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Gene expression

Ribosome

Image adapted from: National Human Genome Research Institute.
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Gene expression regulation
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Gene regulatory network
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Gene regulatory network of E. coli
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Gene expression data
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Reconstruction of gene regulatory network from

expression data
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More networks...
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More data..

@ Gene expression measurements

@ Phylogenetic profiles

@ Location of proteins/enzymes in the cell
@ Structures...
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General gene network inference problem
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e De novo network inference
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De novo inference

The problem

Given data about the genes (eg, expression), infer the edges (eg,
regulations).
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De novo inference

The problem

Given data about the genes (eg, expression), infer the edges (eg,
regulations).

@ Interactions are between "similar" genes?
@ Interactions are between "dependent” genes?
@ Interactions are between "predictive" genes?
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Predict interactions between "similar" genes

@ In most networks, connected genes are significantly more "similar”
than non-connected ones

@ Inference: connect genes whose similarity (eg, Euclidean distance
between profiles) is above a threshold
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Example: yeast metabolic network

@ 769 proteins, 3702 metabolic edges
@ Inference: rank by decreasing similariy of expression, interactions,
localization, phylogenetic profiles
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Example: E coli regulatory network

@ 154 TF targeting 1164 genes through 3293 regulations
@ Inference: rank by decreasing Euclidean distance between
expression profiles
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Predict regulations between "dependent” genes

Sometimes the expression of a TF and its target are not similar, but
correlated or dependent

We can therefore try to detect these dependencies to infer regulation.
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Measuring dependency

Pearson/Spearman correlation, mutual information (ARACNE, CLR...)
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Validation

Application: E coli regulatory network : 154 TF targeting 1164 genes
through 3293 regulations

1.0

10

Random: Random

-—— Euclidea Euclidean

- Pearson Pearson:

<— Spearman / u‘] Spearmal
Mi Mi

E

08
X 08
—
5=
-'-"-.-
{-/

TPR
06
\
\ \
Precision
06
o

N\
o~

¥
/f
[
/
/

0.0
0.0

FPR Recall

Jean-Philippe Vert (ParisTech) Inference of biological networks 20/57



Predict regulations between "predictive" genes

@ The dynamic equation of the mRNA concentration of a gene is of
the form: X

—r = fX.R)

where R represent the set of concentrations of transcription
factors that regulate X.

@ At steady state, dX/dt =0 = f(X, R)
@ If we linearize f(X, R) = 0 we get linear relation of the form

X=> BX

ieR

@ This suggests to look for transcription factors whose expression is
sufficient to explain the expression of X across different
experiments.
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Predicting regulation by sparse regression

@ Treat each target in turn

@ Let Y the expression of a target, and Xj, ..., X, the expression of
all TFs. We look for a model

p
Y =Y BiX; + noise
i=1
where [ is sparse, i.e., only a few ; are non-zero

@ Examples:

o GENIE: feature selection by random forest (Huynh-Thu et al., 2010)
e Feature selection by Lasso + stability selection (Haury et al., 2011)

@ Both methods were ranked 1st and 2nd (out of 28) at the
DREAMS in silico network inference challenge
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Summary on de novo network inference

@ Feature selection methods seem to be state-of-the-art

@ Performance remains low: recall below 10% for the best-known
network

@ How to infer the 90% of difficult interactions??

e improve de novo methods
e change the paradigm
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e Supervised network inference: local models
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@ In many cases, we already know quite a few regulations.

@ Can we use them, in addition to expression data, to predict
unknown regulations?
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Change of paradigm

@ New hypothesis: genes regulated by the same TF have similar
expression variations

@ Note that this is very different from de novo inference, where we
compare the expression profile of the gene to that of the TF
@ Caveats:

@ We need known interactions
e We may not find completely different interactions from those we
know
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One-class learning approaches

@ For agiven TF, let P C [1, n] be the set of genes known to be
regulated by it

_ _ _ 0
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One-class learning approaches

@ For agiven TF, let P C [1, n] be the set of genes known to be
regulated by it

@ From the expression profiles (X;);.p, estimate a score s(X) to
assess which expression profiles X are similar

_ _ _ 0
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One-class learning approaches

@ For agiven TF, let P C [1, n] be the set of genes known to be
regulated by it

@ From the expression profiles (X;);.p, estimate a score s(X) to
assess which expression profiles X are similar

@ Then classify the genes not in P by decreasing score

_ _ _ 0
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Estimating the scoring function: examples

@ Kernel density estimation
s(X) =Y exp (=l X - X |?)
ieP
@ One-class SVM
s(X) = > arexp (= X - X |?)

ieP
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Estimating the scoring function: examples

@ Kernel density estimation
s(X) =Y exp (=l X - X |?)
ieP
@ One-class SVM
s(X) = Y ajexp (2l X = X |?)

ieP
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From one-class to PU learning

@ One class: given genes in P, estimate the function s(X)
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From one-class to PU learning
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@ One class: given genes in P, estimate the function s(X)

@ PU learning: given genes in P and the set of unlabeled genes U,
estimate the scores s(X) for j € U

Jean-Philippe Vert (ParisTech) Inference of biological networks 29/57



Why PU learning can be better than one-class learning
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PU learning in practice

@ Train a classifier to discriminate P from U (eg, SVM or random
forest)

© Rank genes in U by decreasing training score
© Bagging PU discrimination can help (Mordelet and V., 2010)
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One-class vs PU learning
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Supervised vs de novo inference

Ratio of true positives
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SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Application: predicted regulatory network (E. coli)
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e Supervised network inference: global models
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@ Local models require enough known targets of each TF. Can we
share information across TF?

@ For undirected networks (eg, PPI), how to reconcile local
predictions?

@ Idea: work directly in the space of pairs, to discriminate interacting
Vs non-interacting pairs.
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Pattern recognition for pairs: basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Pattern recognition for pairs: basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected
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Pattern recognition for pairs: basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Direct sum for ordered pairs?

@ Each individual protein is represented by a vector v € RP

@ How to represent a pair of proteins (u, v) by a vector
Y(u,v) € RI9?
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Direct sum for ordered pairs?

@ Each individual protein is represented by a vector v € RP

@ How to represent a pair of proteins (u, v) by a vector
Y(u,v) € RI9?

@ A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

w(u7v)u@v<5>.
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Direct sum for ordered pairs?

@ Each individual protein is represented by a vector v € RP

@ How to represent a pair of proteins (u, v) by a vector
Y(u,v) € RI9?

@ A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

w(u7v)u@v<5>.

@ Problem: a linear function then becomes additive...

flu,v) =w'y(u,v) =wju+w'v.
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Direct product for ordered pairs

@ Alternatively, make the direct product, i.e., the p?>-dimensional
vector whose entries are all products of entries of u by entries of
v:

v(u,v)=uv
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Direct product for ordered pairs

@ Alternatively, make the direct product, i.e., the p?>-dimensional

vector whose entries are all products of entries of u by entries of
v:

v(u,v)=uv

@ Problem: can get really large-dimensional...
@ Good news: inner product factorizes:

(ur @ vi)" (U @ W) = <UIU2) X (vﬁv2> ,
which is good for algorithms that use only inner products (SVM...):

Kp ((U17 V1)7 (Ug, V2)) = ’l/)(U17 V1 )Tw(UQ, V2) = K(U1 s U2)K(V1, V2)
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Representing an unordered pair: TPPK

@ Often we want to work with unordered pairs, e.g., PPI network:

{U7 V} = {(U, V): (V, U)}
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Representing an unordered pair: TPPK

@ Often we want to work with unordered pairs, e.g., PPI network:

{U7 V} = {(U, V): (V, U)}

@ This suggest to symmetrize the representation of ordered pairs:

vy{u,v) =uev+vaeu
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Representing an unordered pair: TPPK

@ Often we want to work with unordered pairs, e.g., PPI network:

{U7 V} = {(U, V): (V, U)}

@ This suggest to symmetrize the representation of ordered pairs:
vu({u,vh) =uev+veu
@ This leads to the symmetric tensor product pairwise kernel (TPPK)
(Ben-Hur and Noble, 2006):

Krpek ({uq, i}, {uz, va}) = K(uy, u2) K(vq, Vo) +K(uy, v2)K(vy, Uo)
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Another representation: MLPK

@ Another symmetric representation:

v({uv}) = (u—-v)*

@ Equivalently, train the SVM over pairs with the metric learning
pairwise kernel:

Kueex ({ur, v}, {uz, v2}) = ({ur, v }) "o ({ e, v2})
= [K(u1, Up) — K(u1, vo) — K(v1, Uz) + K(v1, v2)I?

@ Theorem: A SVM with the MLPK kernel trained to discriminate
connected from non-connected pairs, solves a metric learning
problem (V. et al., 2007)
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Technical details

@ For two vectors u, v € H let the metric:

du(u,v) = (u—v)" Mu—v).
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du(u,v) = (u—v)" Mu—v).

@ Learn the metric so that points close to each other are connected?
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Technical details

@ For two vectors u, v € H let the metric:

du(u,v) = (u—v)" Mu—v).

@ Learn the metric so that points close to each other are connected?
@ We consider the problem:

. 2
I\r?g(]) ' I(ui, vi, ¥i) + MM Eropenius
i

where [ is a hinge loss to enforce:

<1 -~ if(u; v))is connected,
>1++v otherwise.

du(uj, vi) {
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Technical details

@ For two vectors u, v € H let the metric:

du(u,v) = (u—v)" Mu—v).

@ Learn the metric so that points close to each other are connected?
@ We consider the problem:

. 2
I\r?g(]) ' I(ui, vi, ¥i) + MM Eropenius
i

where [ is a hinge loss to enforce:

<1 -~ if(u; v))is connected,
>1++v otherwise.

du(uj, vi) {

@ SVM with MLPK kernel solve it without the constraint M > 0
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Alternative: symmetrized local models for undirected
networks

The idea (Bleakley and V., 2007)

@ For each protein P, make a local model using known partners as
positive examples to estimate an interaction score sp(P’) for any
candidate partner P’

@ Symmetrize a posteriori: the interaction score of a candidate pair

P, P is:
sp(P) + sp/(P) ]
+1
O?
-1
:O O -1 \\ T - ?
L0 W0
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Results: protein-protein interaction (yeast)
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Results: metabolic gene network (yeast)
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e From local models to pairwise kernels
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In the case of unordered pairs {A, B}, pairwise kernels such as the
TPPK and local models look very different:

@ Local models seem to over-emphasize the asymmetry of the
relationships, but symmetrize the prediction a posteriori

@ Pairwise kernels symmetrize the data a priori and learn in the
space or unordered pairs

Can be clarify the links between these approaches, and perhaps
interpolate between them?
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@ A the set of individual proteins, endowed with a kernel K4

@ X = A2 the set of ordered pairs of the form x = (a, b) endowed
with a kernel Ky (usually deduced from K4)

@ P the set of unordered pairs of the form p = {(a, b), (b, a)}

@ We want to learn over P from a set of labeled training pairs

(p1aY1)a---a(PnaYn) €P % {_171}
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Two strategies to learn over P

Strategy 1: Inference over P with a pair kernel

@ Define a kernel Kp over P by convolution of Ky :

Kp(p, p') > Ka(x, X))
p xepx’ep

@ Train a classifier over P e.g., a SVM, using the kernel Kp
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Two strategies to learn over P

Strategy 1: Inference over P with a pair kernel

@ Define a kernel Kp over P by convolution of Ky :

Ko(pp) = —— 3 Ky(x,x).

=
Pl 1P| e

@ Train a classifier over P e.g., a SVM, using the kernel Kp

v

Strategy 2: Inference over X with a pair duplication

@ Duplicate each training pair p = {a, b} into 2 ordered paired
© Train a classifier over X, e.g., a SVM, using the kernel Ky
© The classifier over P is then the a posteriori average:

o (p) = 17 - ()

XEp
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The TPPK kernel

Krppi ({37 b} ) {07 d}) = KA(a7 C)KA(b7 d) + K.A(av d)KA(b7 C) :

Theorem
Let X = A2 be endowed with the p.d. kernel:

Kx ((a,b),(c,d)) =2Ka(a,c)Ka(b,d). (1)

Then the TPPK approach is equivalent to both Strategy 1 and Strategy
2.

v

Remarks: Equivalence with Strategy 1 is obvious, equivalence with
Strategy 2 is not, see proof in Hue and V. (ICML 2010).
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The local models

Let X = A2 be endowed with the p.d. kernel:

Kx ((a7 b)7 (07 d)) - 5(37 C)KA(b7 d) )

where ¢ is the Kronecker kernel (6(a,c) = 1 if a = ¢, 0 otherwise).
Then the local approach is equivalent to Strategy 2.

Remarks: Strategies 1 and 2 are not equivalent with this kernel. In
general, they are equivalent up to a modification in the loss function of
the learning algorithm, see details in Hue and V. (ICML 2010)..
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Interpolation between local model and TPPK

Strategy 1: pair kernel | Strategy 2: duplication
Ky = Ka® Ka TPPK TPPK
Ky =00 Ky new Local model
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Interpolation between local model and TPPK

Strategy 1: pair kernel | Strategy 2: duplication
Ky = Ka® Ka TPPK TPPK
Ky =00 Ky new Local model

Interpolation:
Ky =((1=MNK4s+ X)) @ Ky

for A € [0, 1]
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Interpolation kernel
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Interpolation kernel

Table: Strategy and kernel realizing the maximum mean AUC for nine

metabolic and protein-protein interaction networks experiments, with the
kernel K* for A € [0, 1].

benchmark best kernel
interaction, exp Duplicate, A = 0.7
interaction, loc Pair kernel, A = 0.6
interaction, phy Duplicate, A = 0.8
interaction, y2h Duplicate / Pair kernel, A =0
interaction, integrated Duplicate / Pair kernel, A = 0
metabolic, exp Pair kernel, A = 0.6
metabolic, loc Pair kernel, A = 1
metabolic, phy Pair kernel, A = 0.6

metabolic, integrated  Duplicate / Pair kernel, A = 0
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e Conclusion
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Interpolation between local model and TPPK

Take-home messages

@ De novo inference: feature selection methods state-of-the-art, but
overall performance very limited (recall < 10%)

@ Supervised inference: the change of paradigm boosts the
performance. Difficult to do better than local models.

@ If you already know edges, supervised inference is much more
powerful than de novo inference
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@ Supervised inference: the change of paradigm boosts the
performance. Difficult to do better than local models.

@ If you already know edges, supervised inference is much more
powerful than de novo inference

Some interesting questions
@ New ideas for de novo inference?

e More direct formulation as structured output learning?
o Better adjust the complexity of models to the complexity of the task?

@ Link de novo and supervised inference?

@ Combine edge inference with graph models? Link with methods in
relational learning and collaborative filtering?
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