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The modeller vs statistician dilemma



Some (interesting) complex systems

Input X —H—*Output Y

» Diagnosis/Prognosis/Theragnosis: X =
genome/transcriptome/... , Y = tumor evolution / survival /
response to therapy...

» Regulatory/signalling pathways: X = perturbation
(molecule, knock-out...), Y = phenotype / expression level

» Genotype-phenotype relationship: X = genome/mutations,
Y = a phenotype (disease, growth rate,..)

» QSAR/Virtual screening/chemogenomics: X =
molecule/perturbation, Y = phenotypic cellular response



Modelling/inferring complex systems

Input X —W—'Output Y

» A model is a human construct to help us better understand
real world systems and make predictions

» Remember: all models are wrong, but some are useful
(Box, 1987).
» How to make a model f(x) from:

» prior knowledge
» observations (Xj, Y;)i-1
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General 2-step principle

Input X —-—>Output Y




General 2-step principle

Input X —’M—*Output Y

» Step 1 (modelling): define a family of candidate functions
F={f: X—Y}
» using prior knowledge
» e.g., linear models, boolean networks, neural networks....




General 2-step principle

Input X Output Y

i

» Step 1 (modelling): define a family of candidate functions
F={f: X—Y}
» using prior knowledge
» e.g., linear models, boolean networks, neural networks....
» Step 2 (inference): confront the model to the data to
estimate one function f € F
» using statistical inference techniques, e.g., empirical risk
miminization
» using prior knwoledge/belief



The bias/variance trade-off
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The modeller vs statistician dilemma

Error
Total error

Variance Bias

Model complexity

» Both steps must be taken into account to have a "good"
model

» Modellers / experts usually focus more on making good
models (deacreasing bias), and forget about estimation
errors (variance)

» But we have often very few data compared to the
complexity of realistic models — variance is likely to
dominate!

» lllustration: success of generic machine learning
approaches (which intrinsically control the trade-off) vs
knowledge-based models

» Challenge: reconcile modellers and statisticians
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Shrinkage classifiers
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Changing the penalty with prior knowledge
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Summary

» Shrinkage method offer a principled approach to
"Increases bias and decreases variance", and control the
trade-off through C

» At the heart of many successful methods (SVM, Lasso,
boosting)

» Changing Q(f) may in addition decrease the bias without
increasing the variance

» In practice: design (convex) penalties Q(f) that encode
prior knowledge
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Classification of DNA copy number profiles
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CGH array classification
Prior knowledge

» For a CGH profile x € RP, we focus on linear classifiers,
i.e., the sign of :

p
fa(x) = B"x = Bix;.
i=

» We expect 3 to be

» sparse : not all positions should be discriminative
» piecewise constant : within a selected region, all probes
should contribute equally

Amplified segments

log, rat

R A
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A solution (Rapaport et al., 2008)
P p—1

qusedlasso(ﬂ) - Z ’ﬁ/‘ + Z ’6/’+1 - 6/’ .
i=1 i=1

» First term promotes sparse solution (Lasso penalty)
» Second term promotes piecewise constant solutions
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Tissue classification from microarray data

(diagnosis/prognosis...)
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Goal

» Design a classifier to
automatically assign a
class to future samples
from their expression
profile

» Interpret biologically the
differences between the
classes

Difficulty

» Large dimension
» Few samples



Gene networks and expression data
Motivation

» Basic biological functions usually involve the coordinated
action of several proteins:
» Formation of protein complexes
» Activation of metabolic, signalling or regulatory pathways
» Many pathways and protein-protein interactions are
already known

» Hypothesis: the weights of the classifier should be
“coherent” with respect to this prior knowledge




Graph-based penalties: smooth classifiers

Prior hypothesis

Genes near each other on the graph should have similar
weigths.
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Prior hypothesis

Genes near each other on the graph should have similar
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» Smooth weights on the graph (Rapaport et al., 2007)
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Graph-based penalties: smooth classifiers

Prior hypothesis

Genes near each other on the graph should have similar
weigths.

» Smooth weights on the graph (Rapaport et al., 2007)
Qspectrz«ﬂ(ﬁ) = Z(ﬁl - ﬁj)2 )
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» Gene selection + Piecewise constant on the graph
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Graph-based penalties: smooth classifiers

Prior hypothesis

Genes near each other on the graph should have similar
weigths.

» Smooth weights on the graph (Rapaport et al., 2007)
Qspectrz«ﬂ(ﬁ) = Z(ﬁl - ﬁj)2 )

i~of

» Gene selection + Piecewise constant on the graph

qused Z‘B/ /3/‘+Z’5/

I’\/j

» Gene selection + smooth on the graph

Qmix(ﬁ) Z ﬁ/ + Z | ﬂ/

I~j



lllustration
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lllustration
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Graph-based penalty: structured feature selection

Prior hypothesis

Selected genes should form connected components on the
graph

-




Graph-based penalty: structured feature selection

Prior hypothesis

Selected genes should form connected components on the
graph

-

Two solutions (Jacob et al., 2009):
Qgroup(ﬁ) = Z \/ﬁ}ZTﬁj2
ij

Qoverlap(ﬁ) = sup aTﬁ-

aERP:Vi~j7||aI-2+aj2||§‘|



Classical gene selection (Lasso
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Graph-based gene selection
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Conclusion

» Controlling the bias/variance trade-off is key! Better to
work with wrong but simple models if variance dominates...

» Shrinkage methods provide a convenient strategy to
control this trade-off and include prior knowledge

» Important challenges:
» Enforcing bias/variance control with complex models (eg,
dynamic equations in systems biology)?
» To what extent can we extract knowledge from the
estimated model?
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