Statistical inference for complex systems

Jean-Philippe Vert

Mines ParisTech / Curie Institute / Inserm
Paris, France

U900 lab meeting, Institut Curie, Sep 28, 2010.

Outline

The modeller vs statistician dilemma

Shrinkage classifiers

Examples

Conclusion

Outline

The modeller vs statistician dilemma

Shrinkage classifiers

Examples

Conclusion

Some (interesting) complex systems

Input $X \longrightarrow \quad \longrightarrow$ Output Y

- Diagnosis/Prognosis/Theragnosis: $X=$ genome/transcriptome/... , $Y=$ tumor evolution / survival / response to therapy...
- Regulatory/signalling pathways: $X=$ perturbation (molecule, knock-out...), $Y=$ phenotype / expression level
- Genotype-phenotype relationship: $X=$ genome/mutations, $Y=$ a phenotype (disease, growth rate,..)
- QSAR/Virtual screening/chemogenomics: $X=$ molecule/perturbation, $Y=$ phenotypic cellular response

Modelling/inferring complex systems

Input $X \longrightarrow Y=f(X) \longrightarrow$ Output Y

- A model is a human construct to help us better understand real world systems and make predictions
- Remember: all models are wrong, but some are useful (Box, 1987).
- How to make a model $f(x)$ from:
- prior knowledge
- observations $\left(X_{i}, Y_{i}\right)_{i=1, \ldots, n}$

General 2-step principle

Input $X \longrightarrow Y=f(X) \longrightarrow$ Output Y

- Step 1 (modelling): define a family of candidate functions $\mathcal{F}=\{f: X \mapsto Y\}$
- using prior knowledge
- e.g., linear models, boolean networks, neural networks....
- Step 2 (inference): confront the model to the data to estimate one function $\hat{f} \in \mathcal{F}$
- using statistical inference techniques, e.g., empirical risk miminization
- using prior knwoledge/belief

General 2-step principle

Input $X \longrightarrow Y=f(X) \longrightarrow$ Output Y

- Step 1 (modelling): define a family of candidate functions $\mathcal{F}=\{f: X \mapsto Y\}$
- using prior knowledge
- e.g., linear models, boolean networks, neural networks....

General 2-step principle

Input $X \longrightarrow Y=f(X) \longrightarrow$ Output Y

- Step 1 (modelling): define a family of candidate functions $\mathcal{F}=\{f: X \mapsto Y\}$
- using prior knowledge
- e.g., linear models, boolean networks, neural networks....
- Step 2 (inference): confront the model to the data to estimate one function $\hat{f} \in \mathcal{F}$
- using statistical inference techniques, e.g., empirical risk miminization
- using prior knwoledge/belief

The bias/variance trade-off

The modeller vs statistician dilemma

- Both steps must be taken into account to have a "good" model
- Modellers / experts usually focus more on making good models (deacreasing bias), and forget about estimation errors (variance)
- But we have often very few data compared to the complexity of realistic models \Longrightarrow variance is likely to dominate!
- Illustration: success of generic machine learning approaches (which intrinsically control the trade-off) vs knowledge-based models
- Challenge: reconcile modellers and statisticians

Outline

The modeller vs statistician dilemma

Shrinkage classifiers

Examples

Conclusion

Illustration

$\min _{f} R(f)$.

subject to $\quad \Omega(f) \leq C$.

Illustration

$$
\min _{f} R(f) .
$$

subject to $\quad \Omega(f) \leq C$.

Illustration

$\min _{f} R(f)$.
subject to $\quad \Omega(f) \leq C$.
(1)

Illustration

$\min _{f} R(f)$.
subject to $\quad \Omega(f) \leq C$.
(1)

Illustration

$$
\min _{f} R(f) .
$$

$$
\begin{equation*}
\text { subject to } \quad \Omega(f) \leq C \tag{1}
\end{equation*}
$$

Illustration

$$
\min _{f} R(f) .
$$

$$
\begin{equation*}
\text { subject to } \quad \Omega(f) \leq C \tag{1}
\end{equation*}
$$

Changing the penalty with prior knowledge

$\min _{f} R(f)$
subject to $\quad \Omega_{\text {new }}(f) \leq C$.
$\xrightarrow[b^{\text {est }}]{ }$ (

Changing the penalty with prior knowledge

$\min _{f} R(f)$
subject to $\quad \Omega_{\text {new }}(f) \leq C$.

Changing the penalty with prior knowledge

Summary

- Shrinkage method offer a principled approach to "Increases bias and decreases variance", and control the trade-off through C
- At the heart of many successful methods (SVM, Lasso, boosting)
- Changing $\Omega(f)$ may in addition decrease the bias without increasing the variance
- In practice: design (convex) penalties $\Omega(f)$ that encode prior knowledge

Outline

The modeller vs statistician dilemma

Shrinkage classifiers

Examples

Conclusion

Classification of DNA copy number profiles

Aggressive vs non-aggressive melanoma

CGH array classification

Prior knowledge

- For a CGH profile $x \in \mathbb{R}^{p}$, we focus on linear classifiers, i.e., the sign of :

$$
f_{\beta}(x)=\beta^{\top} x=\sum_{i=1}^{p} \beta_{i} x_{i} .
$$

- We expect β to be
- sparse : not all positions should be discriminative
- piecewise constant : within a selected region, all probes should contribute equally

A solution (Rapaport et al., 2008)

$$
\Omega_{\text {fusedlasso }}(\beta)=\sum_{i=1}^{p}\left|\beta_{i}\right|+\sum_{i=1}^{p-1}\left|\beta_{i+1}-\beta_{i}\right| .
$$

- First term promotes sparse solution (Lasso penalty)
- Second term promotes piecewise constant solutions

Tissue classification from microarray data (diagnosis/prognosis...)

C-myb (U22376) MB-1 (UO5559) (X9447) MB-1 (U05259) Cyclin D3 (M92287) Myosin light chain (M31211) RbAp48 (X74262)
SNF2 (D26156)
(1) HkTT-1 (S50223) H2 (M31523) ducible prot nducible protein (L.47738) Dynein light chain (U329+4) TRF2 (X15949) TFIEB (X63469) Acyl-Coenzyme A dehydrogenase (M91432) SNF2 (U29175) Ca2+)-ATPasc (Z69881) SRP9 (U20998)
MCM3 (D38073) MCM3 (D38073) Deoxyhypusine synthase (U26266 Op 18 (M31303) Helcrochromatin prot L-7 receptor (M29696) Adenosine deaminase (M|3792)
 Fumarylacetoacctale (M55150) Zyxin (X95735) TCA synthase (U50136) LYN (M16038) HoxA9 (U82759) CD33 (M23197) Adipsin (M84526) Leptin receptor (Y|2670) Cystatin C (M27891) Proteoglycan I (X17042) L-8 precursor (Y00787) Azurocidin (M96326) p62 (U46751) MCLI (L08246) ATPase (M62762) IL-8 (M28130) Cathepsin D (M63 Caihepsin D (M631
Lectin (M57710) MAD-3 (M69043) CDIIC(M81695) Ebp72 (X851 16) Lysozyme (M19045 Properdin (M83652) Calalase (X04085)

Goal

- Design a classifier to automatically assign a class to future samples from their expression profile
- Interpret biologically the differences between the classes

Difficulty

- Large dimension
- Few samples

Gene networks and expression data

Motivation

- Basic biological functions usually involve the coordinated action of several proteins:
- Formation of protein complexes
- Activation of metabolic, signalling or regulatory pathways
- Many pathways and protein-protein interactions are already known
- Hypothesis: the weights of the classifier should be "coherent" with respect to this prior knowledge

Graph-based penalties: smooth classifiers

Prior hypothesis
Genes near each other on the graph should have similar weigths.

- Smooth weights on the graph (Rapaport et al., 2007)
- Gene selection + Piecewise constant on the graph

- Gene selection + smooth on the graph

Graph-based penalties: smooth classifiers

Prior hypothesis

Genes near each other on the graph should have similar weigths.

- Smooth weights on the graph (Rapaport et al., 2007)

$$
\Omega_{\text {spectral }}(\beta)=\sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2},
$$

- Gene selection + Piecewise constant on the graph

- Gene selection + smooth on the graph

Graph-based penalties: smooth classifiers

Prior hypothesis

Genes near each other on the graph should have similar weigths.

- Smooth weights on the graph (Rapaport et al., 2007)

$$
\Omega_{\text {spectral }}(\beta)=\sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2}
$$

- Gene selection + Piecewise constant on the graph

$$
\Omega_{\text {fused }}(\beta)=\sum_{i \sim j}\left|\beta_{i}-\beta_{j}\right|+\sum_{i=1}^{p}\left|\beta_{i}\right|
$$

- Gene selection + smooth on the graph

Graph-based penalties: smooth classifiers

Prior hypothesis

Genes near each other on the graph should have similar weigths.

- Smooth weights on the graph (Rapaport et al., 2007)

$$
\Omega_{\text {spectral }}(\beta)=\sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2}
$$

- Gene selection + Piecewise constant on the graph

$$
\Omega_{\text {fused }}(\beta)=\sum_{i \sim j}\left|\beta_{i}-\beta_{j}\right|+\sum_{i=1}^{p}\left|\beta_{i}\right|
$$

- Gene selection + smooth on the graph

$$
\Omega_{\operatorname{mix}}(\beta)=\sum_{i \sim j}\left(\beta_{i}-\beta_{j}\right)^{2}+\sum_{i=1}^{p}\left|\beta_{i}\right|
$$

Illustration

Illustration

a)

b)

Graph-based penalty: structured feature selection

 Prior hypothesisSelected genes should form connected components on the graph

Two solutions (Jacob et al., 2009):

Graph-based penalty: structured feature selection

 Prior hypothesisSelected genes should form connected components on the graph

Two solutions (Jacob et al., 2009):

$$
\begin{gathered}
\Omega_{\text {group }}(\beta)=\sum_{i \sim j} \sqrt{\beta_{i}^{2}+\beta_{j}^{2}}, \\
\Omega_{\text {overlap }}(\beta)=\sup _{\alpha \in \mathbb{R}^{p}: \forall i \sim j,\left\|\alpha_{i}^{2}+\alpha_{j}^{2}\right\| \leq 1} \alpha^{\top} \beta .
\end{gathered}
$$

Classical gene selection (Lasso)

Graph-based gene selection

Outline

The modeller vs statistician dilemma

Shrinkage classifiers

Examples

Conclusion

Conclusion

- Controlling the bias/variance trade-off is key! Better to work with wrong but simple models if variance dominates...
- Shrinkage methods provide a convenient strategy to control this trade-off and include prior knowledge
- Important challenges:
- Enforcing bias/variance control with complex models (eg, dynamic equations in systems biology)?
- To what extent can we extract knowledge from the estimated model?

People I need to thank

Franck Rapaport (MSKCC), Emmanuel Barillot, Andrei Zynoviev Kevin Bleakley, Anne-Claire Haury(Institut Curie / ParisTech), Laurent Jacob (UC Berkeley) Guillaume Obozinski (INRIA)

