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Cancer prognosis
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Cancer diagnosis
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Virtual screening for drug discovery
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Pattern recognition, aka supervised classification
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Pattern recognition, aka supervised classification

Challenges
High dimension
Few samples
Structured data
Heterogeneous data
Prior knowledge
Fast and scalable
implementations
Interpretable models
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Formalization

The problem
Given a set of training instances (x1, y1), . . . , (xn, yn), where
xi ∈ X are data and yi ∈ Y are continuous or discrete variables of
interest,
Estimate a function

y = f (x)

where x is any new data to be labeled.
f should be accurate and intepretable.
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Linear classifiers

The model
Each sample x ∈ X is represented by a vector of features (or
descriptors, or patterns):

Φ(x) = (Φ1(x), . . . ,Φp(x)) ∈ Rp .

Based on the training set we estimate a linear function:

fβ(x) =

p∑
i=1

βiΦi(x) = β>Φ(x) .

Jean-Philippe Vert (ParisTech) EPAT’2010 10 / 108



Shrinkage classifiers

For any candidate set of weights β = (β1, . . . , βp) we quantify how
"good" the linear function fβ is on the training set with some
empirical risk, typicalle:

R(β) =
1
n

n∑
i=1

l(fβ(xi), yi) .

We choose the β that achieves the minimium empirical risk,
subject to some constraint:

Ω(β) ≤ C .

Equivalently we solve

min
β∈Rp

R(β) + λΩ(β) .
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Example 1: kernel methods, SVM

Penalty:

ΩSVM(β) = ‖β ‖22 =

p∑
i=1

β2
i .

Kernel trick: we can efficiently solve

min
β∈Rp

1
n

n∑
i=1

l(β>Φ(xi), yi) + λ‖β ‖2 ,

even for large of infinite p, if we can compute efficiently the kernel:

K (x , x ′) = Φ(x)>Φ(x ′) .
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Example 2: feature selection with LASSO

Penalty:

ΩLASSO(β) = ‖β ‖1 =

p∑
i=1

|βi | .

The solution is usually sparse.
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Efficienty computation of the regularization path

min
β∈Rp

n∑
i=1

(
β>xi − yi

)2
+ λ

p∑
i=1

|βi | (1)

No explicit solution, but this is just a quadratic program.
LARS (Efron et al., 2004) provides a fast algorithm to compute the
solution for all λ’s simultaneously (regularization path)
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Shrinkage classifiers - Summary

We focus on linear classifiers

fβ(x) = β>Φ(x)

We estimate β by solving an optimization problem:

min
β∈Rp

R(β) + λΩ(βi)

Two (related) questions
How to design the features Φ(x)?
How to design the penalty Ω(β)?
We will now see some specific answers to these questions for
specific problems.
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A simple view of cancer progression
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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

Motivation
Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome
Very useful, in particular in cancer research
Can we classify CGH arrays for diagnosis or prognosis purpose?

Jean-Philippe Vert (ParisTech) EPAT’2010 20 / 108



Aggressive vs non-aggressive melanoma
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CGH array classification

Prior knowledge
For a CGH profile x ∈ Rp, we focus on linear classifiers, i.e., the
sign of :

fβ(x) = β>x .

We expect β to be
sparse : not all positions should be discriminative
piecewise constant : within a selected region, all probes should
contribute equally
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Promoting sparsity with the `1 penalty

The `1 penalty (Tibshirani, 1996; Chen et al., 1998)
The solution of

min
β∈Rp

R(β) + λ

p∑
i=1

|βi |

is usually sparse.
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Promoting piecewise constant profiles penalty

The variable fusion penalty (Land and Friedman, 1996)
The solution of

min
β∈Rp

R(β) + λ

p−1∑
i=1

|βi+1 − βi |

is usually piecewise constant.
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A penalty for CGH array classification

The fused LASSO penalty (Tibshirani et al., 2005)

Ωfusedlasso(β) =
∑

i

|βi |+
p−1∑
i=1

|βi+1 − βi | .

First term leads to sparse solutions
Second term leads to piecewise constant solutions

The fused SVM (Rapaport et al., 2008)

min
β∈Rp

n∑
i=1

`
(

yi , β
>xi

)
+ λ

p∑
i=1

|βi |+ µ

p−1∑
i=1

|βi+1 − βi | .

where ` is, e.g., the hinge loss `(y , t) = max(1− yt ,0). It is then a LP.
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Application: predicting metastasis in melanoma
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DNA→ RNA→ protein

CGH shows the (static) DNA
Cancer cells have also abnormal (dynamic) gene expression (=
transcription)
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Tissue profiling with DNA chips

Data
Gene expression measures for more than 10k genes
Measured typically on less than 100 samples of two (or more)
different classes (e.g., different tumors)
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Tissue classification from microarray data

Goal
Design a classifier to
automatically assign a
class to future samples
from their expression
profile
Interpret biologically the
differences between the
classes

Difficulty
Large dimension
Few samples
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Prognosis from microarray data (MAMMAPRINT)
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Gene signature

The idea
We look for a limited set of genes that are sufficient for prediction.
Equivalently, the linear classifier will be sparse

Motivations
Bet on sparsity: we believe the "true" model is sparse.
Interpretation: we will get a biological interpretation more easily by
looking at the selected genes.
Accuracy: by restricting the class of classifiers, we "increase the
bias" but "decrease the variance". This should be helpful in large
dimensions (it is better to estimate well a wrong model than
estimate badly a good model).
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But...

Challenging the idea of gene signature
We often observe little stability in the genes selected...
Is gene selection the most biologically relevant hypothesis?
What about thinking instead of "pathways" or "modules"
signatures?
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Gene networks
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Gene networks and expression data

Motivation
Basic biological functions usually involve the coordinated action of
several proteins:

Formation of protein complexes
Activation of metabolic, signalling or regulatory pathways

Many pathways and protein-protein interactions are already known
Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge
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Graph-based penalty

min
β

R(β) + λΩG(β)

Hypothesis
We would like to design penalties ΩG(β) to promote one of the
following hypothesis:

Hypothesis 1: genes near each other on the graph should have
similar weights (but we do not try to select only a few genes), i.e.,
the classifier should be smooth on the graph
Hypothesis 2: genes selected in the signature should be
connected to each other, or be in a few known functional groups,
without necessarily having similar weights.
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Graph based penalty

Prior hypothesis
Genes near each other on the graph should have similar weigths.

An idea (Rapaport et al., 2007)

Ωspectral(β) =
∑
i∼j

(βi − βj)
2 ,

min
β∈Rp

R(β) + λ
∑
i∼j

(βi − βj)
2 .
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Graph Laplacian

Definition
The Laplacian of the graph is the matrix L = D − A.

1

2

3

4

5

L = D − A =


1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 1 1


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Spectral penalty as a kernel

Theorem
The function f (x) = β>x where b is solution of

min
β∈Rp

1
n

n∑
i=1

l
(
β>xi , yi

)
+ λ

∑
i∼j

(
βi − βj

)2

is equal to g(x) = γ>Φ(x) where γ is solution of

min
γ∈Rp

1
n

n∑
i=1

l
(
γ>Φ(xi), yi

)
+ λγ>γ ,

and where
Φ(x)>Φ(x ′) = x>KGx ′

for KG = L∗, the pseudo-inverse of the graph Laplacian.

Jean-Philippe Vert (ParisTech) EPAT’2010 42 / 108



ClassifiersRapaport et al
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Fig. 4. Global connection map of KEGG with mapped coefficients of the decision function obtained by applying a customary linear SVM

(left) and using high-frequency eigenvalue attenuation (80% of high-frequency eigenvalues have been removed) (right). Spectral filtering

divided the whole network into modules having coordinated responses, with the activation of low-frequency eigen modes being determined by

microarray data. Positive coefficients are marked in red, negative coefficients are in green, and the intensity of the colour reflects the absolute

values of the coefficients. Rhombuses highlight proteins participating in the Glycolysis/Gluconeogenesis KEGG pathway. Some other parts of

the network are annotated including big highly connected clusters corresponding to protein kinases and DNA and RNA polymerase sub-units.

5 DISCUSSION

Our algorithm groups predictor variables according to highly

connected "modules" of the global gene network. We assume

that the genes within a tightly connected network module

are likely to contribute similarly to the prediction function

because of the interactions between the genes. This motivates

the filtering of gene expression profile to remove the noisy

high-frequencymodes of the network.

Such grouping of variables is a very useful feature of the

resulting classification function because the function beco-

mes meaningful for interpreting and suggesting biological

factors that cause the class separation. This allows classifi-

cations based on functions, pathways and network modules

rather than on individual genes. This can lead to a more robust

behaviour of the classifier in independent tests and to equal if

not better classification results. Our results on the dataset we

analysed shows only a slight improvement, although this may

be due to its limited size. Thereforewe are currently extending

our work to larger data sets.

An important remark to bear in mind when analyzing pictu-

res such as fig.4 and 5 is that the colors represent the weights

of the classifier, and not gene expression levels. There is

of course a relationship between the classifier weights and

the typical expression levels of genes in irradiated and non-

irradiated samples: irradiated samples tend to have expression

profiles positively correlated with the classifier, while non-

irradiated samples tend to be negatively correlated. Roughly

speaking, the classifier tries to find a smooth function that

has this property. If more samples were available, better

non-smooth classifier might be learned by the algorithm, but

constraining the smoothness of the classifier is away to reduce

the complexity of the learning problem when a limited num-

ber of samples are available. This means in particular that the

pictures provide virtually no information regarding the over-

8
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Classifier
Spectral analysis of gene expression profiles using gene networks

 a)  b)
Fig. 5. Theglycolysis/gluconeogenesis pathways ofKEGGwithmapped coefficients of the decision function obtained by applying a customary

linear SVM (a) and using high-frequency eigenvalue attenuation (b). The pathways are mutually exclusive in a cell, as clearly highlighted by

our algorithm.

or under-expression of individual genes, which is the cost to

pay to obtain instead an interpretation in terms of more glo-

bal pathways. Constraining the classifier to rely on just a few

genes would have a similar effect of reducing the complexity

of the problem,butwould lead to amoredifficult interpretation

in terms of pathways.

An advantage of our approach over other pathway-based

clustering methods is that we consider the network modules

that naturally appear from spectral analysis rather than a histo-

rically defined separation of the network into pathways. Thus,

pathways cross-talking is taken into account, which is diffi-

cult to do using other approaches. It can however be noticed

that the implicit decomposition into pathways that we obtain

is biased by the very incomplete knowledge of the network

and that certain regions of the network are better understood,

leading to a higher connection concentration.

Like most approaches aiming at comparing expression data

with gene networks such as KEGG, the scope of this work

is limited by two important constraints. First the gene net-

work we use is only a convenient but rough approximation to

describe complex biochemical processes; second, the trans-

criptional analysis of a sample can not give any information

regarding post-transcriptional regulation and modifications.

Nevertheless, we believe that our basic assumptions remain

valid, in that we assume that the expression of the genes

belonging to the same metabolic pathways module are coor-

dinately regulated. Our interpretation of the results supports

this assumption.

Another important caveat is that we simplify the network

description as an undirected graph of interactions. Although

this would seem to be relevant for simplifying the descrip-

tion of metabolic networks, real gene regulation networks are

influenced by the direction, sign and importance of the interac-

tion. Although the incorporationof weights into the Laplacian

(equation 1) is straightforward and allows the extension of the

approach to weighted undirected graphs, the incorporation

of directions and signs to represent signalling or regulatory

pathways requires more work but could lead to important

advances for the interpretation of microarray data in cancer

studies, for example.
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Other penalties with kernels

Φ(x)>Φ(x ′) = x>KGx ′

with:
KG = (c + L)−1 leads to

Ω(β) = c
p∑

i=1

β2
i +

∑
i∼j

(
βi − βj

)2
.

The diffusion kernel:

KG = expM(−2tL) .

penalizes high frequencies of β in the Fourier domain.
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Other penalties without kernels

Gene selection + Piecewise constant on the graph

Ω(β) =
∑
i∼j

∣∣βi − βj
∣∣+

p∑
i=1

|βi |

Gene selection + smooth on the graph

Ω(β) =
∑
i∼j

(
βi − βj

)2
+

p∑
i=1

|βi |
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How to select jointly genes belonging to predefined
pathways?
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Selecting pre-defined groups of variables

Group lasso (Yuan & Lin, 2006)
If groups of covariates are likely to be selected together, the
`1/`2-norm induces sparse solutions at the group level:

Ωgroup(w) =
∑

g

‖wg‖2

Ω(w1,w2,w3) = ‖(w1,w2)‖2+‖w3‖2
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What if a gene belongs to several groups?

Issue of using the group-lasso
Ωgroup(w) =

∑
g ‖wg‖2 sets groups to 0.

One variable is selected⇔ all the groups to which it belongs are
selected.

IGF selection⇒ selection of
unwanted groups

⇒
‖wg1‖2=‖wg3‖2=0

Removal of any group
containing a gene⇒ the
weight of the gene is 0.
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Overlap norm (Jacob et al., 2009)

An idea
Introduce latent variables vg :


min
w ,v

L(w) + λ
∑
g∈G
‖vg‖2

w =
∑

g∈G vg

supp
(
vg
)
⊆ g.

Properties
Resulting support is a union of groups in G.
Possible to select one variable without selecting all the groups
containing it.
Equivalent to group lasso when there is no overlap
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A new norm

Overlap norm
min
w ,v

L(w) + λ
∑
g∈G
‖vg‖2

w =
∑

g∈G vg

supp
(
vg
)
⊆ g.

= min
w

L(w) + λΩoverlap(w)

with

Ωoverlap(w)
∆
=


min

v

∑
g∈G
‖vg‖2

w =
∑

g∈G vg

supp
(
vg
)
⊆ g.

(∗)

Property
Ωoverlap(w) is a norm of w .
Ωoverlap(.) associates to w a specific (not necessarily unique)
decomposition (vg)g∈G which is the argmin of (∗).

Jean-Philippe Vert (ParisTech) EPAT’2010 52 / 108



Overlap and group unity balls

Balls for ΩG
group (·) (middle) and ΩG

overlap (·) (right) for the groups
G = {{1,2}, {2,3}} where w2 is represented as the vertical coordinate. Left:

group-lasso (G = {{1,2}, {3}}), for comparison.
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Theoretical results

Consistency in group support (Jacob et al., 2009)
Let w̄ be the true parameter vector.
Assume that there exists a unique decomposition v̄g such that
w̄ =

∑
g v̄g and ΩGoverlap (w̄) =

∑
‖v̄g‖2.

Consider the regularized empirical risk minimization problem
L(w) + λΩGoverlap (w).

Then
under appropriate mutual incoherence conditions on X ,
as n→∞,
with very high probability,

the optimal solution ŵ admits a unique decomposition (v̂g)g∈G such
that {

g ∈ G|v̂g 6= 0
}

=
{

g ∈ G|v̄g 6= 0
}
.
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Experiments

Synthetic data: overlapping groups
10 groups of 10 variables with 2 variables of overlap between two
successive groups :{1, . . . ,10}, {9, . . . ,18}, . . . , {73, . . . ,82}.
Support: union of 4th and 5th groups.
Learn from 100 training points.

Frequency of selection of each variable with the lasso (left) and ΩG
overlap (.)

(middle), comparison of the RMSE of both methods (right).
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Graph lasso

Two solutions

Ωintersection(β) =
∑
i∼j

√
β2

i + β2
j ,

Ωunion(β) = sup
α∈Rp:∀i∼j,‖α2

i +α2
j ‖≤1

α>β .
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Graph lasso vs kernel on graph

Graph lasso:

Ωgraph lasso(w) =
∑
i∼j

√
w2

i + w2
j .

constrains the sparsity, not the values
Graph kernel

Ωgraph kernel(w) =
∑
i∼j

(wi − wj)
2 .

constrains the values (smoothness), not the sparsity
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Preliminary results

Breast cancer data
Gene expression data for 8,141 genes in 295 breast cancer
tumors.
Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD `1 ΩG
OVERLAP (.)

ERROR 0.38± 0.04 0.36± 0.03
MEAN ] PATH. 130 30

Graph on the genes.

METHOD `1 Ωgraph(.)
ERROR 0.39± 0.04 0.36± 0.01
AV. SIZE C.C. 1.03 1.30
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Outline

1 Shrinkage linear classifiers

2 Cancer prognosis from DNA copy number variations
Motivation
Penalty inducing piecewise constant classifier

3 Diagnosis and prognosis from gene expression data
Motivation
Penalties for smooth classifiers
Penalties for structured feature selection

4 Graph classification
Explicit computation of features
Graph kernels
Feature selection for all subgraph indexation

5 Conclusion
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Motivation

inactive

active

active

active

inactive

inactive

NCI AIDS screen results (from http://cactus.nci.nih.gov).
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The approach

1 Represent each graph x by a vector of fixed dimension Φ(x) ∈ Rp.
2 Use an algorithm for regression or pattern recognition in Rp.

X
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Example

2D structural keys in chemoinformatics
Index a molecule by a binary fingerprint defined by a limited set of
pre-defined stuctures

O

N

O

O

OO

N N N

O O

O

Use a machine learning algorithms such as SVM, NN, PLS,
decision tree, ...
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Challenge: which descriptors (patterns)?

O

N

O

O

OO

N N N

O O

O

Expressiveness: they should retain as much information as
possible from the graph
Computation : they should be fast to compute
Large dimension of the vector representation: memory storage,
speed, statistical issues
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Indexing by substructures

O

N

O

O

OO

N N N

O O

O

Often we believe that the presence substructures are important
predictive patterns
Hence it makes sense to represent a graph by features that
indicate the presence (or the number of occurrences) of particular
substructures
However, detecting the presence of particular substructures may
be computationally challenging...
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Subgraphs

Definition
A subgraph of a graph (V ,E) is a connected graph (V ′,E ′) with
V ′ ⊂ V and E ′ ⊂ E .
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Indexing by all subgraphs?

Theorem
Computing all subgraph occurrences is NP-hard.

Proof.
The linear graph of size n is a subgraph of a graph X with n
vertices iff X has an Hamiltonian path
The decision problem whether a graph has a Hamiltonian path is
NP-complete.
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Paths

Definition
A path of a graph (V ,E) is sequence of distinct vertices
v1, . . . , vn ∈ V (i 6= j =⇒ vi 6= vj ) such that (vi , vi+1) ∈ E for
i = 1, . . . ,n − 1.
Equivalently the paths are the linear subgraphs.
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Indexing by all paths?

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Theorem
Computing all path occurrences is NP-hard.

Proof.
Same as for subgraphs.
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Indexing by what?

Substructure selection
We can imagine more limited sets of substuctures that lead to more
computationnally efficient indexing (non-exhaustive list)

substructures selected by domain knowledge (MDL fingerprint)
all path up to length k (Openeye fingerprint, Nicholls 2005)
all shortest paths (Borgwardt and Kriegel, 2005)
all subgraphs up to k vertices (graphlet kernel, Sherashidze et al.,
2009)
all frequent subgraphs in the database (Helma et al., 2004)
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Example : Indexing by all shortest paths

(0,...,0,2,0,...,0,1,0,...)

B

A
B

A
A A A B

A B A B

A A

A

A

Properties (Borgwardt and Kriegel, 2005)

There are O(n2) shortest paths.
The vector of counts can be computed in O(n4) with the
Floyd-Warshall algorithm.
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Example : Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

Naive enumeration scales as O(nk ).
Enumeration of connected graphlets in O(ndk−1) for graphs with
degree ≤ d and k ≤ 5.
Randomly sample subgraphs if enumeration is infeasible.
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Summary

Explicit computation of substructure occurrences can be
computationnally prohibitive (subgraph, paths)
Several ideas to reduce the set of substructures considered
In practice, NP-hardness may not be so prohibitive (e.g., graphs
with small degrees), the strategy followed should depend on the
data considered.
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The idea

1 Represent implicitly each graph x by a vector Φ(x) ∈ H through
the kernel

K (x , x ′) = Φ(x)>Φ(x ′) .

2 Use a kernel method for classification in H.

X
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Expressiveness vs Complexity

Definition: Complete graph kernels
A graph kernel is complete if it separates non-isomorphic graphs, i.e.:

∀G1,G2 ∈ X , dK (G1,G2) = 0 =⇒ G1 ' G2 .

Equivalently, Φ(G1) 6= Φ(G1) if G1 and G2 are not isomorphic.

Expressiveness vs Complexity trade-off
If a graph kernel is not complete, then there is no hope to learn all
possible functions over X : the kernel is not expressive enough.
On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical
applications.
Can we define tractable and expressive graph kernels?
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Complexity of complete kernels

Proposition (Gärtner et al., 2003)
Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.

Proof
For any kernel K the complexity of computing dK is the same as
the complexity of computing K , because:

dK (G1,G2)2 = K (G1,G1) + K (G2,G2)− 2K (G1,G2) .

If K is a complete graph kernel, then computing dK solves the
graph isomorphism problem (dK (G1,G2) = 0 iff G1 ' G2). �
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Subgraph kernel

Definition
Let (λG)G∈X a set or nonnegative real-valued weights
For any graph G ∈ X , let

∀H ∈ X , ΦH(G) =
∣∣ {G′ is a subgraph of G : G′ ' H

} ∣∣ .
The subgraph kernel between any two graphs G1 and G2 ∈ X is
defined by:

Ksubgraph(G1,G2) =
∑
H∈X

λHΦH(G1)ΦH(G2) .
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Subgraph kernel complexity

Proposition (Gärtner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (1/2)
Let Pn be the path graph with n vertices.
Subgraphs of Pn are path graphs:

Φ(Pn) = neP1 + (n − 1)eP2 + . . .+ ePn .

The vectors Φ(P1), . . . ,Φ(Pn) are linearly independent, therefore:

ePn =
n∑

i=1

αiΦ(Pi) ,

where the coefficients αi can be found in polynomial time (solving
a n × n triangular system).
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Subgraph kernel complexity

Proposition (Gärtner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (2/2)
If G is a graph with n vertices, then it has a path that visits each
node exactly once (Hamiltonian path) if and only if Φ(G)>en > 0,
i.e.,

Φ(G)>

(
n∑

i=1

αiΦ(Pi)

)
=

n∑
i=1

αiKsubgraph(G,Pi) > 0 .

The decision problem whether a graph has a Hamiltonian path is
NP-complete. �
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Path kernel

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Definition
The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpath(G1,G2) =
∑
H∈P

λHΦH(G1)ΦH(G2) ,

where P ⊂ X is the set of path graphs.

Proposition (Gärtner et al., 2003)
Computing the path kernel is NP-hard.
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Summary

Expressiveness vs Complexity trade-off
It is intractable to compute complete graph kernels.
It is intractable to compute the subgraph kernels.
Restricting subgraphs to be linear does not help: it is also
intractable to compute the path kernel.
One approach to define polynomial time computable graph kernels
is to have the feature space be made up of graphs homomorphic
to subgraphs, e.g., to consider walks instead of paths.
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Walks

Definition
A walk of a graph (V ,E) is sequence of v1, . . . , vn ∈ V such that
(vi , vi+1) ∈ E for i = 1, . . . ,n − 1.
We noteWn(G) the set of walks with n vertices of the graph G,
andW(G) the set of all walks.

etc...
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Walks 6= paths
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Walk kernel

Definition
Let Sn denote the set of all possible label sequences of walks of
length n (including vertices and edges labels), and S = ∪n≥1Sn.
For any graph X let a weight λG(w) be associated to each walk
w ∈ W(G).
Let the feature vector Φ(G) = (Φs(G))s∈S be defined by:

Φs(G) =
∑

w∈W(G)

λG(w)1 (s is the label sequence of w) .

A walk kernel is a graph kernel defined by:

Kwalk (G1,G2) =
∑
s∈S

Φs(G1)Φs(G2) .
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Walk kernel examples

Examples
The nth-order walk kernel is the walk kernel with λG(w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.
The random walk kernel is obtained with λG(w) = PG(w), where
PG is a Markov random walk on G. In that case we have:

K (G1,G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independant random walks on G1 and
G2, respectively (Kashima et al., 2003).
The geometric walk kernel is obtained (when it converges) with
λG(w) = β length(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).
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Computation of walk kernels

Proposition
These three kernels (nth-order, random and geometric walk kernels)
can be computed efficiently in polynomial time.
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Product graph

Definition
Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs with labeled
vertices. The product graph G = G1 ×G2 is the graph G = (V ,E) with:

1 V = {(v1, v2) ∈ V1 × V2 : v1 and v2 have the same label} ,
2 E ={(

(v1, v2), (v ′1, v
′
2)
)
∈ V × V : (v1, v ′1) ∈ E1 and (v2, v ′2) ∈ E2

}
.

G1 x G2

c

d e43

2

1 1b 2a 1d

1a 2b

3c

4c

2d

3e

4e

G1 G2

a b
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Walk kernel and product graph

Lemma
There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 ×G2).

Corollary

Kwalk (G1,G2) =
∑
s∈S

Φs(G1)Φs(G2)

=
∑

(w1,w2)∈W(G1)×W(G1)

λG1(w1)λG2(w2)1(l(w1) = l(w2))

=
∑

w∈W(G1×G2)

λG1×G2(w) .
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Computation of the nth-order walk kernel

For the nth-order walk kernel we have λG1×G2(w) = 1 if the length
of w is n, 0 otherwise.
Therefore:

Knth−order (G1,G2) =
∑

w∈Wn(G1×G2)

1 .

Let A be the adjacency matrix of G1 ×G2. Then we get:

Knth−order (G1,G2) =
∑
i,j

[An]i,j = 1>An1 .

Computation in O(n|G1||G2|d1d2), where di is the maximum
degree of Gi .
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Computation of random and geometric walk kernels

In both cases λG(w) for a walk w = v1 . . . vn can be decomposed
as:

λG(v1 . . . vn) = λi(v1)
n∏

i=2

λt (vi−1, vi) .

Let Λi be the vector of λi(v) and Λt be the matrix of λt (v , v ′):

Kwalk (G1,G2) =
∞∑

n=1

∑
w∈Wn(G1×G2)

λi(v1)
n∏

i=2

λt (vi−1, vi)

=
∞∑

n=0

ΛiΛ
n
t 1

= Λi (I − Λt )
−1 1

Computation in O(|G1|3|G2|3)
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Extensions 1: label enrichment

Atom relabebling with the Morgan index

Order 2 indices

N

O

O

1

1

1

1

1

1

1

1

1

N

O

O

2

2

2

3

2

3

1

1

2

N

O

O

4

4

5

7

5

5

3

3

4

No Morgan Indices Order 1 indices

Compromise between fingerprints and structural keys features.
Other relabeling schemes are possible (graph coloring).
Faster computation with more labels (less matches implies a
smaller product graph).
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Extension 2: Non-tottering walk kernel

Tottering walks
A tottering walk is a walk w = v1 . . . vn with vi = vi+2 for some i .

Tottering

Non−tottering

Tottering walks seem irrelevant for many applications
Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).
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Computation of the non-tottering walk kernel (Mahé et
al., 2005)

Second-order Markov random walk to prevent tottering walks
Written as a first-order Markov random walk on an augmented
graph
Normal walk kernel on the augmented graph (which is always a
directed graph).
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Extension 3: Subtree kernels
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Example: Tree-like fragments of molecules
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Computation of the subtree kernel

Like the walk kernel, amounts to compute the (weighted) number
of subtrees in the product graph.
Recursion: if T (v ,n) denotes the weighted number of subtrees of
depth n rooted at the vertex v , then:

T (v ,n + 1) =
∑

R⊂N (v)

∏
v ′∈R

λt (v , v ′)T (v ′,n) ,

where N (v) is the set of neighbors of v .
Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.
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Application in chemoinformatics (Mahé et al., 2004)

MUTAG dataset
aromatic/hetero-aromatic compounds
high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.
188 compouunds: 125 + / 63 -

Results
10-fold cross-validation accuracy

Method Accuracy
Progol1 81.4%
2D kernel 91.2%
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2D Subtree vs walk kernels
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Screening of inhibitors for 60 cancer cell lines.
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Summary: graph kernels

What we saw
Kernels do not allow to overcome the NP-hardness of subgraph
patterns
They allow to work with approximate subgraphs (walks, subtrees),
in infinite dimension, thanks to the kernel trick
However: using kernels makes it difficult to come back to patterns
after the learning stage
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Outline

1 Shrinkage linear classifiers

2 Cancer prognosis from DNA copy number variations
Motivation
Penalty inducing piecewise constant classifier

3 Diagnosis and prognosis from gene expression data
Motivation
Penalties for smooth classifiers
Penalties for structured feature selection

4 Graph classification
Explicit computation of features
Graph kernels
Feature selection for all subgraph indexation

5 Conclusion
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Motivation

Indexing by all subgraphs is appealing but intractable in practice
(both explicitly and with the kernel trick)
Can we work implicitly with this representation using sparse
learning, e.g., LASSO regression or boosting?
This may lead to both accurate predictive model and the
identification of discriminative patterns.
The iterations of LARS or boosting amount to an optimization
problem over subgraphs, which may be solved efficiently using
graph mining technique...
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Boosting over subgraph indexation (Kudo et al., 2004)

Weak learner = decision stump indexed by subgraph H and
α = ±1:

hα,H(G) = αΦH(G)

Boosting: at each iteration, for a given distribution
d1 + . . .+ dn = 1 over the training points (Gi , yi), select a weak
learner (subgraph H̃) which maximizes the gain

gain(H, α) =
n∑

i=1

yihα,H(Gi) .

This can be done "efficiently" by branch-and-bound over a DFS
code tree (Yan and Han, 2002).
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The DFS code tree
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Graph LASSO regularization path (Tsuda, 2007)
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Summary

Sparse learning is practically feasible in the space of graphs
indexed by all subgraphs
Leads to subgraph selection
Several extensions

LASSO regularization path (Tsuda, 2007)
gboost (Saigo et al., 2009)

A beautiful and promising marriage between machine learning
and data mining
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Conclusion

Machine learning with complex and structured data becomes the
rule
Shrinkage methods (SVM, LASSO, ...) are widely used with
default penalty function, and offer nice possibilities to include prior
knowledge in the penalty while remaining a convex optimization
problem.
We surveyed several ideas

Learning with kernels
Learning with sparsity
Feature construction

Performance and interpretability are both important
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