v

∑
g∈G
‖vg‖2

w =
∑

g∈G vg

supp
(
vg
)
⊆ g.

(∗)

Property
Ωoverlap(w) is a norm of w .
Ωoverlap(.) associates to w a specific (not necessarily unique)
decomposition (vg)g∈G which is the argmin of (∗).
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Overlap and group unity balls

Balls for ΩG
group (·) (middle) and ΩG

overlap (·) (right) for the groups
G = {{1,2}, {2,3}} where w2 is represented as the vertical coordinate. Left:

group-lasso (G = {{1,2}, {3}}), for comparison.
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Theoretical results

Consistency in group support (Jacob et al., 2009)
Let w̄ be the true parameter vector.
Assume that there exists a unique decomposition v̄g such that
w̄ =

∑
g v̄g and ΩGoverlap (w̄) =

∑
‖v̄g‖2.

Consider the regularized empirical risk minimization problem
L(w) + λΩGoverlap (w).

Then
under appropriate mutual incoherence conditions on X ,
as n→∞,
with very high probability,

the optimal solution ŵ admits a unique decomposition (v̂g)g∈G such
that {

g ∈ G|v̂g 6= 0
}

=
{

g ∈ G|v̄g 6= 0
}
.
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}

=
{

g ∈ G|v̄g 6= 0
}
.
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Experiments

Synthetic data: overlapping groups
10 groups of 10 variables with 2 variables of overlap between two
successive groups :{1, . . . ,10}, {9, . . . ,18}, . . . , {73, . . . ,82}.
Support: union of 4th and 5th groups.
Learn from 100 training points.

Frequency of selection of each variable with the lasso (left) and ΩG
overlap (.)

(middle), comparison of the RMSE of both methods (right).
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Graph lasso

Two solutions

Ωintersection(β) =
∑
i∼j

√
β2

i + β2
j ,

Ωunion(β) = sup
α∈Rp:∀i∼j,‖α2

i +α2
j ‖≤1

α>β .
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Graph lasso vs kernel on graph

Graph lasso:

Ωgraph lasso(w) =
∑
i∼j

√
w2

i + w2
j .

constrains the sparsity, not the values
Graph kernel

Ωgraph kernel(w) =
∑
i∼j

(wi − wj)
2 .

constrains the values (smoothness), not the sparsity
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Preliminary results

Breast cancer data
Gene expression data for 8,141 genes in 295 breast cancer
tumors.
Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD `1 ΩG
OVERLAP (.)

ERROR 0.38± 0.04 0.36± 0.03
MEAN ] PATH. 130 30

Graph on the genes.

METHOD `1 Ωgraph(.)
ERROR 0.39± 0.04 0.36± 0.01
AV. SIZE C.C. 1.03 1.30
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Lasso signature
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Graph Lasso signature

J.P Vert (ParisTech) Feature selection Paris 7 Point de vue 98 / 100



Outline

1 Motivations

2 Feature selection

3 Issues in gene selection from expression data

4 Issues in gene network inference

5 Finding multiple change-points in a single profile

6 Finding multiple change-points shared by many signals

7 Supervised classification of genomic profiles

8 Learning molecular classifiers with network information

9 Conclusion

J.P Vert (ParisTech) Feature selection Paris 7 Point de vue 99 / 100



Conclusions

Feature / pattern selection in high dimension is central for many
applications
People excited about embedded methods (convex optimization),
ensemble methods... but many disappointing results when tested
on real data

Filter methods not so bad
Ensemble learning useful?

Need for more theory to explain practical observations, suggest
new methods
Structured sparsity / pattern discovery is a promising direction
Need to adjust the difficulty of the inference problem to the data
available
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