Multiple change-points detection in multiple signal

Kevin Bleakley and Jean-Philippe Vert

Mines ParisTech / Curie Institute / Inserm

Mathematical Statistics and Applications Workshop, Fréjus, France, Sep 2,2010.

Multiple change-points detection in 1 signal

Multiple change-points detection in 1 signal

Multiple change-points detection in many signals

Multiple change-points detection in many signals

Why we care?

- Joint segmentation should increase the statistical power
- Applications:
 - multi-dimensional signals (multimedia, sensors...)
 - genomic profiles

Chromosomic aberrations in cancer

Comparative Genomic Hybridization (CGH)

A collection of bladder tumours

Typical applications

- Find frequent breakpoints in a collection of tumours (fusion genes...)
- Low-dimensional summary and visualization of the set of profiles

Detection of frequently altered regions

What we want

- An algorithm that scales in time and memory to
 - Profiles length: $n = 10^6 \sim 10^9$
 - Number of profiles (dimension): $p = 10^2 \sim 10^3$
 - Number of change-points: $k = 10^2 \sim 10^3$
- A method with good statistical properties when p increases for n fixed (opposite to most existing litterature).

Segmentation by dynamic programming

- $Y \in \mathbb{R}^{n \times p}$ the signals
- Define a piecewise constant approximation $\hat{U} \in \mathbb{R}^{n \times p}$ of Y with k change-points as the solution of

$$\min_{U \in \mathbb{R}^{n \times p}} \| Y - U \|^2$$
 such that $\sum_{i=1}^{n-1} \mathbf{1} \left(U_{i+1, \bullet} \neq U_{i, \bullet} \right) \leq k$

- DP finds the solution in $O(n^2kp)$ in time and $O(n^2)$ in memory
- Does not scale to $n = 10^6 \sim 10^9...$

TV approximator for a single signal (p = 1)

Replace

$$\min_{U \in \mathbb{R}^n} \| Y - U \|^2 \quad \text{such that} \quad \sum_{i=1}^{n-1} \mathbf{1} \left(U_{i+1} \neq U_i \right) \leq k$$

by

$$\min_{U\in\mathbb{R}^n}\|Y-U\|^2 \quad \text{such that} \quad \sum_{i=1}^{n-1}|U_{i+1}-U_i|\leq \mu$$

- An instance of total variation penalty (Rudin et al., 1992)
- Convex problem, fast implementations in O(nK) or O(n log n) (Friedman et al., 2007; Harchaoui and Levy-Leduc, 2008; Hoefling, 2009)

TV approximator for many signals

Replace

$$\min_{U \in \mathbb{R}^{n \times p}} \| Y - U \|^2$$
 such that $\sum_{i=1}^{n-1} \mathbf{1} \left(U_{i+1, \bullet} \neq U_{i, \bullet} \right) \leq k$

by

$$\min_{U \in \mathbb{R}^{n \times p}} \| Y - U \|^2 \quad \text{such that} \quad \sum_{i=1}^{n-1} w_i \| U_{i+1,\bullet} - U_{i,\bullet} \| \le \mu$$

Questions

- Practice: can we solve it efficiently?
- Theory: does it benefit from increasing *p* (for *n* fixed)?

TV approximator as a group Lasso problem

Make the change of variables:

$$\gamma = U_{1,\bullet}$$
,
 $\beta_{i,\bullet} = w_i \left(U_{i+1,\bullet} - U_{i,\bullet} \right)$ for $i = 1, \dots, n-1$.

 TV approximator is then equivalent to the following group Lasso problem (Yuan and Lin, 2006):

$$\min_{\beta \in \mathbb{R}^{(n-1) \times \rho}} \| \ \bar{Y} - \bar{X}\beta \, \|^2 + \lambda \sum_{i=1}^{n-1} \| \, \beta_{i, \bullet} \, \| \, ,$$

where \bar{Y} is the centered signal matrix and \bar{X} is a particular $(n-1)\times(n-1)$ design matrix.

TV approximator implementation

$$\min_{\beta \in \mathbb{R}^{(n-1) \times \rho}} \| \ \bar{Y} - \bar{X}\beta \, \|^2 + \lambda \sum_{i=1}^{n-1} \| \, \beta_{i, \bullet} \, \| \, ,$$

Theorem

The TV approximator can be solved efficiently:

- approximately with the group LARS in O(npk) in time and O(np) in memory
- exactly with a block coordinate descent + active set method in O(np) in memory

Proof: computational tricks...

Although \bar{X} is $(n-1) \times (n-1)$:

- For any $R \in \mathbb{R}^{n \times p}$, we can compute $C = \bar{X}^T R$ in O(np) operations and memory
- For any two subset of indices $A = (a_1, \ldots, a_{|A|})$ and $B = (b_1, \ldots, b_{|B|})$ in [1, n-1], we can compute $\bar{X}_{\bullet,A}^{\top} \bar{X}_{\bullet,B}$ in O(|A||B|) in time and memory
- For any $A = (a_1, \ldots, a_{|A|})$, set of distinct indices with $1 \le a_1 < \ldots < a_{|A|} \le n-1$, and for any $|A| \times p$ matrix R, we can compute $C = \left(\bar{X}_{\bullet,A}^{\top}\bar{X}_{\bullet,A}\right)^{-1}R$ in O(|A|p) in time and memory

Consistency for a single change-point

Suppose a single change-point:

- at position $u = \alpha n$
- with increments $(\beta_i)_{i=1,\dots,p}$ s.t. $\bar{\beta}^2 = \lim_{k\to\infty} \frac{1}{p} \sum_{i=1}^k \beta_i^2$
- corrupted by i.i.d. Gaussian noise of variance σ^2

Does the TV approximator correctly estimate the first change-point as *p* increases?

Consistency of the unweighted TV approximator

$$\min_{U \in \mathbb{R}^{n \times p}} \| Y - U \|^2 \quad \text{such that} \quad \sum_{i=1}^{n-1} \| U_{i+1,\bullet} - U_{i,\bullet} \| \le \mu$$

Theorem

The unweighted TV approximator finds the correct change-point with probability tending to 1 (resp. 0) as $p \to +\infty$ if $\sigma^2 < \tilde{\sigma}_{\alpha}^2$ (resp. $\sigma^2 > \tilde{\sigma}_{\alpha}^2$), where

$$\tilde{\sigma}_{\alpha}^{2} = n\bar{\beta}^{2} \frac{(1-\alpha)^{2}(\alpha - \frac{1}{2n})}{\alpha - \frac{1}{2} - \frac{1}{2n}}.$$

- correct estimation on $[n\epsilon, n(1-\epsilon)]$ with $\epsilon = \sqrt{\frac{\sigma^2}{2n\beta^2}} + o(n^{-1/2})$.
- wrong estimation near the boundaries

Consistency of the weighted TV approximator

$$\min_{U \in \mathbb{R}^{n \times p}} \| Y - U \|^2 \quad \text{such that} \quad \sum_{i=1}^{n-1} w_i \| U_{i+1,\bullet} - U_{i,\bullet} \| \le \mu$$

Theorem

The weighted TV approximator with weights

$$\forall i \in [1, n-1] , \quad w_i = \sqrt{\frac{i(n-i)}{n}}$$

correctly finds the first change-point with probability tending to 1 as $p \to +\infty$.

- we see the benefit of increasing p
- we see the benefit of adding weights to the TV penalty

Proof sketch

• The first change-point \hat{i} found by TV approximator maximizes $F_i = \|\hat{c}_{i,\bullet}\|^2$, where

$$\hat{\mathbf{c}} = \bar{\mathbf{X}}^{\top} \bar{\mathbf{Y}} = \bar{\mathbf{X}}^{\top} \bar{\mathbf{X}} \beta^* + \bar{\mathbf{X}}^{\top} \mathbf{W}$$
 .

• \hat{c} is Gaussian, and F_i is follows a non-central χ^2 distribution with

$$G_i = \frac{EF_i}{p} = \frac{i(n-i)}{nw_i^2}\sigma^2 + \frac{\bar{\beta}^2}{w_i^2w_u^2n^2} \times \begin{cases} i^2\left(n-u\right)^2 & \text{if } i \leq u\,, \\ u^2\left(n-i\right)^2 & \text{otherwise.} \end{cases}$$

• We then just check when $G_u = \max_i G_i$

Consistent estimation of more change-points?

$$n = 100, k = 10, \bar{\beta}^2 = 1, \sigma^2 \in \{0.05; 0.2; 1\}$$

Conclusion

- A new convex formulation for multiple change-point detection in multiple signals
- Better estimation with more signals
- Importance of weights
- Efficient approximate (gLARS) and exact (gLASSO) implementations; GLASSO more expensive but more accurate
- Consistency for the first K > 1 change-points observed experimentally but technically tricky to prove.