Lecture 2: Inference of missing edges in biological networks

Jean-Philippe Vert

Mines ParisTech / Curie Institute / Inserm Paris, France

"Optimization, machine learning and bioinformatics" summer school, Erice, Sep 9-16, 2010.

Outline

- Introduction
- De novo vs supervised methods
- Supervised methods for pairs
- Learning with local models
- 5 From local models to pairwise kernels
- Experiments
- Conclusion

Proteins

Network 1: protein-protein interaction

Network 2: metabolic network

Network 3: gene regulatory network

Data available

Biologists have collected a lot of data about proteins. e.g.,

- Gene expression measurements
- Phylogenetic profiles
- Location of proteins/enzymes in the cell

How to use this information "intelligently" to find a good function that predicts edges between nodes.

Our goal

More precisely

Formalization

- $V = \{1, ..., N\}$ vertices (e.g., genes, proteins)
- $\mathcal{D} = (x_1, \dots, x_N) \in \mathcal{H}^N$ data about the vertices (\mathcal{H} Hilbert space)
- Goal: predict edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.

"De novo" inference

- \bullet Given data about individual genes and proteins $\mathcal{D},\,...$
- ullet ... Infer the edges between genes and proteins ${\mathcal E}$

"Supervised" inference

- ullet Given data about individual genes and proteins \mathcal{D} , ...
- ... and given some known interactions $\mathcal{E}_{train} \subset \mathcal{E}$, ...
- ... infer unknown interactions $\mathcal{E}_{test} = \mathcal{E} \setminus \mathcal{E}_{train}$

More precisely

Formalization

- $V = \{1, ..., N\}$ vertices (e.g., genes, proteins)
- $\mathcal{D} = (x_1, \dots, x_N) \in \mathcal{H}^N$ data about the vertices (\mathcal{H} Hilbert space)
- Goal: predict edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.

"De novo" inference

- \bullet Given data about individual genes and proteins $\mathcal{D},\,...$
- ullet ... Infer the edges between genes and proteins ${\mathcal E}$

"Supervised" inference

- ullet Given data about individual genes and proteins \mathcal{D} , ...
- ... and given some known interactions $\mathcal{E}_{train} \subset \mathcal{E}$, ...
- ... infer unknown interactions $\mathcal{E}_{test} = \mathcal{E} \setminus \mathcal{E}_{train}$

More precisely

Formalization

- $V = \{1, ..., N\}$ vertices (e.g., genes, proteins)
- $\mathcal{D} = (x_1, \dots, x_N) \in \mathcal{H}^N$ data about the vertices (\mathcal{H} Hilbert space)
- Goal: predict edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.

"De novo" inference

- ullet Given data about individual genes and proteins \mathcal{D} , ...
- ullet ... Infer the edges between genes and proteins ${\mathcal E}$

"Supervised" inference

- ullet Given data about individual genes and proteins \mathcal{D} , ...
- ... and given some known interactions $\mathcal{E}_{train} \subset \mathcal{E}$, ...
- ... infer unknown interactions $\mathcal{E}_{test} = \mathcal{E} \setminus \mathcal{E}_{train}$

Outline

- Introduction
- De novo vs supervised methods
- Supervised methods for pairs
- Learning with local models
- 5 From local models to pairwise kernels
- 6 Experiments
- Conclusion

De novo methods

Typical strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models)
- Detect statistical conditional independence or dependency (Bayesian netwok, mutual information networks, co-expression)

Pros

- Excellent approach if the model is correct and enough data are available
- Interpretability of the model
- Inclusion of prior knowledge

Cons

- Specific to particular data and networks
- Needs a correct model!
- Difficult integration of heterogeneous data
- Often needs a lot of data and long computation time

De novo methods

Typical strategies

- Fit a dynamical system to time series (e.g., PDE, boolean networks, state-space models)
- Detect statistical conditional independence or dependency (Bayesian netwok, mutual information networks, co-expression)

Pros

- Excellent approach if the model is correct and enough data are available
- Interpretability of the model
- Inclusion of prior knowledge

Cons

- Specific to particular data and networks
- Needs a correct model!
- Difficult integration of heterogeneous data
- Often needs a lot of data and long computation time

Evaluation on metabolic network reconstruction

- The known metabolic network of the yeast involves 769 proteins.
- Predict edges from distances between a variety of genomic data (expression, localization, phylogenetic profiles, interactions).

Evaluation on regulatory network reconstruction

OPEN @ ACCESS Freely available online

PLOS BIOLOGY

Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles

Jeremiah J. Faith¹, Boris Hayete¹, Joshua T. Thaden^{2,3}, Ilaria Mogno^{2,4}, Jamey Wierzbowski^{2,5}, Guillaume Cottarel^{2,5}, Simon Kasif^{1,2}, James J. Collins^{1,2}, Timothy S. Gardner^{1,2*}

Supervised methods

Motivation

In actual applications,

- we know in advance parts of the network to be inferred
- the problem is to add/remove nodes and edges using genomic data as side information

Supervised method

- Given genomic data and the currently known network...
- Infer missing edges between current nodes and additional nodes.

Erice 2010

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

- Given a training set of patterns in two classes, learn to discriminate them
- Many algorithms (ANN, SVM, Decision tress, ...)

Erice 2010

Pattern recognition and graph inference

Pattern recognition

Associate a binary label Y to each data X

Graph inference

Associate a binary label Y to each pair of data (X_1, X_2)

Two solutions

- Consider each pair (X_1, X_2) as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models

Pattern recognition and graph inference

Pattern recognition

Associate a binary label Y to each data X

Graph inference

Associate a binary label Y to each pair of data (X_1, X_2)

Two solutions

- Consider each pair (X_1, X_2) as a single data -> learning over pairs
- Reformulate the graph inference problem as a pattern recognition problem at the level of individual vertices -> local models

Outline

- Introduction
- De novo vs supervised methods
- Supervised methods for pairs
- Learning with local models
- 5 From local models to pairwise kernels
- 6 Experiments
- Conclusion

Pattern recognition for pairs: basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

Pattern recognition for pairs: basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

Pattern recognition for pairs: basic issue

- A pair can be connected (1) or not connected (-1)
- From the known subgraph we can extract examples of connected and non-connected pairs
- However the genomic data characterize individual proteins; we need to work with pairs of proteins instead!

Representing a pair as a vector

- Each individual protein is represented by a vector $v \in \mathbb{R}^p$
- Depending on the network, we are interested in ordered or unordered pairs of proteins.
- We must represent a pair of proteins (u, v) by a vector $\psi(u, v) \in \mathbb{R}^q$ in order to estimate a linear classifier
- Question: how build $\psi(u, v)$ from u and v, in the ordered and unordered cases?

Direct sum for ordered pairs?

 A simple idea is to concatenate the vectors u and v to obtain a 2p-dimensional vector of (u, v):

$$\psi(u,v)=u\oplus v=\left(\begin{array}{c}u\\v\end{array}\right).$$

Problem: a linear function then becomes additive...

$$f(u,v) = w^{\top} \psi(u,v) = w_1^{\top} u + w^{\top} v.$$

Direct sum for ordered pairs?

 A simple idea is to concatenate the vectors u and v to obtain a 2p-dimensional vector of (u, v):

$$\psi(u,v)=u\oplus v=\left(\begin{array}{c}u\\v\end{array}\right).$$

Problem: a linear function then becomes additive...

$$f(u, v) = \mathbf{w}^{\top} \psi(u, v) = \mathbf{w}_{1}^{\top} u + \mathbf{w}^{\top} v.$$

Direct product for ordered pairs

 Alternatively, make the direct product, i.e., the p²-dimensional vector whose entries are all products of entries of u by entries of v:

$$\psi(u, v) = u \otimes v$$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

$$\left(u_1 \otimes v_1\right)^\top \left(u_2 \otimes v_2\right) = \left(u_1^\top u_2\right) \times \left(v_1^\top v_2\right) \,,$$

which is good for algorithms that use only inner products (SVM...)

$$K_P((u_1, v_1), (u_2, v_2)) = \psi(u_1, v_1)^{\top} \psi(u_2, v_2) = K(u_1, u_2) K(v_1, v_2)$$

Direct product for ordered pairs

 Alternatively, make the direct product, i.e., the p²-dimensional vector whose entries are all products of entries of u by entries of v:

$$\psi(u, v) = u \otimes v$$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

$$(u_1 \otimes v_1)^{\top} (u_2 \otimes v_2) = (u_1^{\top} u_2) \times (v_1^{\top} v_2)$$
,

which is good for algorithms that use only inner products (SVM...)

$$K_P((u_1, v_1), (u_2, v_2)) = \psi(u_1, v_1)^\top \psi(u_2, v_2) = K(u_1, u_2)K(v_1, v_2)$$

Direct product for ordered pairs

 Alternatively, make the direct product, i.e., the p²-dimensional vector whose entries are all products of entries of u by entries of v:

$$\psi(u, v) = u \otimes v$$

- Problem: can get really large-dimensional...
- Good news: inner product factorizes:

$$\left(u_1 \otimes v_1\right)^\top \left(u_2 \otimes v_2\right) = \left(u_1^\top u_2\right) \times \left(v_1^\top v_2\right) \,,$$

which is good for algorithms that use only inner products (SVM...):

$$K_P((u_1, v_1), (u_2, v_2)) = \psi(u_1, v_1)^{\top} \psi(u_2, v_2) = K(u_1, u_2) K(v_1, v_2)$$

Representing an unordered pair

Often we want to work with unordered pairs, e.g., PPI network:

$${u, v} = {(u, v), (v, u)}$$

This suggest to symmetrize the representation of ordered pairs:

$$\psi_U(\{u,v\}) = \psi(u,v) + \psi(v,u)$$

• When $\psi(u, v) = u \otimes v$, this leads to the symmetric tensor product pairwise kernel (TPPK) (Ben-Hur and Noble, 2006):

$$K_{TPPK}\left(\left\{u_{1},v_{1}\right\},\left\{u_{2},v_{2}\right\}\right)=K(u_{1},u_{2})K(v_{1},v_{2})+K(u_{1},v_{2})K(v_{1},u_{2})$$

Representing an unordered pair

Often we want to work with unordered pairs, e.g., PPI network:

$${u,v} = {(u,v),(v,u)}$$

• This suggest to symmetrize the representation of ordered pairs:

$$\psi_U(\{u,v\}) = \psi(u,v) + \psi(v,u)$$

• When $\psi(u, v) = u \otimes v$, this leads to the symmetric tensor product pairwise kernel (TPPK) (Ben-Hur and Noble, 2006):

$$K_{TPPK}\left(\left\{u_{1},v_{1}\right\},\left\{u_{2},v_{2}\right\}\right)=K(u_{1},u_{2})K(v_{1},v_{2})+K(u_{1},v_{2})K(v_{1},u_{2})$$

Representing an unordered pair

Often we want to work with unordered pairs, e.g., PPI network:

$$\{u,v\} = \{(u,v),(v,u)\}$$

• This suggest to symmetrize the representation of ordered pairs:

$$\psi_U(\{u,v\}) = \psi(u,v) + \psi(v,u)$$

• When $\psi(u, v) = u \otimes v$, this leads to the symmetric tensor product pairwise kernel (TPPK) (Ben-Hur and Noble, 2006):

$$K_{TPPK}\left(\left\{u_{1},v_{1}\right\},\left\{u_{2},v_{2}\right\}\right)=K(u_{1},u_{2})K(v_{1},v_{2})+K(u_{1},v_{2})K(v_{1},u_{2})$$

Another idea: metric learning

• For two vectors $u, v \in \mathcal{H}$ let the metric:

$$d_{M}(u,v)=(u-v)^{\top}M(u-v).$$

- Can we learn the metric M such that, in the new metric, connected points are near each other, and non-connected points are far from each other?
- We consider the problem:

$$\min_{M\geq 0} \sum_{i} I(u_i, v_i, y_i) + \lambda ||M||_{Frobenius}^2$$

where I is a hinge loss to enforce

$$d_M(u_i, v_i) \begin{cases} \leq 1 - \gamma & \text{if}(u_i, v_i) \text{is connected }, \\ \geq 1 + \gamma & \text{otherwise.} \end{cases}$$

Another idea: metric learning

• For two vectors $u, v \in \mathcal{H}$ let the metric:

$$d_{M}(u,v) = (u-v)^{\top}M(u-v).$$

- Can we learn the metric *M* such that, in the new metric, connected points are near each other, and non-connected points are far from each other?
- We consider the problem:

$$\min_{M\geq 0} \sum_{i} I(u_i, v_i, y_i) + \lambda ||M||_{Frobenius}^2$$

where I is a hinge loss to enforce

$$d_M(u_i, v_i) \begin{cases} \leq 1 - \gamma & \text{if}(u_i, v_i) \text{is connected }, \\ \geq 1 + \gamma & \text{otherwise.} \end{cases}$$

Another idea: metric learning

• For two vectors $u, v \in \mathcal{H}$ let the metric:

$$d_{M}(u,v) = (u-v)^{\top} M(u-v).$$

- Can we learn the metric *M* such that, in the new metric, connected points are near each other, and non-connected points are far from each other?
- We consider the problem:

$$\min_{M\geq 0} \sum_{i} I(u_i, v_i, y_i) + \lambda ||M||_{Frobenius}^2,$$

where I is a hinge loss to enforce:

$$d_M(u_i, v_i) egin{cases} \leq 1 - \gamma & ext{if}(u_i, v_i) ext{is connected}, \\ \geq 1 + \gamma & ext{otherwise}. \end{cases}$$

Link with metric learning

Theorem (V. et al., 2007)

A SVM with the representation

$$\psi(\{u,v\})=(u-v)^{\otimes 2}$$

trained to discriminate connected from non-connected pairs, solves this metric learning problem without the constraint $M \geq 0$.

 Equivalently, train the SVM over pairs with the metric learning pairwise kernel:

$$K_{MLPK}(\{u_1, v_1\}, \{u_2, v_2\}) = \psi(\{u_1, v_1\})^{\top} \psi(\{u_2, v_2\})$$
$$= [K(u_1, u_2) - K(u_1, v_2) - K(v_1, u_2) + K(u_2, v_2)]^2.$$

Outline

- Introduction
- De novo vs supervised methods
- Supervised methods for pairs
- Learning with local models
- 5 From local models to pairwise kernels
- Experiments
- Conclusion

The idea (Bleakley et al., 2007)

- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.

The idea (Bleakley et al., 2007)

- Motivation: define specific models for each target node to discriminate between its neighbors and the others
- Treat each node independently from the other. Then combine predictions for ranking candidate edges.

- In the case of unordered interactions, we need to symmetrize the prediction, typically by averaging the predictive scores of A → B and B → A to predict the interaction {A, B}
- Weak hypothesis:
 - if A is connected to B,
 - if C is similar to B,
 - then A is likely to be connected to C.
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N² training points.
- Caveats:
 - each local model may have very few training points
 - no sharing of information between different local models

- In the case of unordered interactions, we need to symmetrize the prediction, typically by averaging the predictive scores of A → B and B → A to predict the interaction {A, B}
- Weak hypothesis:
 - if A is connected to B,
 - if C is similar to B,
 - then A is likely to be connected to C.
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N² training points.
- Caveats:
 - each local model may have very few training points
 - no sharing of information between different local models

- In the case of unordered interactions, we need to symmetrize the prediction, typically by averaging the predictive scores of A → B and B → A to predict the interaction {A, B}
- Weak hypothesis:
 - if A is connected to B,
 - if C is similar to B,
 - then A is likely to be connected to C.
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N² training points.
- Caveats:
 - each local model may have very few training points
 - no sharing of information between different local models

- In the case of unordered interactions, we need to symmetrize the prediction, typically by averaging the predictive scores of A → B and B → A to predict the interaction {A, B}
- Weak hypothesis:
 - if A is connected to B,
 - if C is similar to B,
 - then A is likely to be connected to C.
- Computationally: much faster to train N local models with N training points each, than to train 1 model with N² training points.
- Caveats:
 - each local model may have very few training points
 - no sharing of information between different local models

Outline

- Introduction
- De novo vs supervised methods
- Supervised methods for pairs
- 4 Learning with local models
- 5 From local models to pairwise kernels
- Experiments
- Conclusion

Motivation

In the case of unordered pairs $\{A, B\}$, pairwise kernels such as the TPPK and local models look very different:

- Local models seem to over-emphasize the asymmetry of the relationships, but symmetrize the prediction a posteriori
- Pairwise kernels symmetrize the data a priori and learn in the space or unordered pairs

Can be clarify the links between these approaches, and perhaps interpolate between them?

Notations

- ullet ${\cal A}$ the set of individual proteins, endowed with a kernel ${\cal K}_{\cal A}$
- $\mathcal{X} = \mathcal{A}^2$ the set of ordered pairs of the form x = (a, b) endowed with a kernel $K_{\mathcal{X}}$ (usually deduced from $K_{\mathcal{A}}$)
- \mathcal{P} the set of unordered pairs of the form $p = \{(a, b), (b, a)\}$
- We want to learn over \mathcal{P} from a set of labeled training pairs $(p_1, y_1), \dots, (p_n, y_n) \in \mathcal{P} \times \{-1, 1\}$

Two strategies to learn over ${\cal P}$

Strategy 1: Inference over P with a pair kernel

① Define a kernel $K_{\mathcal{P}}$ over \mathcal{P} by convolution of $K_{\mathcal{X}}$:

$$\mathcal{K}_{\mathcal{P}}(\rho, \rho') = \frac{1}{|\rho| \cdot |\rho'|} \sum_{x \in \rho, x' \in \rho'} \mathcal{K}_{\mathcal{X}}(x, x').$$

② Train a classifier over $\mathcal P$ e.g., a SVM, using the kernel $K_{\mathcal P}$

Strategy 2: Inference over \mathcal{X} with a pair duplication

- ① Duplicate each training pair $p = \{a, b\}$ into 2 ordered paired
- 2 Train a classifier over \mathcal{X} , e.g., a SVM, using the kernel $K_{\mathcal{X}}$
- \odot The classifier over \mathcal{P} is then the *a posteriori* average

$$f_{\mathcal{P}}(p) = \frac{1}{|p|} \sum_{x \in p} f_{\mathcal{X}}(x)$$

Two strategies to learn over \mathcal{P}

Strategy 1: Inference over P with a pair kernel

① Define a kernel $K_{\mathcal{P}}$ over \mathcal{P} by convolution of $K_{\mathcal{X}}$:

$$\mathcal{K}_{\mathcal{P}}(p,p') = \frac{1}{|p|\cdot|p'|} \sum_{x\in p,x'\in p'} \mathcal{K}_{\mathcal{X}}(x,x').$$

② Train a classifier over \mathcal{P} e.g., a SVM, using the kernel $K_{\mathcal{P}}$

Strategy 2: Inference over \mathcal{X} with a pair duplication

- ① Duplicate each training pair $p = \{a, b\}$ into 2 ordered paired
- ② Train a classifier over \mathcal{X} , e.g., a SVM, using the kernel $K_{\mathcal{X}}$
- **3** The classifier over \mathcal{P} is then the *a posteriori* average:

$$f_{\mathcal{P}}(p) = \frac{1}{|p|} \sum_{x \in p} f_{\mathcal{X}}(x)$$

The TPPK kernel

$$K_{TPPK}\left(\left\{a,b
ight\},\left\{c,d
ight\}
ight)=K_{\mathcal{A}}(a,c)K_{\mathcal{A}}(b,d)+K_{\mathcal{A}}(a,d)K_{\mathcal{A}}(b,c)$$
 .

Theorem

Let $\mathcal{X} = \mathcal{A}^2$ be endowed with the p.d. kernel:

$$K_{\mathcal{X}}\left((a,b),(c,d)\right) = 2K_{\mathcal{A}}(a,c)K_{\mathcal{A}}(b,d). \tag{1}$$

Erice 2010

33 / 49

Then the TPPK approach is equivalent to both Strategy 1 and Strategy 2.

Remarks: Equivalence with Strategy 1 is obvious, equivalence with Strategy 2 is not, see proof in Hue and V. (ICML 2010).

The local models

Theorem

Let $\mathcal{X}=\mathcal{A}^2$ be endowed with the p.d. kernel:

$$K_{\mathcal{X}}((a,b),(c,d)) = \delta(a,c)K_{\mathcal{A}}(b,d),$$

where δ is the Kronecker kernel ($\delta(a,c)=1$ if a=c, 0 otherwise). Then the local approach is equivalent to Strategy 2.

Remarks: Strategies 1 and 2 are not equivalent with this kernel. In general, they are equivalent up to a modification in the loss function of the learning algorithm, see details in Hue and V. (ICML 2010)...

Interpolation between local model and TPPK

	Strategy 1: pair kernel	Strategy 2: duplication
$K_{\mathcal{X}} = K_{\mathcal{A}} \otimes K_{\mathcal{A}}$	TPPK	TPPK
$K_{\mathcal{X}} = \delta \otimes K_{\mathcal{A}}$	new	Local model

Interpolation

$$K_{\mathcal{X}} = ((1 - \lambda)K_{\mathcal{A}} + \lambda\delta) \otimes K_{\mathcal{A}}$$

for $\lambda \in [0, 1]$

Interpolation between local model and TPPK

	Strategy 1: pair kernel	Strategy 2: duplication
$K_{\mathcal{X}} = K_{\mathcal{A}} \otimes K_{\mathcal{A}}$	TPPK	TPPK
$K_{\mathcal{X}} = \delta \otimes K_{\mathcal{A}}$	new	Local model

Interpolation:

$$K_{\mathcal{X}} = ((1 - \lambda)K_{\mathcal{A}} + \lambda\delta) \otimes K_{\mathcal{A}}$$

for $\lambda \in [0, 1]$

Outline

- Introduction
- De novo vs supervised methods
- Supervised methods for pairs
- Learning with local models
- 5 From local models to pairwise kernels
- 6 Experiments
- Conclusion

Results: protein-protein interaction (yeast)

(from Bleakley et al., 2007)

Results: metabolic gene network (yeast)

(from Bleakley et al., 2007)

Results: regulatory network (E. coli)

Method	Recall at 60%	Recall at 80%
SIRENE	44.5%	17.6%
CLR	7.5%	5.5%
Relevance networks	4.7%	3.3%
ARACNe	1%	0%
Bayesian network	1%	0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)

Interpolation kernel

Table: Strategy and kernel realizing the maximum mean AUC for nine metabolic and protein-protein interaction networks experiments, with the kernel K^{λ} for $\lambda \in [0, 1]$.

benchmark	best kernel	
interaction, exp	Duplicate, $\lambda = 0.7$	
interaction, loc	Pair kernel, $\lambda = 0.6$	
interaction, phy	Duplicate, $\lambda = 0.8$	
interaction, y2h	Duplicate / Pair kernel, $\lambda = 0$	
interaction, integrated	Duplicate / Pair kernel, $\lambda = 0$	
metabolic, exp	Pair kernel, $\lambda = 0.6$	
metabolic, loc	Pair kernel, $\lambda = 1$	
metabolic, phy	Pair kernel, $\lambda = 0.6$	
metabolic, integrated	Duplicate / Pair kernel, $\lambda = 0$	

Interpolation kernel

Metabolic networks with localization data (left); PPI network with expression data (right)

Applications: missing enzyme prediction

Prediction of missing enzyme genes in a bacterial metabolic network

Reconstruction of the lysine-degradation pathway of *Pseudomonas* aeruginosa

Yoshihiro Yamanishi¹, Hisaaki Mihara², Motoharu Osaki², Hisashi Muramatsu³, Nobuyoshi Esaki², Tetsuya Sato¹, Yoshiyuki Hizukuri¹, Susumu Goto¹ and Minoru Kanehisa¹

- 1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
- 2 Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan
- 3 Department of Biology, Graduate School of Science, Osaka University, Japan

Applications: missing enzyme prediction

Applications: missing enzyme prediction

900

DOI 10.1002/pmic.200600862

Proteomics 2007, 7, 900-909

RESEARCH ARTICLE

Prediction of nitrogen metabolism-related genes in Anabaena by kernel-based network analysis

Shinobu Okamoto^{1*}, Yoshihiro Yamanishi¹, Shigeki Ehira², Shuichi Kawashima³, Koichiro Tonomura^{1**} and Minoru Kanehisa¹

¹ Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan

² Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan

³ Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan

Applications: function annotation

Determination of the role of the bacterial peptidase PepF by statistical inference and further experimental validation

Liliana LOPEZ KLEINE^{1,2}, Alain TRUBUIL¹, Véronique MONNET²

¹Unité de Mathématiques et Informatiques Appliquées, INRA Jouv en Josas 78352, France.

²Unité de Biochimie Bactérienne. INRA Jouy en Josas 78352, France.

Application: predicted regulatory network (E. coli)

Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).

46 / 49

Outline

- Introduction
- De novo vs supervised methods
- Supervised methods for pairs
- Learning with local models
- 5 From local models to pairwise kernels
- 6 Experiments
- Conclusion

Conclusion

- When the network is known in part, supervised methods are more adapted than unsupervised ones.
- A variety of methods have been investigated recently (metric learning, matrix completion, pattern recognition).
 - work for any network
 - work with any data
 - can integrate heterogeneous data, which strongly improves performance
- Promising topic: infer edges simultaneously with global constraints on the graph?

People I need to thank

Yoshihiro Yamanishi, Minoru Kanehisa (Univ. Kyoto) Jian Qian, Bill Noble (Univ. Washington), Kevin Bleakley, Gerard Biau (Univ. Montpellier), Fantine Mordelet, Martial Hue (ParisTech)

