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Multiple change-points detection in 1 signal
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Multiple change-points detection in many signals
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Multiple change-points detection in many signals
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@ Joint segmentation should increase the statistical power
@ Applications:

e multi-dimensional signals (multimedia, sensors...)
@ genomic profiles
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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)
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A collection of bladder tumours
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Typical applications

@ Find frequent breakpoints in a collection of tumours (fusion
genes...)

@ Low-dimensional summary and visualization of the set of profiles
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@ Detection of frequently altered regions
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What we want

@ An algorithm that scales in time and memory to
e Profiles length: n = 10°% ~ 10°
e Number of profiles (dimension): p = 10% ~ 103
e Number of change-points: k = 10% ~ 103
@ A method with good statistical properties when p increases for n
fixed (opposite to most existing litterature).
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Segmentation by dynamic programming

@ Y € R™P the signals

@ Define a piecewise constant approximation U € R™<P of Y with k
change-points as the solution of

n—1
min || Y — U][? such that 1(Ui1e # Uis) < k
UeRnxpll | ; (Uis1,0 # Uia) <

@ DP finds the solution in O(n?kp) in time and O(n?) in memory
@ Does not scale to n = 108 ~ 10°...
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TV approximator for a single signal (p = 1)

@ Replace

n—1
in|lY—U|° h th 1(U; ) < k
min || Y~ U|[* such that ; (U1 # U)) <
by
n—1
in||Y—U|? h that U, —U| <
&2'@,” | such tha ;’ i+1 il<n

@ An instance of total variation penalty (Rudin et al., 1992)

@ Convex problem, fast implementations in O(nK) or O(nlog n)
(Friedman et al., 2007; Harchaoui and Levy-Leduc, 2008;
Hoefling, 2009)
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TV approximator for many signals

@ Replace

n—1
UeRM*pP

by

n—1

min | Y- U|? suchthat > wj|Up.—

UeRnxp -
i=1

e Practice: can we solve it efficiently?

e Theory: does it benefit from increasing p (for n fixed)?

min | Y- U suchthat Y 1(Uy1e# Ul) <k
i=1

UI,OH <
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TV approximator as a group Lasso problem

@ Make the change of variables:

Y= U1 )
,3,".:W,'(U,'+17.—U,'7.) fori:1,...,n—1.
@ TV approximator is then equivalent to the following group Lasso

problem (Yuan and Lin, 2006):

n—1
min ||V = X3P+ Biell,

(n—=1)xp
AeR i=1

where Y is the centered signal matrix and X is a particular
(n—1) x (n— 1) design matrix.
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TV approximator implementation

n—1
min | Y= XBIP+2) 1 Biall,

(n—1)x
peR i=1

The TV approximator can be solved efficiently:
@ approximately with the group LARS in O(npk) in time and O(np)
in memory
@ exactly with a block coordinate descent + active set method in
O(np) in memory
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Proof: computational tricks...

Although Xis (n—1) x (n—1):
@ Forany R € R™P, we can compute C = X R in O(np) operations
and memory

@ For any two subset of indices A= (ay,...,a),) and
B = (by,...,bg) in[1,n— 1], we can compute X, , X, g in
O(|A[|B]) in time and memory

@ Forany A= (a1, e a|A|), set of distinct indices with
1T<ar<...<agpu < n—1, and for any |A| x p matrix R, we can

_ _ —1
compute C = (X.T,AX-,A> R in O(|A|p) in time and memory
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Consistency for a single change-point

Suppose a single change-point:
@ at position u = an
@ with increments (3;)i=1,..p S.t. 3% = liMk o0 Sk 3R
@ corrupted by i.i.d. Gaussian noise of variance ¢
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Does the TV approximator correctly estimate the first change-point as
p increases?

K. Bleakley and J.P Vert (ParisTech) Multiple change-points in multiple signals StatMathAppli 2010 16/21



Consistency of the unweighted TV approximator

n—1
min ||Y — U]|[? such that Uiie— Ul <
il | l ; | i+1, i, | <pu

The unweighted TV approximator finds the correct change-point with
probability tending to 1 (resp. 0) as p — +oo if 0% < 52 (resp.
02 > 52), where

@ correct estimation on [ne, n(1 — €)] with e = #%2 + o(n*1/2).

@ wrong estimation near the boundaries
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Consistency of the weighted TV approximator

n—1

min ||Y — U||?® such that Wil|Upsq1e — Uiol| <
UeR"XPH | 1221 il Uis1, ol < 11

Theorem

The weighted TV approximator with weights

i(n—1)

Vie[l,n—1], w;= -

correctly finds the first change-point with probability tending to 1 as
p — +o0.

@ we see the benefit of increasing p
@ we see the benefit of adding weights to the TV penalty
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Proof sketch

@ The first change-point i found by TV approximator maximizes
Fi = & | where

c=X"Y=X"Xpr+X"W.

@ ¢is Gaussian, and F; is follows a non-central x? distribution with

EF, i(n—1i) , 32 {/'Z(n—u)2 ifi<u,

Gi=—= o” + X ) _
p nw? w2win2 ~ | w2 (n—i)® otherwise.

@ We then just check when G, = max; G;
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Consistent estimation of more change-points?
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Conclusion

@ A new convex formulation for multiple change-point detection in
multiple signals

@ Better estimation with more signals
@ Importance of weights

@ Efficient approximate (gLARS) and exact (QLASSO)
implementations; GLASSO more expensive but more accurate

@ Consistency for the first K > 1 change-points observed
experimentally but technically tricky to prove.
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