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0 Introduction
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Proteins
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Network 1: protein-protein interaction
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Network 2: metabolic network
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Network 3: gene regulatory network
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Data available

Biologists have collected a lot of data about proteins. e.g.,
@ Gene expression measurements
@ Phylogenetic profiles
@ Location of proteins/enzymes in the cell

How to use this information “intelligently” to find a good function that
predicts edges between nodes. ’
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Our goal

e, sl s cong g e . oo
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More precisely

Formalization

e V={1,...,N} vertices (e.g., genes, proteins)
@ D= (xq,...,xy) € HN data about the vertices (H Hilbert space)
@ Goal: predictedges £ C V x V.
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”

“De novo” inference

@ Given data about individual genes and proteins D, ...
@ ... Infer the edges between genes and proteins £
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More precisely

Formalization
e V={1,...,N} vertices (e.g., genes, proteins)
@ D= (xy,...,xy) € H" data about the vertices (H Hilbert space)
@ Goal: predict edges £ C V x V.

“De novo” inference

@ Given data about individual genes and proteins D, ...
@ ... Infer the edges between genes and proteins £

“Supervised” inference
@ Given data about individual genes and proteins D, ...

@ ... and given some known interactions Eyain C &, ...
@ ... infer unknown interactions Eiest = £\ Erain
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e De novo vs supervised methods
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De novo methods

Typical strategies

@ Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)

@ Detect statistical conditional independence or dependency
(Bayesian netwok, mutual information networks, co-expression)
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De novo methods

Typical strategies

@ Fit a dynamical system to time series (e.g., PDE, boolean
networks, state-space models)

@ Detect statistical conditional independence or dependency
(Bayesian netwok, mutual information networks, co-expression)

@ Excellent approach if the @ Specific to particular data
model is correct and and networks
enough data are available @ Needs a correct model!
@ Interpretability of the model e Difficult integration of
@ Inclusion of prior heterogeneous data
knowledge | e Often needs a lot of data
and long computation time
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Evaluation on metabolic network reconstruction

@ The known metabolic network of the yeast involves 769 proteins.

@ Predict edges from distances between a variety of genomic data
(expression, localization, phylogenetic profiles, interactions).
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Evaluation on regulatory network reconstruction

OPEN @ ACCESS Freely available online PLOS sioLosy

Large-Scale Mapping and Validation of
Escherichia coli Transcriptional Regulation
from a Compendium of Expression Profiles

Jeremiah J. Faith'®, Boris Hayete'®, Joshua T. Thaden®, llaria Mogno®*, Jamey Wierzbowski>%, Guillaume Cottarel*®,
Simon Kasif'"2, James J. Collins™2, Timothy S. Gardner"?"
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Supervised methods

In actual applications,

@ we know in advance parts of the network to be inferred

@ the problem is to add/remove nodes and edges using genomic
data as side information

——— O Supervised method

@ Given genomic data and

- the currently known
A ~O network...
- .
N @ Infer missing edges
N between current nodes and
______ O additional nodes.

vy
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Pattern recognition
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@ Given a training set of patterns in two classes, learn to
discriminate them

@ Many algorithms (ANN, SVM, Decision tress, ...)
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@ Given a training set of patterns in two classes, learn to
discriminate them

@ Many algorithms (ANN, SVM, Decision tress, ...)
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Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (X3, X2)
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Pattern recognition and graph inference

Pattern recognition
Associate a binary label Y to each data X

Graph inference
Associate a binary label Y to each pair of data (X3, X2)

Two solutions
@ Consider each pair (X1, X2) as a single data -> learning over pairs

@ Reformulate the graph inference problem as a pattern recognition
problem at the level of individual vertices -> local models
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e Supervised methods for pairs
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Pattern recognition for pairs: basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Pattern recognition for pairs: basic issue

@ A pair can be connected (1) or not connected (-1)

@ From the known subgraph we can extract examples of connected
and non-connected pairs

@ However the genomic data characterize individual proteins; we
need to work with pairs of proteins instead!
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Representing a pair as a vector

@ Each individual protein is represented by a vector v € RP

@ Depending on the network, we are interested in ordered or
unordered pairs of proteins.

@ We must represent a pair of proteins (u, v) by a vector
¥(u,v) € RY9in order to estimate a linear classifier

@ Question: how build ¢ (u, v) from u and v, in the ordered and
unordered cases?
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Direct sum for ordered pairs?

@ A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

zb(u,v):u@v:(g).
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Direct sum for ordered pairs?

@ A simple idea is to concatenate the vectors u and v to obtain a
2p-dimensional vector of (u, v):

w(u,v):u@v:<5>.

@ Problem: a linear function then becomes additive...

fluv)=w'y(u,v)=wju+w'v.
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Direct product for ordered pairs

@ Alternatively, make the direct product, i.e., the p?>-dimensional
vector whose entries are all products of entries of u by entries of
v:

v(u,v)=uv
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Direct product for ordered pairs

@ Alternatively, make the direct product, i.e., the p?>-dimensional

vector whose entries are all products of entries of u by entries of
v:

v(u,v)=uv

@ Problem: can get really large-dimensional...
@ Good news: inner product factorizes:

(ur @ vi)" (U @ W) = <UIU2) X (vﬁv2> ,
which is good for algorithms that use only inner products (SVM...):

Kp ((U17 V1)7 (Ug, V2)) = ’l/)(U17 V1 )Tw(UQ, V2) = K(U1 s U2)K(V1, V2)
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Representing an unordered pair

@ Often we want to work with unordered pairs, e.g., PPI network:

{U7 V} = {(U, V): (V, U)}
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Representing an unordered pair

@ Often we want to work with unordered pairs, e.g., PPI network:

{U7 V} = {(U, V): (V, U)}

@ This suggest to symmetrize the representation of ordered pairs:

wU({uv V}) - 17/}(“7 V) + ¢(V7 U)
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Representing an unordered pair

@ Often we want to work with unordered pairs, e.g., PPI network:

{U7 V} = {(U, V): (V, U)}

@ This suggest to symmetrize the representation of ordered pairs:
Yu({u,v}) = ¥(u, v) +¢(v,u)
@ When ¢(u, v) = u® v, this leads to the symmetric tensor product
pairwise kernel (TPPK) (Ben-Hur and Noble, 2006):

Krppk ({uq, i}, {uz, va}) = K(uy, u2) K(vq, Vo) +K(uy, v2)K(vy, Uo)
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Another idea: metric learning

@ For two vectors u, v € H let the metric:

du(u,v) = (u—v) Mu—v).
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Another idea: metric learning

@ For two vectors u, v € H let the metric:

du(u,v) = (u—v) Mu—v).

@ Can we learn the metric M such that, in the new metric, connected
points are near each other, and non-connected points are far from
each other?
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Another idea: metric learning

@ For two vectors u, v € H let the metric:

du(u,v) = (u—v) Mu—v).

@ Can we learn the metric M such that, in the new metric, connected
points are near each other, and non-connected points are far from
each other?

@ We consider the problem:
min /(UivViayi)+)‘||M|‘%robeniusv

M>0 &
1

where [ is a hinge loss to enforce:

<1 -7~ if(y;, v;)is connected,
>1+~ otherwise.

dm(ui, vi) {
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Link with metric learning

Theorem (V. et al., 2007)
@ A SVM with the representation

Y({u,v}) = (u—-v)*

trained to discriminate connected from non-connected pairs,
solves this metric learning problem without the constraint M > 0.

@ Equivalently, train the SVM over pairs with the metric learning
pairwise kernel:

Kuek ({ur, v}, {uz, v2}) = ({us, vi}) "o ({ue, v2})
= [K(ur, tp) — K(us, v2) — K (w1, ) + K(uz, v2)]? .
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© Learning with local models
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The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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The idea (Bleakley et al., 2007)

@ Motivation: define specific models for each target node to
discriminate between its neighbors and the others

@ Treat each node independently from the other. Then combine
predictions for ranking candidate edges.
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The LOCAL model
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The LOCAL model

+1 O

O +1.
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The LOCAL model
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@ In the case of unordered interactions, we need to symmetrize the
prediction, typically by averaging the predictive scores of A — B
and B — Ato predict the interaction {A, B}
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@ In the case of unordered interactions, we need to symmetrize the
prediction, typically by averaging the predictive scores of A — B
and B — Ato predict the interaction {A, B}

@ Weak hypothesis:

e if Ais connected to B,
e if C is similar to B,
o then A is likely to be connected to C.
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@ In the case of unordered interactions, we need to symmetrize the
prediction, typically by averaging the predictive scores of A — B
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e if Ais connected to B,
o if Cis similar to B,
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@ Computationally: much faster to train N local models with N
training points each, than to train 1 model with N training points.
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@ In the case of unordered interactions, we need to symmetrize the
prediction, typically by averaging the predictive scores of A — B
and B — Ato predict the interaction {A, B}

@ Weak hypothesis:

e if Ais connected to B,
e if Cis similar to B,
o then A is likely to be connected to C.

@ Computationally: much faster to train N local models with N
training points each, than to train 1 model with N? training points.

@ Caveats:

e each local model may have very few training points
e no sharing of information between different local models
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e From local models to pairwise kernels
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In the case of unordered pairs {A, B}, pairwise kernels such as the
TPPK and local models look very different:

@ Local models seem to over-emphasize the asymmetry of the
relationships, but symmetrize the prediction a posteriori

@ Pairwise kernels symmetrize the data a priori and learn in the
space or unordered pairs

Can be clarify the links between these approaches, and perhaps
interpolate between them?
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@ A the set of individual proteins, endowed with a kernel K4

@ X = A2 the set of ordered pairs of the form x = (a, b) endowed
with a kernel Ky (usually deduced from K4)

@ P the set of unordered pairs of the form p = {(a, b), (b, a)}

@ We want to learn over P from a set of labeled training pairs

(p1aY1)a---a(PnaYn) €P % {_171}
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Two strategies to learn over P

Strategy 1: Inference over P with a pair kernel

@ Define a kernel Kp over P by convolution of Ky :

Kp(p, p') > Ka(x, X))
p xepx’ep

@ Train a classifier over P e.g., a SVM, using the kernel Kp
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Two strategies to learn over P

Strategy 1: Inference over P with a pair kernel

@ Define a kernel Kp over P by convolution of Ky :

Ko(pp) = —— 3 Ky(x,x).

=
Pl 1P| e

@ Train a classifier over P e.g., a SVM, using the kernel Kp

v

Strategy 2: Inference over X with a pair duplication

@ Duplicate each training pair p = {a, b} into 2 ordered paired
© Train a classifier over X, e.g., a SVM, using the kernel Ky
© The classifier over P is then the a posteriori average:

o (p) = 17 - ()

XEp

v
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The TPPK kernel

Krppi ({37 b} ) {07 d}) = KA(a7 C)KA(b7 d) + K.A(av d)KA(b7 C) :

Theorem
Let X = A2 be endowed with the p.d. kernel:

Kx ((a,b),(c,d)) =2Ka(a,c)Ka(b,d). (1)

Then the TPPK approach is equivalent to both Strategy 1 and Strategy
2.

v

Remarks: Equivalence with Strategy 1 is obvious, equivalence with
Strategy 2 is not, see proof in Hue and V. (ICML 2010).
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The local models

Let X = A2 be endowed with the p.d. kernel:

Kx ((a7 b)7 (07 d)) - 5(37 C)KA(b7 d) )

where ¢ is the Kronecker kernel (6(a,c) = 1 if a = ¢, 0 otherwise).
Then the local approach is equivalent to Strategy 2.

Remarks: Strategies 1 and 2 are not equivalent with this kernel. In
general, they are equivalent up to a modification in the loss function of
the learning algorithm, see details in Hue and V. (ICML 2010)..
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Interpolation between local model and TPPK

Strategy 1: pair kernel | Strategy 2: duplication
Ky = Ka® Ka TPPK TPPK
Ky =00 Ky new Local model
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Interpolation between local model and TPPK

Strategy 1: pair kernel | Strategy 2: duplication
Ky = Ka® Ka TPPK TPPK
Ky =00 Ky new Local model

Interpolation:
Ky =((1=MNK4s+ X)) @ Ky

for A € [0, 1]
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e Experiments

JP Vert (ParisTech) 2. Biological networks Erice 2010 36/49



Results: protein-protein interaction (yeast)

1
1
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(from Bleakley et al., 2007)
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Results: metabolic gene network (yeast)
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Results: regulatory network (E. coli)

CLR
SIRENE
" 0.8 0.8 SIRENE-Bias
:g 0.6 5 0.6
"§ 0.4 § 0.4
g
0.2 CLR 0.2
SIRENE
SIRENE-Bias
0O 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8
Ratio of false positives Recall
Method Recall at 60% | Recall at 80%
SIRENE 44.5% 17.6%
CLR 7.5% 5.5%
Relevance networks 4.7% 3.3%
ARACNe 1% 0%
Bayesian network 1% 0%

SIRENE = Supervised Inference of REgulatory NEtworks (Mordelet and V., 2008)
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Interpolation kernel

Table: Strategy and kernel realizing the maximum mean AUC for nine

metabolic and protein-protein interaction networks experiments, with the
kernel K* for A € [0, 1].

benchmark best kernel
interaction, exp Duplicate, A = 0.7
interaction, loc Pair kernel, A = 0.6
interaction, phy Duplicate, A = 0.8
interaction, y2h Duplicate / Pair kernel, A =0
interaction, integrated Duplicate / Pair kernel, A = 0
metabolic, exp Pair kernel, A = 0.6
metabolic, loc Pair kernel, A = 1
metabolic, phy Pair kernel, A = 0.6

metabolic, integrated  Duplicate / Pair kernel, A = 0
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Interpolation kernel

0.78 0.90
~ = ]
—— Duplicate 080 —— Duplicate
0.77 |
0.88
076 0.87
g - 3
2 2
0.86
0.75
0.85
0.84
074
0.0 0.2 0.4 06 0.8 10 0835 02 0.4 0.6 0.8 1o
lambda lambda

Metabolic networks with localization data (left); PPl network with
expression data (right)
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Applications: missing enzyme prediction

£FEBS

Journal

Prediction of missing enzyme genes in a bacterial
metabolic network

Reconstruction of the lysine-degradation pathway of Pseudomonas
aeruginosa

Yoshihiro Yamanishi®, Hisaaki Miharaz, Motoharu Osakiz, Hisashi Muramatsuaj Nobuyoshi Esakiz,
Tetsuya Sato’, Yoshiyuki Hizukuri', Susumu Goto' and Minoru Kanehisa'

1 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Japan
2 Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Japan
3 Department of Biology, Graduate School of Sciencs, Osaka University, Japan

Gene Location
Predicted Gene Network

+
Phylogenetic Profile

Gene1(101000101110)
Gene2(101000101110)
Gene3(101000101110)
Gene4 (101000101110)
Gene5(000000101110)
Gene6(111111111110)
Gene7(101001111111)
Gene8(101000000010)
Gene9(101000000010) PATHWAY Database
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Applications: missing enzyme prediction
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Applications: missing enzyme prediction

900 DOI 10.1002/pmic.200600862 Proteomics 2007, 7, 900-909

RESEARCH ARTICLE

Prediction of nitrogen metabolism-related genes in
Anabaena by kernel-based network analysis

Shinobu Okamoto’*, Yoshihiro Yamanishi', Shigeki Ehira?, Shuichi Kawashima®,
Koichiro Tonomura’** and Minoru Kanehisa'

' Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Japan
2 Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, Saitama, Japan
3 Human Genome Center, Institute of Medical Science, University of Tokyo, Meguro, Japan
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Applications: function annotation

Determination of the role of the bacterial peptidase PepF by statistical
inference and further experimental validation

Liliana LOPEZ KLEINE'?, Alain TRUBUIL', Véronique MONNET*

'Unité de Mathématiques et Informatiques Appliquées. INRA Jouy en Josas 78352, France.
2Unité de Biochimie Bactérienne. INRA J ouy en Josas 78352, France.
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Application: predicted regulatory network (E. coli)
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Prediction at 60% precision, restricted to transcription factors (from Mordelet and V., 2008).
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e Conclusion
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Conclusion

@ When the network is known in part, supervised methods are more
adapted than unsupervised ones.

@ A variety of methods have been investigated recently (metric
learning, matrix completion, pattern recognition).

e work for any network
e work with any data
e can integrate heterogeneous data, which strongly improves

performance
@ Promising topic: infer edges simultaneously with global
constraints on the graph?
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