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Gene expression
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Gene expression regulation
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Gene regulatory network
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Gene regulatory network of E. coli
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Gene expression data
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Reconstruction of gene regulatory network from
expression data

Jean-Philippe Vert (ParisTech) Inference of biological networks 9 / 57



More networks...
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More data..

Gene expression measurements
Phylogenetic profiles
Location of proteins/enzymes in the cell
Structures...
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General gene network inference problem

Jean-Philippe Vert (ParisTech) Inference of biological networks 12 / 57



Outline

1 Introduction

2 De novo network inference

3 Supervised network inference: local models

4 Supervised network inference: global models

5 From local models to pairwise kernels

6 Conclusion

Jean-Philippe Vert (ParisTech) Inference of biological networks 13 / 57



De novo inference

The problem
Given data about the genes (eg, expression), infer the edges (eg,
regulations).

How?
Interactions are between "similar" genes?
Interactions are between "dependent" genes?
Interactions are between "predictive" genes?
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Predict interactions between "similar" genes

In most networks, connected genes are significantly more "similar"
than non-connected ones
Inference: connect genes whose similarity (eg, Euclidean distance
between profiles) is above a threshold
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Example: yeast metabolic network

769 proteins, 3702 metabolic edges
Inference: rank by decreasing similariy of expression, interactions,
localization, phylogenetic profiles
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Example: E coli regulatory network

154 TF targeting 1164 genes through 3293 regulations
Inference: rank by decreasing Euclidean distance between
expression profiles
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Predict regulations between "dependent" genes

Sometimes the expression of a TF and its target are not similar, but
correlated or dependent

We can therefore try to detect these dependencies to infer regulation.
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Measuring dependency

Pearson/Spearman correlation, mutual information (ARACNE, CLR...)
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Validation

Application: E coli regulatory network : 154 TF targeting 1164 genes
through 3293 regulations
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Predict regulations between "predictive" genes

The dynamic equation of the mRNA concentration of a gene is of
the form:

dX
dt

= f (X ,R)

where R represent the set of concentrations of transcription
factors that regulate X .
At steady state, dX/dt = 0 = f (X ,R)

If we linearize f (X ,R) = 0 we get linear relation of the form

X =
∑
i∈R

βiXi

This suggests to look for transcription factors whose expression is
sufficient to explain the expression of X across different
experiments.
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Predicting regulation by sparse regression

Treat each target in turn
Let Y the expression of a target, and X1, . . . ,Xp the expression of
all TFs. We look for a model

Y =

p∑
i=1

βiXi + noise

where β is sparse, i.e., only a few βi are non-zero
Examples:

GENIE: feature selection by random forest (Huynh-Thu et al., 2010)
Feature selection by Lasso + stability selection (Haury et al., 2011)

Both methods were ranked 1st and 2nd (out of 28) at the
DREAM5 in silico network inference challenge
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Summary on de novo network inference

Feature selection methods seem to be state-of-the-art
Performance remains low: recall below 10% for the best-known
network
How to infer the 90% of difficult interactions??

improve de novo methods
change the paradigm
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Motivations

In many cases, we already know quite a few regulations.
Can we use them, in addition to expression data, to predict
unknown regulations?
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Change of paradigm

New hypothesis: genes regulated by the same TF have similar
expression variations
Note that this is very different from de novo inference, where we
compare the expression profile of the gene to that of the TF
Caveats:

We need known interactions
We may not find completely different interactions from those we
know
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One-class learning approaches

For a given TF, let P ⊂ [1,n] be the set of genes known to be
regulated by it
From the expression profiles (Xi)i∈P , estimate a score s(X ) to
assess which expression profiles X are similar
Then classify the genes not in P by decreasing score
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Estimating the scoring function: examples
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From one-class to PU learning
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One class: given genes in P, estimate the function s(X )

PU learning: given genes in P and the set of unlabeled genes U,
estimate the scores s(Xj) for j ∈ U
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Why PU learning can be better than one-class learning
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PU learning in practice
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1 Train a classifier to discriminate P from U (eg, SVM or random
forest)

2 Rank genes in U by decreasing training score
3 Bagging PU discrimination can help (Mordelet and V., 2010)
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One-class vs PU learning

More in Fantine Mordelet’s PhD (2010)

Jean-Philippe Vert (ParisTech) Inference of biological networks 32 / 57



Supervised vs de novo inference
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Method Recall at 60% Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Application: predicted regulatory network (E. coli)
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Motivations

Local models require enough known targets of each TF. Can we
share information across TF?
For undirected networks (eg, PPI), how to reconcile local
predictions?
Idea: work directly in the space of pairs, to discriminate interacting
vs non-interacting pairs.
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Pattern recognition for pairs: basic issue

A pair can be connected (1) or not connected (-1)
From the known subgraph we can extract examples of connected
and non-connected pairs
However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Direct sum for ordered pairs?

Each individual protein is represented by a vector v ∈ Rp

How to represent a pair of proteins (u, v) by a vector
ψ(u, v) ∈ Rq?
A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

ψ(u, v) = u ⊕ v =

(
u
v

)
.

Problem: a linear function then becomes additive...

f (u, v) = w>ψ(u, v) = w>1 u + w>v .
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Direct product for ordered pairs

Alternatively, make the direct product, i.e., the p2-dimensional
vector whose entries are all products of entries of u by entries of
v :

ψ(u, v) = u ⊗ v

Problem: can get really large-dimensional...
Good news: inner product factorizes:

(u1 ⊗ v1)
> (u2 ⊗ v2) =

(
u>1 u2

)
×
(

v>1 v2

)
,

which is good for algorithms that use only inner products (SVM...):

KP ((u1, v1), (u2, v2)) = ψ(u1, v1)
>ψ(u2, v2) = K (u1,u2)K (v1, v2)
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Representing an unordered pair: TPPK

Often we want to work with unordered pairs, e.g., PPI network:

{u, v} = {(u, v), (v ,u)}

This suggest to symmetrize the representation of ordered pairs:

ψU({u, v}) = u ⊗ v + v ⊗ u

This leads to the symmetric tensor product pairwise kernel (TPPK)
(Ben-Hur and Noble, 2006):

KTPPK ({u1, v1} , {u2, v2}) = K (u1,u2)K (v1, v2)+K (u1, v2)K (v1,u2)
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Another representation: MLPK

Another symmetric representation:

ψ({u, v}) = (u − v)⊗2

Equivalently, train the SVM over pairs with the metric learning
pairwise kernel:

KMLPK ({u1, v1} , {u2, v2}) = ψ({u1, v1})>ψ({u2, v2})

= [K (u1,u2)− K (u1, v2)− K (v1,u2) + K (v1, v2)]
2 .

Theorem: A SVM with the MLPK kernel trained to discriminate
connected from non-connected pairs, solves a metric learning
problem (V. et al., 2007)
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Technical details

For two vectors u, v ∈ H let the metric:

dM(u, v) = (u − v)>M(u − v) .

Learn the metric so that points close to each other are connected?
We consider the problem:

min
M≥0

∑
i

l(ui , vi , yi) + λ||M||2Frobenius ,

where l is a hinge loss to enforce:

dM(ui , vi)

{
≤ 1− γ if(ui , vi)is connected ,
≥ 1 + γ otherwise.

SVM with MLPK kernel solve it without the constraint M ≥ 0
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Alternative: symmetrized local models for undirected
networks

The idea (Bleakley and V., 2007)
For each protein P, make a local model using known partners as
positive examples to estimate an interaction score sP(P ′) for any
candidate partner P ′

Symmetrize a posteriori: the interaction score of a candidate pair
P,P ′ is:

sP(P ′) + sP′(P)

+1

−1

?

?

?

+1

−1

−1
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Results: protein-protein interaction (yeast)
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Results: metabolic gene network (yeast)
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Motivation

In the case of unordered pairs {A,B}, pairwise kernels such as the
TPPK and local models look very different:

Local models seem to over-emphasize the asymmetry of the
relationships, but symmetrize the prediction a posteriori
Pairwise kernels symmetrize the data a priori and learn in the
space or unordered pairs

Can be clarify the links between these approaches, and perhaps
interpolate between them?
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Notations

A the set of individual proteins, endowed with a kernel KA
X = A2 the set of ordered pairs of the form x = (a,b) endowed
with a kernel KX (usually deduced from KA)
P the set of unordered pairs of the form p = {(a,b), (b,a)}
We want to learn over P from a set of labeled training pairs
(p1, y1), . . . , (pn, yn) ∈ P × {−1,1}
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Two strategies to learn over P

Strategy 1: Inference over P with a pair kernel
1 Define a kernel KP over P by convolution of KX :

KP(p,p′) =
1

|p| · |p′|
∑

x∈p,x ′∈p′

KX (x , x ′) .

2 Train a classifier over P e.g., a SVM, using the kernel KP

Strategy 2: Inference over X with a pair duplication
1 Duplicate each training pair p = {a,b} into 2 ordered paired
2 Train a classifier over X , e.g., a SVM, using the kernel KX
3 The classifier over P is then the a posteriori average:

fP (p) =
1
|p|
∑
x∈p

fX (x)
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The TPPK kernel

KTPPK ({a,b} , {c,d}) = KA(a, c)KA(b,d) + KA(a,d)KA(b, c) .

Theorem
Let X = A2 be endowed with the p.d. kernel:

KX ((a,b), (c,d)) = 2KA(a, c)KA(b,d) . (1)

Then the TPPK approach is equivalent to both Strategy 1 and Strategy
2.

Remarks: Equivalence with Strategy 1 is obvious, equivalence with
Strategy 2 is not, see proof in Hue and V. (ICML 2010).
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The local models
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Theorem
Let X = A2 be endowed with the p.d. kernel:

KX ((a,b), (c,d)) = δ(a, c)KA(b,d) ,

where δ is the Kronecker kernel (δ(a, c) = 1 if a = c, 0 otherwise).
Then the local approach is equivalent to Strategy 2.

Remarks: Strategies 1 and 2 are not equivalent with this kernel. In
general, they are equivalent up to a modification in the loss function of
the learning algorithm, see details in Hue and V. (ICML 2010)..
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Interpolation between local model and TPPK

Strategy 1: pair kernel Strategy 2: duplication
KX = KA ⊗ KA TPPK TPPK
KX = δ ⊗ KA new Local model

Interpolation:
KX = ((1− λ)KA + λδ)⊗ KA

for λ ∈ [0,1]
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Interpolation kernel

Metabolic networks with localization data (left); PPI network with
expression data (right)
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Interpolation kernel

Table: Strategy and kernel realizing the maximum mean AUC for nine
metabolic and protein-protein interaction networks experiments, with the
kernel K λ for λ ∈ [0,1].

benchmark best kernel
interaction, exp Duplicate, λ = 0.7
interaction, loc Pair kernel, λ = 0.6
interaction, phy Duplicate, λ = 0.8
interaction, y2h Duplicate / Pair kernel, λ = 0

interaction, integrated Duplicate / Pair kernel, λ = 0
metabolic, exp Pair kernel, λ = 0.6
metabolic, loc Pair kernel, λ = 1
metabolic, phy Pair kernel, λ = 0.6

metabolic, integrated Duplicate / Pair kernel, λ = 0
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Outline

1 Introduction

2 De novo network inference

3 Supervised network inference: local models

4 Supervised network inference: global models

5 From local models to pairwise kernels

6 Conclusion
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Interpolation between local model and TPPK

Take-home messages
De novo inference: feature selection methods state-of-the-art, but
overall performance very limited (recall < 10%)
Supervised inference: the change of paradigm boosts the
performance. Difficult to do better than local models.
If you already know edges, supervised inference is much more
powerful than de novo inference

Some interesting questions
New ideas for de novo inference?

More direct formulation as structured output learning?
Better adjust the complexity of models to the complexity of the task?

Link de novo and supervised inference?
Combine edge inference with graph models? Link with methods in
relational learning and collaborative filtering?
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Thanks!

Yoshi Yamanishi (ParisTech), Minoru Kanehisa (Kyoto U) Jian Qian,
Bill Noble (U Washington), Kevin Bleakley (INRIA), Gerard Biau (ENS
Paris), Fantine Mordelet, Martial Hue, Anne-Claire Haury (ParisTech)
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