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Some (interesting) complex systems

I Diagnosis/Prognosis/Theragnosis: X =
genome/transcriptome/... , Y = tumor evolution / survival /
response to therapy...

I Regulatory/signalling pathways: X = perturbation
(molecule, knock-out...), Y = phenotype / expression level

I Genotype-phenotype relationship: X = genome/mutations,
Y = a phenotype (disease, growth rate,..)

I QSAR/Virtual screening/chemogenomics: X =
molecule/perturbation, Y = phenotypic cellular response



Modelling/inferring complex systems

I A model is a human construct to help us better understand
real world systems and make predictions

I Remember: all models are wrong, but some are useful
(Box, 1987).

I How to make a model f (x) from:
I prior knowledge
I observations (Xi ,Yi )i=1,...,n



General 2-step principle

I Step 1 (modelling): define a family of candidate functions
F = {f : X 7→ Y}

I using prior knowledge
I e.g., linear models, boolean networks, neural networks....

I Step 2 (inference): confront the model to the data to
estimate one function f̂ ∈ F

I using statistical inference techniques, e.g., empirical risk
miminization

I using prior knwoledge/belief
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The bias/variance trade-off



The modeller vs statistician dilemma

I Both steps must be taken into account to have a "good"
model

I Modellers / experts usually focus more on making good
models (deacreasing bias), and forget about estimation
errors (variance)

I But we have often very few data compared to the
complexity of realistic models =⇒ variance is likely to
dominate!

I Illustration: success of generic machine learning
approaches (which intrinsically control the trade-off) vs
knowledge-based models

I Challenge: reconcile modellers and statisticians
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Illustration
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f

R(f ) .

subject to Ω(f ) ≤ C . (1)
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Changing the penalty with prior knowledge
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Summary

b*

b
est

b*
C

b
est

C

Bias

Variance

I Shrinkage method offer a principled approach to
"Increases bias and decreases variance", and control the
trade-off through C

I At the heart of many successful methods (SVM, Lasso,
boosting)

I Changing Ω(f ) may in addition decrease the bias without
increasing the variance

I In practice: design (convex) penalties Ω(f ) that encode
prior knowledge
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Classification of DNA copy number profiles
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CGH array classification
Prior knowledge

I For a CGH profile x ∈ Rp, we focus on linear classifiers,
i.e., the sign of :

fβ(x) = β>x =

p∑
i=1

βixi .

I We expect β to be
I sparse : not all positions should be discriminative
I piecewise constant : within a selected region, all probes

should contribute equally



A solution (Rapaport et al., 2008)

Ωfusedlasso(β) =

p∑
i=1

|βi |+
p−1∑
i=1

|βi+1 − βi | .

I First term promotes sparse solution (Lasso penalty)
I Second term promotes piecewise constant solutions
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Tissue classification from microarray data
(diagnosis/prognosis...)

Goal
I Design a classifier to

automatically assign a
class to future samples
from their expression
profile

I Interpret biologically the
differences between the
classes

Difficulty

I Large dimension
I Few samples



Gene networks and expression data
Motivation

I Basic biological functions usually involve the coordinated
action of several proteins:

I Formation of protein complexes
I Activation of metabolic, signalling or regulatory pathways

I Many pathways and protein-protein interactions are
already known

I Hypothesis: the weights of the classifier should be
“coherent” with respect to this prior knowledge



Graph-based penalties: smooth classifiers
Prior hypothesis
Genes near each other on the graph should have similar
weigths.

I Smooth weights on the graph (Rapaport et al., 2007)

Ωspectral(β) =
∑
i∼j

(βi − βj)
2 ,

I Gene selection + Piecewise constant on the graph

Ωfused (β) =
∑
i∼j

∣∣βi − βj
∣∣+

p∑
i=1

|βi |

I Gene selection + smooth on the graph

Ωmix (β) =
∑
i∼j

(
βi − βj

)2
+

p∑
i=1

|βi |
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Illustration
Rapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-
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Illustration
Spectral analysis of gene expression profiles using gene networks

 a)  b)
Fig. 5. Theglycolysis/gluconeogenesis pathways ofKEGGwithmapped coefficients of the decision function obtained by applying a customary

linear SVM (a) and using high-frequency eigenvalue attenuation (b). The pathways are mutually exclusive in a cell, as clearly highlighted by

our algorithm.

or under-expression of individual genes, which is the cost to

pay to obtain instead an interpretation in terms of more glo-

bal pathways. Constraining the classifier to rely on just a few

genes would have a similar effect of reducing the complexity

of the problem,butwould lead to amoredifficult interpretation

in terms of pathways.

An advantage of our approach over other pathway-based

clustering methods is that we consider the network modules

that naturally appear from spectral analysis rather than a histo-

rically defined separation of the network into pathways. Thus,

pathways cross-talking is taken into account, which is diffi-

cult to do using other approaches. It can however be noticed

that the implicit decomposition into pathways that we obtain

is biased by the very incomplete knowledge of the network

and that certain regions of the network are better understood,

leading to a higher connection concentration.

Like most approaches aiming at comparing expression data

with gene networks such as KEGG, the scope of this work

is limited by two important constraints. First the gene net-

work we use is only a convenient but rough approximation to

describe complex biochemical processes; second, the trans-

criptional analysis of a sample can not give any information

regarding post-transcriptional regulation and modifications.

Nevertheless, we believe that our basic assumptions remain

valid, in that we assume that the expression of the genes

belonging to the same metabolic pathways module are coor-

dinately regulated. Our interpretation of the results supports

this assumption.

Another important caveat is that we simplify the network

description as an undirected graph of interactions. Although

this would seem to be relevant for simplifying the descrip-

tion of metabolic networks, real gene regulation networks are

influenced by the direction, sign and importance of the interac-

tion. Although the incorporationof weights into the Laplacian

(equation 1) is straightforward and allows the extension of the

approach to weighted undirected graphs, the incorporation

of directions and signs to represent signalling or regulatory

pathways requires more work but could lead to important

advances for the interpretation of microarray data in cancer

studies, for example.
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Graph-based penalty: structured feature selection
Prior hypothesis
Selected genes should form connected components on the
graph

Two solutions (Jacob et al., 2009):

Ωgroup(β) =
∑
i∼j

√
β2

i + β2
j ,

Ωoverlap(β) = sup
α∈Rp:∀i∼j,‖α2

i +α
2
j ‖≤1

α>β .
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Classical gene selection (Lasso)



Graph-based gene selection
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Conclusion

I Controlling the bias/variance trade-off is key! Better to
work with wrong but simple models if variance dominates...

I Shrinkage methods provide a convenient strategy to
control this trade-off and include prior knowledge

I Important challenges:
I Enforcing bias/variance control with complex models (eg,

dynamic equations in systems biology)?
I To what extent can we extract knowledge from the

estimated model?
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