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@ A joint lab about “Cancer computational genomics, bioinformatics,
biostatistics and epidemiology”

@ Located in th Institut Curie, a major hospital and cancer research
institute in Europe
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Statistical machine learning for cancer informatics

@ Towards better diagnosis, prognosis, and personalized medicine

e Supervised classification of genomic, transcriptomic, proteomic
data; heterogeneous data integration

@ Towards new drug targets

e Systems biology, reconstruction of gene networks, pathway
enrichment analysis, multidimensional phenotyping of cell
populations.

@ Towards new drugs
o Ligand-based virtual screening, in silico chemogenomics.
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Towards personalized medicine:

Diagnosis/prognosis from genome/transcriptome
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From Golub et al., Science, 1999.
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Towards new drug targets:
Inference of biological networks
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From Mordelet and Vert, Bioinformatics, 2008.
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Towards new drugs:

Ligand-Based Virtual Screening and QSAR
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NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Pattern recognition, aka supervised classification
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Pattern recognition, aka supervised classification

Challenges

@ High dimension
@ Few samples

@ Structured data
@ Prior knowledge

@ Fast and scalable
implementations

@ Interpretable models
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Linear classifiers

The model

@ Each sample is represented by a vector x = (xy, ..., Xp)

@ Goal: from a training set of samples with known labels, estimate a
linear function:

p
f3(X) = BiXi + fo -
i=1
whose sign is a good predictor.

@ Interpretability: the weight 8; quantifies the influence of feature i
(but...)
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Estimating a linear classifiers

@ We have a training set of samples (x(), ..., x(") with known class
(M, y™).

@ For any candidate set of weights 5 = (4, ..., 8P) we quantify how
"good" the linear function f3 is on the training set with some

average loss, e.g.,
R(B) = Z/ fa(x(1), yDy,

@ We choose the g that achieves the minimium risk, subject to some
constraint on g, e.g.:

Qp)<C.
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Importance of the constraint Q(5) < C

Why it is necessary

@ Prevents overfitting (especially when nis small)
@ Helps to overcome numerical issues (regularization)

Why it is useful

@ Can lead to efficient implementations (convexification)
@ Good place to put prior knowledge!
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0 Gene selection for transcriptomic signatures
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0 Gene selection for transcriptomic signatures

© Prognosis from array CGH data

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics



0 Gene selection for transcriptomic signatures
© Prognosis from array CGH data

e Pathway signatures
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0 Gene selection for transcriptomic signatures
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Tissue profiling with DNA chips

Prepare ¢cDNA'Probe’ Prepare'Microarray/

@ Gene expression measures for more than 10k genes

@ Measured typically on less than 100 samples of two (or more)
different classes (e.g., different tumors)
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Tissue classification from microarray data
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Gene signature

@ We look for a limited set of genes that are sufficient for prediction.
@ Equivalently, the linear classifier will be sparse

| \

Motivations

@ Bet on sparsity: we believe the "true" model is sparse.

@ Interpretation: we will get a biological interpretation more easily by
looking at the selected genes.

@ Accuracy: by restricting the class of classifiers, we "increase the
bias" but "decrease the variance". This should be helpful in large
dimensions (it is better to estimate well a wrong model than
estimate badly a good model).
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Example: MAMMAPRINT
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How to estimate a sparse linear model?

Best subset selection

@ We look for a sparse weight vector 3 by solving the problem:

minR(f) st [ Ao <k

@ This is usually a NP-hard problem, feasible for p as large as 30 or
40

@ The state-of-the-art is branch-and-bound optimization, known as
leaps and bound for least squares (Furnival and Wilson, 1974).

@ Not useful in practice for us...
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Efficient feature selection

To work with more variables, we must use different methods. The
state-of-the-art is split among

@ Filter methods : the predictors are preprocessed and ranked from
the most relevant to the less relevant. The subsets are then
obtained from this list, starting from the top.

@ Wrapper method: here the feature selection is iterative, and uses
the ERM algorithm in the inner loop

@ Embedded methods : here the feature selection is part of the
ERM algorithm itself (see later the shrinkage estimators).
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Filter methods

@ Associate a score S(i) to each feature i/, then rank the features by
decreasing score.
@ Many scores / criteria can be used
e Loss of the ERM trained on a single feature

o Statistical tests (Fisher, T-test)
e Other performance criteria of the ERM restricted to a single feature

(AUG, ..))
e Information theoretical criteria (mutual information...)
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Filter methods

@ Associate a score S(i) to each feature i/, then rank the features by
decreasing score.
@ Many scores / criteria can be used
e Loss of the ERM trained on a single feature

o Statistical tests (Fisher, T-test)
e Other performance criteria of the ERM restricted to a single feature

(AUG, ..))
e Information theoretical criteria (mutual information...)

v

Simple, scalable, good empirical success

@ Selection of redundant features
@ Some variables useless alone can become useful together
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Wrapper methods

Forward stepwise selection
@ Start from no features

@ Sequentially add into the model the feature that most improves the
fit
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Wrapper methods

Forward stepwise selection

@ Start from no features

@ Sequentially add into the model the feature that most improves the
fit

v

Backward stepwise selection (if n>p)
@ Start from all features

@ Sequentially removes from the model the feature that least
degrades the fit

\
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Wrapper methods

Forward stepwise selection
@ Start from no features

@ Sequentially add into the model the feature that most improves the
fit

Backward stepwise selection (if n>p)
@ Start from all features

@ Sequentially removes from the model the feature that least
degrades the fit

| A,

Other variants
Hybrid stepwise selection strategies that consider both forward and
backward moves at each stage, and make the "best" move
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Embedded methods (LASSO)
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Why LASSO leads to sparse solutions

Geometric interpretation with p = 2

T
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© Prognosis from array CGH data
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Chromosomic aberrations in cancer
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Comparative Genomic Hybridization (CGH)

@ Comparative genomic hybridization (CGH) data measure the DNA
copy number along the genome

@ Very useful, in particular in cancer research
@ Can we classify CGH arrays for diagnosis or prognosis purpose?
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Aggressive vs non-aggressive melanoma
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Example: CGH array classification

Prior knowledge

@ For a CGH profile x = (x1, ..., Xp), we focus on linear classifiers,
i.e., the sign of :

p
f(x) = Bixi.
i=

@ We expect (3 to be
e sparse : not all positions should be discriminative
@ piecewise constant : within a selected region, all probes should
contribute equally

Amplified segments
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A penalty for CGH array classification

The fused LASSO penalty (Tibshirani et al., 2005)
Qtusediasso(8) = Z |8l + Z 18i — Bil -

inof

@ First term leads to sparse solutions
@ Second term leads to piecewise constant solutions

@ Combined with a hinge loss leads to a fused SVM (Rapaport et
al., 2008);
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Application: metastasis prognosis in melanoma
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e Pathway signatures
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Challenging the idea of gene signature
@ We often observe little stability in the genes selected...
@ Is gene selection the most biologically relevant hypothesis?

@ What about thinking instead of "pathways" or "modules”
signatures?
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Gene networks
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Gene networks and expression data

@ Basic biological functions usually involve the coordinated action of
several proteins:

e Formation of protein complexes
e Activation of metabolic, signalling or regulatory pathways

@ Many pathways and protein-protein interactions are already known

@ Hypothesis: the weights of the classifier should be “coherent” with
respect to this prior knowledge
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Graph based penalty

Prior hypothesis
Genes near each other on the graph should have similar weigths.
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Graph based penalty

Prior hypothesis
Genes near each other on the graph should have similar weigths.

Two solutions (Rapaport et al., 2007, 2008)
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Classifiers
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Classifier
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Example: finding discriminant modules in gene
networks

Prior hypothesis

Genes near each other on the graph should have non-zero weigths
(i.e., the support of 5 should be made of a few connected
components).
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Example: finding discriminant modules in gene
networks

Prior hypothesis

Genes near each other on the graph should have non-zero weigths
(i.e., the support of 5 should be made of a few connected
components).

Two solutions?

| A\

Qintersection(8) = Z \/ 5,2 + /3'2 )

i~j

Qunion(B) = sup a'f.

o 2 2
a€RP Vi, || +a; <1

.

Jean-Philippe Vert (ParisTech-Curie) Machine learning in bioinformatics



Example: finding discriminant modules in gene

networks
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Graph lasso vs kernel on graph

@ Graph lasso:
Qgraph lasso(W) = Z \ Wi2 + Wj2 :
i~j
constrains the sparsity, not the values

@ Graph kernel

Qgraph kernel(W) = Z(Wi - WI)2

i~of

constrains the values (smoothness), not the sparsity
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Preliminary results

Breast cancer data

@ Gene expression data for 8, 141 genes in 295 breast cancer
tumors.

@ Canonical pathways from MSigDB containing 639 groups of
genes, 637 of which involve genes from our study.

METHOD 44 Qgroup-
ERROR 0.38 +0.04 0.36 +0.03
ff PATH. 148, 58,183 6,5,78

PROP. PATH. 0.32,0.14,0.41 0.01,0.01,0.17

@ Graph on the genes.

METHOD 44 Qgrapn(.)
ERROR 0.39+0.04 0.36 +0.01
Av. sizec.c. 1.1,1,1.0 13,14,1.2
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Conclusion

@ Machine learning provides many solutions for the analysis of
high-throughput data (more examples later..)

@ The development of dedicated method is increasingly important to
overcome the challenges (few samples, high-dimension,
structures..)

@ This increasingly requires tight collaboration with domain experts
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