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Motivations

Feature selection

Issues in gene selection from expression data

Issues in gene network inference

Finding multiple change-points in a single profile
Finding multiple change-points shared by many signals

Supervised classification of genomic profiles

Learning molecular classifiers with network information

@ Conclusion
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ﬂ Motivations
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Chromosomic aberrations in cancer

Chromosome
cn
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Comparative Genomic Hybridization (CGH)
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Jain et al. Genome research 2002 12:325-332
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Can we detect frequent breakpoints?
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A collection of bladder tumour copy number profiles.
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Can we detect discriminative patterns?
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Aggressive (left) vs non-aggressive (right) melanoma.
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DNA — RNA — protein
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@ CGH shows the (static) DNA

@ Cancer cells have also abnormal (dynamic) gene expression (=
transcription)
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Tissue profiling with DNA chips

Prepare ¢cDNA'Probe’ Prepare'Microarray/

@ Gene expression measures for more than 10k genes

@ Measured typically on less than 100 samples of two (or more)
different classes (e.g., different tumors)
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Tissue classification from microarray data
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Can we detect predictive molecular signatures?

Ratio (log scalel

A Gene-Expression Profiling

1.0

Good signature

Poar signature

P<0.001

Probability of Remaining
Metastasis-free

2 4 6 8 10 12
Years

No AT RISk

Reporter Genes Good signature 60 57 54 45 31 22 12
Poorsignature §1 72 88 41 28 17 8

J.P Vert (ParisTe ature select

B St Gallen Criteria

1.0
o
E 08
R Low risk
EE
::‘,;_, 0.6
58 High risk
B
£ 04
3
H
0.2
0.0
0 2 4 8 8 10 12
Years
No.aTRist
Low risk 2 22 2 17 8 5 2
High risk 128 107 88 69 48 B4 19

Paris 7 Point de vue 11/100



Gene expression regulation

gene requlatory sequences
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Gene regulatory network
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Gene regulatory network (GRN) of E. coli
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Can we reconstruct the GRN from expression data?
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@ Many problems...

@ Classification accuracy is not all, interpretation is necessary
@ Common topic: detect predictive variables / patterns

@ Need for efficient and scalable algorithms
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e Feature selection
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Classification and regression

@ X the space of patterns (typically, X = RP)

@ ) the space of response or labels
o Classification or pattern recognition: Y = {—1,1}
o Regression: Y =R

@ S={(x1,%1),...,(Xn, yn)} atraining set in (X x Y)"

@ Afunction 7 : X — ) to predict the output associated to any new
pattern x € X by f(x)

v
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Feature selection

Estimate a function f(x) that only depends on a subset S C [1, p] of
the variables.
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Feature selection

Estimate a function f(x) that only depends on a subset S C [1, p] of
the variables.

Why?

@ Statistics: a way to control the complexity of the search space,
can improve accuracy by reducing the estimation error. Especially
relevant in high dimension, and if we believe that there exist good
sparse models.

@ Interpretation: the selected variables in S are interesting to
understand the physical/biological structure of the problem, and
suggest further investigations

@ Practical: a small set S can lead to cheap implementations of the
predictor, e.g., dedicated chips for prognosis.
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Best subset selection

@ In best subset selection, we must solve the problem:
min R(f3) st || Bllo <k

fork =1,...,p, and R is an empirical risk.

@ The state-of-the-art is branch-and-bound optimization, known as
leaps and bound for least squares (Furnival and Wilson, 1974).

@ This is usually a NP-hard problem, feasible for p as large as 30 or
40
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Efficient feature selection

To work with more variables, we must use different methods. The
state-of-the-art is split among

@ Filter methods : the predictors are preprocessed and ranked from
the most relevant to the less relevant. The subsets are then
obtained from this list, starting from the top.

© Wrapper method: here the feature selection is iterative, and uses
a learning algorithm in the inner loop

© Embedded methods : here the feature selection is part of the
learning algorithm itself

Additionnally, ensemble feature learning has been proposed as a
useful meta-method for feature selection.
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Filter methods

@ Associate a score S(i) to each feature i/, then rank the features by
decreasing score.
@ Many scores / criteria can be used
e Loss of the ERM trained on a single feature

o Statistical tests (Fisher, T-test)
e Other performance criteria of the ERM restricted to a single feature

(AUG, ..))
e Information theoretical criteria (mutual information...)
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Filter methods

@ Associate a score S(i) to each feature i/, then rank the features by
decreasing score.
@ Many scores / criteria can be used
e Loss of the ERM trained on a single feature

o Statistical tests (Fisher, T-test)
e Other performance criteria of the ERM restricted to a single feature

(AUG, ..))
e Information theoretical criteria (mutual information...)

v

Simple, scalable, good empirical success
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Filter methods

@ Associate a score S(i) to each feature i/, then rank the features by
decreasing score.
@ Many scores / criteria can be used
e Loss of the ERM trained on a single feature

o Statistical tests (Fisher, T-test)
e Other performance criteria of the ERM restricted to a single feature

(AUG, ..))
e Information theoretical criteria (mutual information...)

v

Simple, scalable, good empirical success

@ Selection of redundant features
@ Some variables useless alone can become useful together
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Wrapper methods

@ A greedy approach to
min R"(fs) st. [[Bllo <k

@ For a given set of seleted features, we know how to minimize
R"(f)

@ We iteratively try to find a good set of features, by
adding/removing features which contribute most to decrease the
risk (using ERM as an internal loop)
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Two flavors of wrapper methods

Forward stepwise selection
@ Start from no features

@ Sequentially add into the model the feature that most improves the
fit
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Two flavors of wrapper methods

Forward stepwise selection

@ Start from no features

@ Sequentially add into the model the feature that most improves the
fit

Backward stepwise selection (if n>p)

@ Start from all features

@ Sequentially removes from the model the feature that least
degrades the fit
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Two flavors of wrapper methods
Forward stepwise selection

@ Start from no features
@ Sequentially add into the model the feature that most improves the
fit

Backward stepwise selection (if n>p)

@ Start from all features
@ Sequentially removes from the model the feature that least
degrades the fit

Other variants

Hybrid stepwise selection strategies that consider both forward and
backward moves at each stage, and make the "best" move

.
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Embedded methods

@ Decision trees
@ Sparsity-inducing convex penalties, e.g.

min R(f3) st |G| <k
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Ensemble feature selection

@ Fort=1,..., T, randomly subsample samples and/or variables
@ For each t, select a subset of variables S;
© Aggregate all S; to obtain the final list of variables
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Ensemble feature selection

@ Fort=1,..., T, randomly subsample samples and/or variables
@ For each t, select a subset of variables S;
© Aggregate all S; to obtain the final list of variables

Examples:
@ Random forests
@ Stability selection
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@ A well-studied problem, with many solutions that vary in
computational complexity and theoretical guarantees

@ Feature selection in the "small n large p" setting has been studied
a lot recently, mostly for embedded methods (lasso...) and largely
motivated by applications in biology

@ Ensemble feature selection has been put forward recently (stability
selection, bolasso...), but limited theoretical results and validations

@ The theoretical validity of different methods on real data is often
hard to check
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© Issues in gene selection from expression data
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Prognostic molecular signatures
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Prognostic molecular signatures

Gene expression profiling predicts
clinical outcome of breast cancer

Laura J. van 't Veer*{, Hongyue Dal+ 1, Marc J. van de Vijver*,

B ot S Homersts Gene-expression profiles to predict distant metastasis of
 Divsionsof DisgrosticOnslogy Radithrsy i Mok cacinogncs. |yPh-node-negative primary breast cancer
and il Gen ite,

Yixin Wang, Jan G M Kijan, Yi Zhang, Anieta M Sieuwerts, Maxime P Laak, Fei Yang, Dt Talantov, Mieke Timmermans,

1d, Washi 9803 i
faskingion 98034 arian £ Meijer-van Gelder, ack Yu, Tim Jatkoe, Els M | Berns, David Atins, John A Foekens

@ Two signatures in clinical trial for breast cancer (70 and 76 genes)
@ Only 3 genes in common... Why?

o Different cohorts of patients?

o Different technologies and experimental protocols?

o Different algorithm for feature selection?
o Other?
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Unstability of molecular signatures

@ Wang dataset: n = 286, p = 8141

@ Pearson correlation with the output on 2 random subsamples of
143 samples:
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Comparison of feature selection methods
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Lessons learned...

@ Difficult problem!

@ Unstability mostly due to statistical issues

@ Filter methods (t-test) current method of choice
@ Ensemble feature selection not really useful
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e Issues in gene network inference
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The problem

mA annVP* A -
oR dnm\ rm }-
& N\ m. o -
Alpha _cdelS cde28 Elu {rpoE}—__» .m‘ mudE
e e e v-ipdhl
lﬁ wﬁu
h (A
MCM atoC [Tacr™ “ X \/‘ rob A 4 .
ar® mar]

an bl A’ )j’“ Lack ﬁi‘ ‘ﬁ;; J—\ﬁ

\ =" e g
L — é\'¥*

SOR o mic

poN| =l

lcLe2 ainG [5= ) SR
sic1 qD_an\ “‘"l}“\u&
MAT

>{tdcA|

= nac 7

=hup

SR ~—{fruR

[alpAT
blagdymxc 4 \
1

=i
vesh] LA] /)

= Histones IrhA

Predict the GRN from a matrix X € R"*P of expression data.
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Predict regulations between "dependent” genes

If Aregulates B, we expect their expressions to be dependent across
experiments
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Detect the dependency by various measures, e.g., Euclidean distance,
correlation, mutual information...
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Validation

Application: E coli regulatory network : 154 TF targeting 1164 genes
through 3293 regulations
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GRN inference by feature selection

@ The dynamic equation of the mRNA concentration of a gene is of
the form: X

—r = fX.R)

where R represent the set of concentrations of transcription
factors that regulate X.

@ At steady state, dX/dt =0 = f(X, R)
@ If we linearize f(X, R) = 0 we get linear relation of the form

X=> BX

ieR

@ This suggests to look for transcription factors whose expression is
sufficient to explain the expression of X across different
experiments.
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Validation
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RF (Huynh-Thu et al., 2010) and Lasso-+stability selection (Haury et
al., 2011) ranked 1st and 2nd at the 2010 DREAMS in silico network

inference challence
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Lessons learned...

@ Again, very difficult problem! (recall around 10% in the best
case...)

@ State-of-the-art express GRN network as feature selection
(perhaps not the best idea?)

@ Ensemble feature selection seems to work best
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e Finding multiple change-points in a single profile

J.P Vert (ParisTech) Feature selection Paris 7 Point de vue 41/100



The problem

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

@ Let Y € RP the signal
@ We want to find a piecewise constant approximation U € RP with
at most k change-points.
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The problem
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@ We want to find a piecewise constant approximation U € RP with

at most k change-points.
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An optimal solution?

@ We can define an "optimal" piecewise constant approximation
U € RP as the solution of

p—1
min || Y — U|[® such that > (Uit # Up) < k

i=1
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An optimal solution?

@ We can define an "optimal" piecewise constant approximation
U € RP as the solution of

p—1
min || Y — U|[® such that > (Uit # Up) < k

i=1

@ This is an optimization problem over the () partitions...
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An optimal solution?

@ We can define an "optimal" piecewise constant approximation
U € RP as the solution of

p—1
min || Y — U|[® such that > (Uit # Up) < k

i=1

@ This is an optimization problem over the () partitions...
@ Dynamic programming finds the solution in O(p?k) in time and
O(p?) in memory
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An optimal solution?

@ We can define an "optimal" piecewise constant approximation
U € RP as the solution of

p—1
min || Y — U|[® such that > (Uit # Up) < k

i=1

@ This is an optimization problem over the () partitions...

@ Dynamic programming finds the solution in O(p?k) in time and
O(p?) in memory

@ But: does not scale to p = 108 ~ 10°...
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Promoting sparsity with the ¢ penalty

The ¢4 penalty (Tibshirani, 1996; Chen et al., 1998)

If R(3) is convex and "smooth", the solution of

m|n R(5 +>\Z|ﬁ,

is usually sparse.

Geometric interpretation with p = 2
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Efficienty computation of the regularization path

p
B 1Y = XBI" 2 ) 13 (1)
@ No explicit solution, but this is just a quadratic program.

@ LARS (Efron et al., 2004) provides a fast algorithm to compute the
solution for all X’s simultaneously (regularization path)
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Promoting piecewise constant profiles penalty

The total variation / variable fusion penalty

If R(3) is convex and "smooth", the solution of

mlnR +)\Z\ﬁ,+1 Bil

is usually piecewise constant (Rudin et al., 1992; Land and Friedman,
1996).

Proof:
@ Change of variable u; = i1 — Bi, Uy = (1
@ We obtain a Lasso problem in u € RP~!
@ U sparse means 3 piecewise constant
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TV signal approximator

p—1
in|Y-p3]|? h th 1= Gi] <
min ||Y'— 3 |* such that ;mm Bil < p

Adding additional constraints does not change the change-points:
e > 7 .| 3| < v (Tibshirani et al., 2005; Tibshirani and Wang, 2008)
e Y P . 32 < v (Mairal et al. 2010)
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Solving TV signal approximator

p—1
min || Y — 3||° such that g — Bl <
min || Y- 5] ;wm Bil <

@ QP with sparse linear constraints in O(p?) -> 135 min for p = 10°
(Tibshirani and Wang, 2008)

@ Coordinate descent-like method O(p)? -> 3s s for p = 10°
(Friedman et al., 2007)

@ For all  with the LARS in O(pK) (Harchaoui and Levy-Leduc,
2008)

@ Forall 1 in O(pIn p) (Hoefling, 2009)
@ For the first K change-points in O(pIn K) (Bleakley and V., 2010)
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Greedy dichotomic segmentation

Require: k number of intervals, (/) gain function to split an interval /
into /L(/)7 /,q(l)
. I represents the interval [1, p]
: P ={b}
: fori=11to k do
I* — argmax-~y (I*)
lep
P —P\{I'}
P—PU{l(I).lr(I)}
: end for
return P

A WON =

o N o
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From greedy segmentation to TV approximator
TV approximator is a greedy dichotomic segmentation. l
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From greedy segmentation to TV approximator

TV approximator is a greedy dichotomic segmentation. \

Consequences:
@ Good: very fast methods for TV approximator

@ Good: we can analyze this greedy method by expressing the
solution as the global minimum of an objective function

@ Bad: TV approximator is no more than a greedy method...
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Technical details

@ Represent an interval [u + 1, v] by a quadruplet | = (u, v, o4, 0v)
where 0,0, € {—1,0,1}
o LletF, =Y, ,Ys,andforu<k<v,oce{-1,1}

oAx/2 ifoy,=0,#0,
fi(k,o) = .
Ax/ (o0 — Bx) otherwise ,
where
Ak:—Fk+(V_k)F“+(k_U)FV,
v—u
B (v—-K)ou+(k—u)oy
k = .

vV—u
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Technical details (cont.)

Then the functions ~(/), I.(/) and Ig(/) are respectively given by:

= fi(k
7() kG[U+1,VrD%?§'E{—1,1} I( 70)’

(k*,0") = argmax fi(k,o),
kelu+1,v—1],0e{-1,1}
IL(/) = (U’ k*7UU7U*) )
Ir(h) = (k*,v,0% 0y) .
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Proof (sketch)

@ Homotopy method (LARS)

@ Similar to Harchaoui and Levy-Leduc (2008), removing
superfluous computations

@ The next breakpoint in a segment, and the p where it appears, is
independent of events in other segments
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Speed trial : 2 s. for K = 100, p = 107
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e Finding multiple change-points shared by many signals
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The problem

L L L L L
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L L L
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L L L L L L L L L
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@ Let Y € RP*" the nsignals of length p
@ We want to find a piecewise constant approximation U € RP*"
with at most k change-points.
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"Optimal" segmentation by dynamic programming

@ Define the "optimal" piecewise constant approximation U € RP*"
of Y as the solution of

p—1
min ||Y — U|[? such that 1(Uqe # U) < k
UGRPX"H | 12_; ( i+1,0 7 Ui, ) =

@ DP finds the solution in O(p?kn) in time and O(p?) in memory
@ But: does not scale to p = 108 ~ 10°...
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the
¢4 /¢>-norm induces sparse solutions at the group level.

Qgroup Z I WQHZ

Q(wy, wa, wz) = [|(wq, we)l|2 + [|wsl|2

— /w2 2 /' w2
= W1—|—W2+ W3
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TV approximator for many signals

@ Replace

p—1
min | Y—U|? suchthat > 1(Us1e# Uy.) <k

yerp® P
by
p—1
min ||Y — U]|[? such that Wil|Ui 1 e — Ul <
Jmin | | ; ilUit1,0 = Uell < 1

e Practice: can we solve it efficiently?

e Theory: does it benefit from increasing p (for n fixed)?
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TV approximator as a group Lasso problem

@ Make the change of variables:

ﬁ,’7.:W,'(U,'+1,.—U,",) fOFi:1,...,p—1.
@ TV approximator is then equivalent to the following group Lasso

problem (Yuan and Lin, 2006):

p—1
min || Y= X3+ X ol
ﬂeR(P—‘)X"H Bl ;Hﬁ/, I

where Y is the centered signal matrix and X is a particular
(p—1) x (p— 1) design matrix.

J.P Vert (ParisTech) Feature selection Paris 7 Point de vue 60 /100



TV approximator implementation

p—1

min ||V = X3+ 2> [ Bie

—1
,BGR(P )xn i—1

The TV approximator can be solved efficiently:

@ approximately with the group LARS in O(npk) in time and O(np)
in memory

@ exactly with a block coordinate descent + active set method in
O(np) in memory
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Proof: computational tricks...

Although Xis (p — 1) x (p — 1):
@ Forany R € RP*", we can compute C = X' R in O(np) operations
and memory

@ For any two subset of indices A= (ay,...,a),) and
B = (by,...,bg) in[1,p— 1], we can compute X, , X, g in
O(|A[|B]) in time and memory

@ Forany A= (a1, e a|A|), set of distinct indices with
1<a<...<apy <p-1,andforany |Al x nmatrix R, we can

_ _ —1
compute C = (X.TAX.,A> R in O(|A|n) in time and memory
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Consistency for a single change-point

Suppose a single change-point:
@ at position u = ap

@ with increments (3;)i—1, p S.t. % = limy_oo 2 377 32

@ corrupted by i.i.d. Gaussian noise of variance ¢

o 100 200 300 400 500 600 700 800 900 1000

o 100 200 300 400 500 600 700 800 900 1000

] 100 200 40 500 600 700 800 900 1000

Does the TV approximator correctly estimate the first change-point as

p increases?
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Consistency of the unweighted TV approximator

p—1
min [|Y—U|? suchthat > [[Up1.e— Ul < pe
i=1

UeRpxn

Theorem
The unweighted TV approximator finds the correct change-point with
probability tending to 1 (resp. 0) as n — +oo if 7® < 52 (resp.

02 > 52), where

i (1 —a)*(a—z)
55 = pB? —
o — 5 — Z) )
@ correct estimation on [pe, p(1 — €)] with € = 2;;2 +o(p~1/2).

@ wrong estimation near the boundaries
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Consistency of the weighted TV approximator

p—1
min ||Y — U|[? such that Wi||[Uis1.e — Uioll <
UeRPX”H H ’:Z1 IH i+1, i, || S M
Theorem

The weighted TV approximator with weights
Vie[t,p—1], w= @

correctly finds the first change-point with probability tending to 1 as
n — +oo.

@ we see the benefit of increasing n
@ we see the benefit of adding weights to the TV penalty
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Proof sketch

@ The first change-point i found by TV approximator maximizes
Fi = & | where

c=X"Y=X"Xpr+X"W.

@ ¢is Gaussian, and F; is follows a non-central x? distribution with

 i(p— | 72 D N2 e
G- Efi _p—1) » 3 x{' (p—u)? ifi<u,

-+ . .
P pw? w2wip? ~ | w2 (p—i)® otherwise.

@ We then just check when G, = max; G;
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Consistent estimation of more change-points?
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e Supervised classification of genomic profiles
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The problem

R | "
MMMWWWW { B D W i
) 500 1000 1500 2000 2500 a 500 1000 1500 2000 2500
: . —
h 500 1000 1500 2000 2 500 1000 1500 2000
2 ok o '8 A \u A
: bt iy
kL Al °f
T e

@ Xq,...,Xn € RP the n profiles of length p
@ Yi,...,¥n € [—1,1] the labels
@ We want to learn a function f : R° — [—1,1]
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Prior knowledge

@ Sparsity : not all positions should be discriminative, and we want
to identify the predictive region (presence of oncogenes or tumor
suppressor genes?)

@ Piecewise constant : within a selected region, all probes should
contribute equally

. l "
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Fused Lasso signal approximator (Tibshirani et al.,

2005)

p P p—1
Bn;;lgj (Vi — Bi)? + M Zlﬂil +Azz|ﬁi+1 - Bil -
i— i—1 i—1

@ First term leads to sparse solutions
@ Second term leads to piecewise constant solutions

Sige
2 1 0 1 2 3
=]
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Fused lasso for supervised classification (Rapaport et

al., 2008)

n p p—1
] T

: , 14 A 1 — 3.
[%Q)i_/(yl,ﬂ x,)+A1§w+ 2§W:+1 Bi

where ¢ is, e.g., the hinge loss ¢(y, t) = max(1 — yt,0).
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Fused lasso for supervised classification (Rapaport et

al., 2008)

n p p—1
] T

, , 1+ A i1 — Bl
f%i_/(y,,ﬁ x,)+A1§w+ zgwﬁm Bi

where ¢ is, e.g., the hinge loss ¢(y, t) = max(1 — yt,0).

Implementation

@ When 7 is the hinge loss (fused SVM), this is a linear program ->
up to p=10% ~ 10*

@ When 7 is convex and smooth (logistic, quadratic), efficient
implementation with proximal methods -> up to p = 108 ~ 10°
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Example: predicting metastasis in melanoma
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e Learning molecular classifiers with network information
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Molecular diagnosis / prognosis / theragnosis
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Gene networks
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Gene networks and expression data

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways

@ Many pathways and protein-protein interactions are already known

@ Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge
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Graph-based penalty

min R(5) + X2a(0)

Hypothesis

We would like to design penalties Qg(5) to promote one of the
following hypothesis:
@ Hypothesis 1: genes near each other on the graph should have
similar weights (but we do not try to select only a few genes), i.e.,
the classifier should be smooth on the graph

@ Hypothesis 2: genes selected in the signature should be
connected to each other, or be in a few known functional groups,
without necessarily having similar weights.
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Graph based penalty

Prior hypothesis
Genes near each other on the graph should have similar weigths.
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Graph based penalty
Prior hypothesis
Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)
Qspectral(ﬁ) - Z(ﬁ/ - ﬁ/) )

inj
min R(3) + ;j(ﬂi — 6.
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Graph Laplacian

Definition

The Laplacian of the graph is the matrix L = D — A.

1
3 5
4
2
1. 0 -1 0 0
0 1 -1 0 0
L=D-A=| -1 -1 3 -1 0
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Spectral penalty as a kernel

Theorem

The function f(x) = 3" x where b is solution of

ﬂrghg,;lzl(ﬁTx,,y,) +A> (6

IN]

is equal to g(x) = v ®(x) where 7 is solution of

;2;15,,—72/( To(x)), y,)+M Y5

and where
d(x)To(x') = xT Kgx'

for Kg = L*, the pseudo-inverse of the graph Laplacian.

v
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Classifiers
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Classifier
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Other penalties with kernels

d(x)To(x') = x" Kgx’
with:
@ Kg=(c+ L) 1leadsto

p
Qp)=cd B2 +> (5-8)°.
=1 i~j
@ The diffusion kernel:

Kg = expy(—2tL) .

penalizes high frequencies of 5 in the Fourier domain.
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Other penalties without kernels

@ Gene selection + Piecewise constant on the graph

QB)=>|8- 6,\+Z\B,

INj

@ Gene selection + smooth on the graph

QB) =>_ (8- 8) +Z!6,

IN_[
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How to select jointly genes belonging to predefined

pathways?
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)

If groups of covariates are likely to be selected together, the
¢4 /¢>-norm induces sparse solutions at the group level.

Qgroup Z I WQHZ

Q(wy, wo, W) = |[(wq, wa) |2+ wal|2
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What if a gene belongs to several groups?

Issue of using the group-lasso
® Qgroup(W) = >4 || Wgl|2 sets groups to 0.
@ One variable is selected < all the groups to which it belongs are

selected.
G1 O
Cell
cycle
= §
G2 G2
IGF, lwg llo=[Iwgzll2=0 -
%%
Qoo\q\o\\ /”5,;"% G3 O
S o“s 7
? o,
%

Removal of any group
containing a gene = the
weight of the gene is 0.
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Overlap norm (Jacob et al., 2009)

Introduce latent variables vg:

o |
minL(w) + 2> [vollz o= g
geg Lo

W = ]+ v2 +

W =23 geq Vo | |
ol M

supp (vg) € g- NI

Properties
@ Resulting support is a union of groups in G.

@ Possible to select one variable without selecting all the groups
containing it.
@ Equivalent to group lasso when there is no overlap
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A new norm

Overlap norm

mln L(w) + A |lvgll

geg
=min L(w) + \Q w
W = ZQGQ Vg W ( ) over/ap( )
supp (vg) € g. |
with v Z [vgll2
A 9€6
Qover/ap(W) =Y w= 3 o Vg (*)
g9

supp (vg) C g.

Property

@ Qoveriap(W) is a norm of w.

@ Quvenap(.) associates to w a specific (not necessarily unique)
decomposition (vg)geg Which is the argmin of (x).
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Overlap and group unity balls

Balls for QY

Sroup () (middle) and QF

overlap

(+) (right) for the groups
G = {{1,2},{2,3}} where w; is represented as the vertical coordinate. Left:
group-lasso (G = {{1,2}, {3}}), for comparison.
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Theoretical results

Consistency in group support (Jacob et al., 2009)
@ Let w be the true parameter vector.
@ Assume that there exists a unique decomposition v, such that
W =34 Vg and Q7 cap (W) = 3 [[Vgll2-
@ Consider the regularized empirical risk minimization problem
Lw) + 29 . (w).

overlap

v
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Theoretical results

Consistency in group support (Jacob et al., 2009)
@ Let w be the true parameter vector.

@ Assume that there exists a unique decomposition v, such that

W= Zg Vg and Qoverlap ( ) Z ” Vg||2
@ Consider the regularized empirical risk minimization problem

(W) + )‘Qoverlap (W)
Then
@ under appropriate mutual incoherence conditions on X,
@ as n — oo,
@ with very high probability,

the optimal solution w admits a unique decomposition (¥y)gecg such
that

{gegWg7£0}:{geg]Vg7£0}.

v
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Experiments

Synthetic data: overlapping groups

@ 10 groups of 10 variables with 2 variables of overlap between two
successive groups :{1,...,10},{9,...,18},...,{73,...,82}.

@ Support: union of 4th and 5th groups.

@ Learn from 100 training points.

10

I -
. —overlapping|
z lasso
x

RMSE
o v a0 ®

1 15 2
10g, (1) log,(A) log, o(n)

80

Frequency of selection of each variable with the lasso (left) and Qogver,ap ()

(middle), comparison of the RMSE of both methods (right).
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Graph lasso

Qim‘ersection(ﬁ) - Z \/ @2 + ﬁ'z )

i~f

Qunion(B) = sup OéTﬁ-

A 2 2
(XERP.VINLHQI ""O‘j [I<1

v
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Graph lasso vs kernel on graph

@ Graph lasso:
Qgraph lasso(W) = Z \ Wi2 + Wj2 :
i~j
constrains the sparsity, not the values

@ Graph kernel

Qgraph kernel(W) = Z(Wi - WI)2

i~of

constrains the values (smoothness), not the sparsity
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Preliminary results

Breast cancer data

@ Gene expression data for 8, 141 genes in 295 breast cancer
tumors.

@ Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD 2 Q erinr ()
ERROR 0.38+0.04 0.36+0.03
MEAN { PATH. 130 30

@ Graph on the genes.
METHOD 44 Qgrapn(-)
ERROR 0.39+0.04 0.36£0.01
Av. SIZE C.C. 1.03 1.30
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Lasso signature
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Graph Lasso signature
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@ Conclusion
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Conclusions

@ Feature / pattern selection in high dimension is central for many
applications
@ People excited about embedded methods (convex optimization),
ensemble methods... but many disappointing results when tested
on real data
o Filter methods not so bad
o Ensemble learning useful?
@ Need for more theory to explain practical observations, suggest
new methods

@ Structured sparsity / pattern discovery is a promising direction

@ Need to adjust the difficulty of the inference problem to the data
available
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